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Abstract

Motivation: Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI)

facilitates the analysis of large organic molecules. However, the complexity of biological samples

and MALDI data acquisition leads to high levels of variation, making reliable quantification of sam-

ples difficult. We present a new analysis approach that we believe is well-suited to the properties of

MALDI mass spectra, based upon an Independent Component Analysis derived for Poisson

sampled data. Simple analyses have been limited to studying small numbers of mass peaks, via

peak ratios, which is known to be inefficient. Conventional PCA and ICA methods have also been

applied, which extract correlations between any number of peaks, but we argue makes inappropri-

ate assumptions regarding data noise, i.e. uniform and Gaussian.

Results: We provide evidence that the Gaussian assumption is incorrect, motivating the need for

our Poisson approach. The method is demonstrated by making proportion measurements from

lipid-rich binary mixtures of lamb brain and liver, and also goat and cow milk. These allow our

measurements and error predictions to be compared to ground truth.

Availability and implementation: Software is available via the open source image analysis system

TINA Vision, www.tina-vision.net.

Contact: paul.tar@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In mass spectrometry, the formation of gas phase ions from complex

biomolecules typically destroys structures of interest. John B. Fenn

and Koichi Tanaka overcame this problem, sharing the 2002 Nobel

Prize in chemistry for matrix-assisted laser desorption/ionisation

(MALDI) and electrospray ionisation (ESI), see Hillenkamp and

Peter-Katalini�c (2007). MALDI co-crystallizes complex samples

within an easy to ionize matrix. Samples and matrix are vaporized

and ionized with a laser, giving a pulsed source of ions ideal for ToF

mass analysis. The ability to mass analyze large molecules with high

detection sensitivity makes MALDI attractive for biological sample

analysis, with applications ranging from milk adulteration detection,

e.g. Calvano et al. (2013), to cancer studies, e.g. Rodrigo et al.

(2014). MALDI can also form images by sampling across a 2D lat-

tice, Fülöp et al. (2016), with mass peaks forming pixel values.

These datasets are massively rich, with hundreds of mass-specific

images able to be generated per acquisition. A method of data-

mining such images would be a valuable enabling tool, allowing mo-

lecular correlations to be identified and mapped upon biological

structures. Such a system must quantitatively model the complex

variations and attribute them to classes of interest, e.g. tissue types.

This may be achieved using linear modelling approaches, such as

Independent Component Analysis (ICA), as in Gut et al. (2015). As

a step towards a more general data-mining system, we present our
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own ICA approach that is believed to match well with the properties

of MALDI data and so provide additional advantages over trad-

itional linear modelling methods.

MALDI mass spectra (MS) are complex and highly variable.

Careful preparation and acquisition can mitigate against some fac-

tors, e.g. Seeley et al. (2008), but requires training, practice and skill.

Ideally, a homogeneous specimen might be expected to produce MS

that are repeatable to levels of statistical sampling noise. However,

MS exhibits many other modes of variation:

• Ionisation and detection vary depending upon local matrix dens-

ity, chemistry, laser intensity and duration of acquisition, see

Astigarraga et al. (2008).
• Long chain molecules can fragment by a number of mechanisms

and also have isotopic variations.
• Protonation is the intended ionisation process, however, sodium

and potassium ionisation is often observed, even following at-

tempts to wash away soluble salts.
• Suppression effects exist, where the presence of certain chemicals

can mask or change the appearance of others due to different

affinities for attracting charge.
• Unwanted ions can contaminate mass spectra, including those

from the MALDI matrix.
• The location of peaks (flight time) can differ between spectra if

mass analysers are not calibrated for each acquisition. This is a

function of surface geometry, as slight differences in a sample‘s

height and local ion extraction fields correspond to slight differ-

ences in ToF.
• There is a near-continuous ‘chemical noise’, from un-gated post-

source decay processes and ion scattering, superimposed on any

inherent instrumentation noise.

A complex biomolecule will generate a series of MS features, which

undergo correlated variations in intensity and position, depending

upon equipment settings and local sample environment, e.g. Szájli

et al. (2008). Aside from these variations, MALDI MS are approxi-

mately linear combinations of sub-spectra from a sample‘s constitu-

ent chemical components. Some sources of variation are reduced

through pre-processing. Baseline corrections can remove back-

ground by subtracting a smooth function fitted beneath peaks, e.g.

Williams et al. (2005). Alignment can be achieved by shifts of spec-

tra, with various forms of interpolation applied for sub-bin preci-

sion, e.g. Jeffries (2005). Peak detection and integration can be

achieved by thresholding, direct summation of m/z bins, or by the

fitting of Gaussians, e.g. Yang et al. (2009). In previous work, we

developed pre-processing methods for use where Poisson noise is

dominant in peaks and Gaussian noise is dominant in background,

see Seepujak et al. (2017).

A basic approach to MS analysis is to inspect single peaks that

correlate maximally with sought measurements, e.g. Cahill et al.

(2016). A peak can be normalized to a second peak (or integral over

a region) in order to estimate relative compositions. Peaks may also

be artificially added to act as internal standards, such as in

Chumbley et al. (2016). Signal affected by high levels of ambiguity

or confounding variability is thus excluded, at the cost of discarding

potentially useful information. More efficient methods extract corre-

lated peak variations, such as Principal Component Analysis (PCA)

and Independent Component Analysis (ICA). These approximate

data as weighted combinations of unit vectors, each representing

correlated sets of peaks. Comparisons between linear models can be

found in Gut et al. (2015) and Nicolaou et al. (2011), with evidence

that ICA is most beneficial. The formulations of standard PCA and

ICA algorithms are based upon uniform independent Gaussian

errors, often conveniently leading to closed-form solutions.

However, MALDI may not be compatible with these assumptions.

In particular, Poisson statistics may better describe the counting of

ions. Evidence of MALDI’s Poisson nature has been highlighted by

others, e.g. Harn et al. (2015) and Piehowski et al. (2009), which we

further investigate in this work.

The behaviour of noise can be assessed using Bland-Altman

plots, see Bland and Altman (1986). These plot deviations from ex-

pected values as a function of signal strength. Figure 1 illustrates in-

dependent, identically distributed (iid) Gaussian noise, giving

residuals with a fixed spread, and also Poisson noise, where re-

siduals grow with the square-root of the signal. A square-root trans-

form (Anscombe, 1948) can approximately convert Poisson noise

into iid Gaussian noise, but this invalidates any assumed linear

model of signal as a consequence. The main modelling options avail-

able and their key properties are listed in Table 1.

Using Bland-Altman analysis, we present evidence that a

Gaussian noise assumption is inappropriate for MALDI data and

that a Poisson assumption is more realistic. In recent work we

derived an ICA method for data with Poisson sampling characteris-

tics, see Tar and Thacker (2014): Linear Poisson Modelling (LPM).

It has been applied to planetary and medical images (see Tar et al.,

2015, 2017). We believe this method [(*) in Table 1] provides the

best match to the properties of MALDI data and is therefore eval-

uated here on the task of measuring mixtures of complex lipid speci-

mens. Our method incorporates a Likelihood estimation procedure

and a predictive error theory capable of assessing the effects of

Poisson noise on measurements. An extension, ‘MAX SEP’, is de-

signed to reduce degeneracy inherent in linear modelling, aiding in-

terpretation of components allowing them to be attributed to

biologically meaningful MALDI sub-spectra. The aim of MAX SEP

is similar to that of the varimax, quartimax and equimax rotations,

e.g. Kaiser (1958), but is appropriate for positive only data. This

current study uses mixtures of cow‘s milk and goat‘s milk; lamb

brain mixed with lamb liver extracts; and lamb white matter and

grey matter, targeting mass ranges associated with the samples’ lipid

content. In addition to applying our new LPM method, we perform

single peak analyses on the same data to corroborate mixture meas-

urements and compare attainable measurement precision.

2 Materials and methods

2.1 Sample preparation and MS acquisition
Binary mixtures in differing proportions (e.g. class A: class B) act as

ground truth: cow milk with goat milk, chloroform extracts of

Fig. 1. Monte Carlo generated Bland-Altman plots showing behaviour of uni-

form independent Gaussian noise (left) and independent Poisson noise

(right)
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homogenized lamb brain and liver and of lamb brain white matter

and grey matter. For each pair, mixtures of lipids were carefully pre-

pared in 11 proportions ranging from 0% A (100% B) to 100% A

(0% B), in increments of 10%, with proportions determined by

weight.

Milk mixtures were prepared prior to lipid extraction, whereas

brain and liver lipids were extracted first, then mixed afterwards.

For milk, 1 ml at each proportion underwent the lipid extraction

procedure. For brain and liver tissues, lipid extraction was done sep-

arately using 2 g of homogenized tissue of each type. Lamb brain

was cut in its coronal axis to approximately 1 cm2 for dissection of

white and grey matter. Lipids were extracted by adding 2:1 metha-

nol:chloroform (4.5 ml), chloroform (2 ml) and deionized water

(1 ml) to the samples before mixing well. Samples were centrifuged

at 1300 rpm for 2 min at 20 �C. Levels of natural salts in the result-

ing lipid extracts were reduced by the addition of 1 ml of deionized

water before being centrifuged again.

10 mg/ml of 2,5-dihydroxybenzoic acid (LaserBio Labs) in aceto-

nitrile with addition of 0.1% trifluoroacetic acid was prepared as a

matrix solution. The matrix solution was mixed with a ratio of 1:1

for the milk and 3:2 for the tissue to form MALDI specimens.

Double layers of a MALDI specimen, 1 microlitre each layer, were

deposited onto a stainless steel MALDI target plate. 8 repeat depos-

itions were applied per mixture proportion to provide repeatability

data. The location of each proportion was randomly positioned on

the target plate to avoid correlations between the spatial organisa-

tion and mixing amounts.

An AXIMA (curved-field reflectron time-of-flight) mass spectrom-

eter, manufactured by Shimadzu Biotech, was used to acquire the

MALDI MS data. Where the MALDI ionisation system of the instru-

ment is a 349 nm neodymium-doped yttrium lithium fluoride (Nd:

YLF) laser of<5 ns pulse width and approximately 200 Hz repetition

rate. Using the positive reflectron mode, an ion extraction energy of

up to 24kV was allowed with an effective drift length of 2.0 m. The

LAUNCHPAD proprietary software was used throughout all of the

experiments for controlling acquisition. During acquisition, default

settings were adopted (i.e. 200 profiles, 5 shots, pulsed extraction

750 Da, mass range up to 1500Da). A total of 88 spectra were ob-

tained for each mixture type, one for each of the deposited targets.

2.2 Pre-processing
Low m/z MS peaks (e.g. sodium and matrix ions) contain little infor-

mation regarding lipid content. A mass window (m/z) between 650

and 850 was selected for milk mixtures; a window between 690 and

890 for brain: liver mixtures and white: grey matter. The total quan-

tity of signal gathered per spectrum is difficult to control, making it

necessary to pre-filter poor data. Spectra containing low signal

within this window were rejected on grounds of low signal-to-noise.

Spectra containing high signal were also rejected to avoid saturated

peaks. A combination of visual inspection and goodness-of-fit tests

determined which spectra were kept in order to build satisfactory

models. This left 66 milk mixtures, 80 brain: liver mixtures and 82

white:grey matter mixtures, out of the original 88 per group.

Preprocessing is performed to ensure that data behaves as lin-

early additive histograms, with independent Poisson noise, as is

required for LPMs to opperate correctly. The methods developed in

Seepujak et al. (2017) achieve this. A peak alignment procedure is

applied to minimize unwanted shifting of peaks. A baseline correc-

tion that assumes noise on the background is approximately

Gaussian with zero mean is applied. Finally, histograms are pro-

duced containing only bins for significant peaks, with peaks inte-

grated into each bin and inter-peak gaps removed. A total of 102

peaks were retained in the milk spectra, 76 peaks were retained in

the brain: liver spectra and 67 in the white: grey matter mixtures.

2.3 Peak ratio analysis
We apply a simple peak-ratio analysis to estimate mixing propor-

tions for the milk and brain: liver mixtures as a bench-mark against

which the new LPM analysis can be compared. Within the lipid win-

dow, the largest peak is used for normalization. This peak is at m/z

760.5 in all three mixture cases, corresponding to a phosphocholine.

At each mixing proportion, all peaks are divided by the reference

peak, with results for each peak plotted against the known ground-

truth proportions. A least-squares fit is computed for each peak,

which should correlate (or anti-correlate) well with the ground truth

if there is useful information present. The most informative peaks

(providing smallest errors) were compared to the LP-ICA results.

These peaks were at m/z 706.2 for milk mixtures, 786.5 for

brain:liver and 734.5 for white:grey matter.

Sources of variability, including efficiency losses and possible con-

tamination, makes it unlikely that a linear trend extracted from a sin-

gle peak will have a slope and intercept that exactly predicts ground-

truth. Rather, the fitted line is used to calibrate a linear predictor that

maps normalized peaks to ground truth proportions. The standard de-

viation of predictions around the calibrated line is used as an estimate

of the measurement accuracy attainable from each peak.

2.4 Linear Poisson ICA analysis
LPMs describe the shape and variability of distributions found

within histograms using a linear combination of simpler fixed com-

ponents, with Likelihood estimates of parameters (e.g. Barlow,

1989) using Expectation Maximisation. Each component can be

viewed as a probability mass function (PMF) for a sub-spectrum,

representing some correlated set of peaks. Unlike other linear

models, LPMs use mixtures of PMFs, rather than unit vectors. This

permits positive-only co-efficients, appropriate for counting applica-

tions such as ion counts in mass spectra. The mixture of compo-

nents, fitted on a spectrum-by-spectrum basis, describes a spectrum

as a weighted sum of sub-spectra as described in Eq. 1 of

Supplementary Appendix S1. An LPM must determine the necessary

PMFs (i.e. sub-spectra) required to describe the distribution of spec-

tra. This process is a Poisson compatible form of ICA, or LP-ICA,

which maximizes a Likelihood formulation of the problem (Eq. 2 of

Supplementary Appendix S1). The number of components required

to describe a set of spectra is determined through a model selection

Table 1. Modelling options, with statistical and signal assumptions,

available for varied data properties

Model Noise Signal Orthogonal Coefficients

PCA iid Gaussian
P

ax Yes þ/-

PCA with Anscombe Poisson
P

a
ffiffiffi
x
p

Yes þ/-

ICA iid Gaussian
P

ax No þ/-

ICA with Anscombe Poisson
P

a
ffiffiffi
x
p

No þ/-

Non neg ICA iid Gaussian
P

ax No þ only

Poisson ICA* Poisson
P

ax No þ only

MALDI data � Poisson �
P

ax No þ only

Note: Our selected method (*) is based upon assumptions matching the

properties of MALDI mass spectra. PCA (Jolliffe, 1986), ICA (Comon, 1994),

Non neg ICA (Plumbley and Oja, 2004; Plumbley, 2003), Poisson ICA* (Tar

and Thacker, 2014). Italics emphasize that MALDI data has the properties

noted in the row above, i.e. the method we propose to use.
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process that aims to reach a satisfactory v2
D goodness-of-fit (Eq. 3 of

Supplementary Appendix S1). Satisfactory fits are those that either

reach a minimum, or lie upon a plateau. In cases of a plateau, failing

to achieving a true minimum is compensated for in the error theory,

as error covariances are scaled by the final goddness-of-fit. Details

of the full method and its validation in other applications can be

found in Tar and Thacker (2014) and Tar et al. (2015, 2017).

2.4.1 MAX SEP

The Likelihood estimates of LP-ICA components and weighting fac-

tors need not be unique. Due to the possibility of linear degeneracies

there can be multiple equally good solutions. The MAX SEP algo-

rithm can reduce this problem by manipulating components to in-

crease their independence. Whilst this may not result in the best

global solution, it allows the best to be selected from multiple local

solutions. We argue that, given a choice between multiple equivalent

Likelihood models, the better models are those which have better

physical meaning.

What constitutes physical meaning is dependent upon the system

being modelled. In the case of mass spectra, the components should

map onto the correlated appearance of different chemicals associ-

ated with different types of biological sample. If this is achieved then

model coefficients will be proportional to the quantities of different

materials present, i.e. amount of brain or liver. However, the data

fitting process guarantees only that the extracted linear model passes

through a best-fit hyperplane; the LP-ICA components themselves

are linearly degenerate. LP-ICA components may be linear combin-

ations of the underlying biological samples. Typically, we might ex-

pect the components extracted to require modification (via

subtraction of common structure) to remove unwanted components

of the spectra.

In order to rectify this problem, it is reasonable to assume that

certain chemicals will exist within some biological materials, but not

others. This should result in some mass values being zero in one

sample and finite in another. Subtracting the maximum amount of

each LP-ICA component from all others increases the chance of find-

ing unique stable solutions and makes model structure ‘simpler’.

The criteria for defining components with simple structure were first

suggested by Thurstone (1947) with respect to unit vector models in

Factor Analysis, the first three of which:

• each row [data vector/histogram] contains at least one zero;
• for each column [factor/component], there are at least as many

zeros as there are columns (i.e. number of factors kept);
• for any pair of factors, there are some variables with zero load-

ings on one factor and large loadings on the other factor;

are consistent without observation of mass spectra behaviour. The

‘loadings’ in unit-vector models are equivalent to histogram bins

found within Linear Poisson Models. The ‘factors’ are components,

equivalent to probability mass functions in LPMs. The MAX SEP al-

gorithm attempts to achieve the ‘simple structure’ criteria by maxi-

mising the differences between PMF components to make them as

separate and unique as possible. If a weighted amount of a PMF can

be subtracted from another unweighted PMF, such that no probabil-

ity goes below zero, then a new ‘PMF’, can be computed.

2.4.2 Mapping components to classes

The mixtures of two different biological materials (e.g. brain, liver)

will be considered to be composed from class A and class B. If spec-

tra were stable to within the limits of Poisson sampling and if all

molecules within samples were detected with 100% efficiency, we

would expect to extract only 2 components from such mixtures, i.e.

the spectrum for class A and the spectrum for class B. In practice,

the numerous sources of variation noted in Section 1 lead to multiple

components being required to describe spectra. Additionally, the

ground-truth measurements are based upon the mass of total sam-

ples, which is not, strictly, what is being measured by the model co-

efficients. The fragmentation of molecules and their different

affinities for attracting charge means only a small fraction of what is

in a sample is ever detected, plus the windowing of data and thresh-

olding of small peaks introduces further efficiency losses. As a

consequence, the components and their quantities need further

interpretation.

Firstly, components must be attributed to classes of material. A

component may belong to class A, B, or be contamination belonging

to neither class. Secondly, the relative efficiency with which compo-

nents contribute to the total mass needs to be estimated. These can

be solved by the introduction of a new weighting parameter for each

component. These weights are optimized in order to achieve the best

linear trend between sums of components and ground-truth. This is

described in Eqs. 6 to 8 in Supplementary Appendix S1.

2.5 Spectra error analysis
The values recorded within spectra mass bins are expected to be

Poisson in nature, as peak heights are proportional to ion counts

which are discrete events occurring in time, consistent with a

Poisson process. However, there are additional sources of noise,

therefore the Poisson assumption must be checked. The residuals be-

tween spectra models and original spectra can be used to assess the

validity of the assumption. If binned values are indeed Poisson in na-

ture then the residuals should grow proportionally to the square-

root of the bin quantity. Any fixed scaling of the Poisson process

should too be revealed as a scaling factor on the square-root depend-

ency. Bland-Altman plots, i.e. Bland and Altman (1986), can be con-

structed and a power-law error model fitted to assess both of these

properties.

Bland-Altman plots are scatter plots which record expected bin

values (i.e. expected peak intensity) on the x-axis versus deviations

away from the expected values on the y-axis. The linear model pre-

dictions are used as estimates of expected bin values (x-axis), and re-

siduals between model and spectra are the observed deviations

(y-axis). A power-law function can be fitted to resulting plots to de-

termine the behaviour.

2.6 Measurement error analysis
Sampling errors in spectra histograms combine to give a level of un-

certainty on the estimated quantity measurements. In order to factor

these uncertainties into final mixture proportions they must be

propagated through the EM algorithm using error propagation, as

described in Barlow (1989). This process uses derivative calculations

to assess how small changes in inputs (i.e. Poisson noise in data) af-

fects small changes in outputs (i.e. proportion measurements). Eqs.

10 to 11 of Supplementary Appendix S1 describe this process.

Predicted errors via this method can be compared to true measure-

ment errors by dividing predictions by the deviations seen against

ground-truth. These form a Pull distribution, which if unbiased

should have a mean of zero, and if precision is correctly predicted

should have a width of unity.

In addition to the sampling errors, the Poisson ICA modelling proc-

esses is a numerical optimization method that utilizes random initia-

lizations leading to multiple local optima. Local solutions are similar,
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but do add a level of variability to results. To quantify this, multiple

models (50) are built to assess the spread of solutions (Fig. 2).

3 Testings

The peak ratio approach found that the peak at m/z 706.2 correlated

best with changes in milk proportions, m/z 786.5 correlated best

with changes in lamb tissue proportions, and 734.5 best for grey:

white matter mixtures (Fig. 3). These peaks provide a relative meas-

urement precisions of 616%, 68% and 66%, respectively (Fig. 7).

Bland-Altman analysis confirm that the pre-processed MALDI

spectra are consistent with Poisson statistics (Fig. 4). The power-law

growth parameter (b in Eq. 9 of Supplementary Appendix S1), was

estimated as 1.04 6 0.02, completely consistent with Poisson style

growth in residuals as a function of peak intensity. This justifies the

application of Linear Poisson Models to perform ICA and mixture

quantitation. The power-law scaling parameter (a in Eq. 9) was esti-

mated as 23.9 6 1.4, consistent with the v2
D goodness-of-fit, suggest-

ing that each Poisson event is equivelent to an increase of 5 units of

signal intensity.

A total of six components were found to be required to suffi-

ciently model the milk spectra, at which point the goodness-of-fit

begins to plateau (Fig. 5). The lamb brain:liver spectra required

eight and white:grey matter also required eight. Once attributed to

sample classes, one milk component, one brain:liver component and

one white:grey component were rejected as being uninformative

(due to contamination or ambiguity), with the remaining compos-

itions showing a clear linear trend against known mixtures (Fig. 6).

These provided relative measurement precision of around 69, 64

and 64%, approximately doubling that attained via peak ratio ana-

lysis (Fig. 7). Even when the peak known to correlate best with milk

mixtures was removed from the LP-ICA analysis, a precision

of 611% could be achieved. The spectra components for milk can

be seen in Supplementary Appendix S2.

Pull distribution analysis (actual deviations from ground-truth

divided by predicted deviations) show that LP-ICA model measure-

ments are unbiased (mean consistent with zero) and predicted errors

successfully describe the majority of measurement noise, with true

errors being 1.6 times larger than predicted (Fig. 7).

4 Discussion

Two alternative methods to making quantitative measurements

from MALDI mass spectra of biological samples have been pre-

sented: peak ratios and Linear Poisson ICA analysis. Both mitigate

against confounding variability (caused by local matrix density,

chemistry, ionisation field, etc.) and also ambiguity (caused by com-

mon molecular constituents in different samples) using very different

approaches. The former avoids problems by simply discarding mass

peaks which are adversely affected, selecting those which empiric-

ally correlate best with sought measurements. The latter is far more

Fig. 2. Processing work-flow diagram

Fig. 3. Correlation with ground-truth via peak ratio analysis: milk mixtures

using m/z 706.2 peak normalized to m/z 760.5 peak; lamb tissue mixtures

using m/z 786.5 peak normalized to m/z 760.5 peak; white: grey matter using

m/z 734.5. The x-axis shows the ground-truth mixing proportions. Each cross

is a peak ratio estimate from a different spectrum, with repeatability data at

each 10% increment. Deviations from the fitted line (least square) show typ-

ical measurement accuracy

Fig. 4. Bland-Altman plot showing behaviour of model residuals (y-axis) as

function of peak intensity (x-axis). Each point represents a residual between

an LP-ICA modelled spectrum bin and actual spectrum. The fitted curves

(power law of Eq. 9) show 61 standard deviation error as a function of peak

intensity consistent with Poisson statistics

Fig. 5. Determination of model order for LPMs. This curve shows the good-

ness-of-fit (Eq. 3 of Supplementary Appendix S1) of LP-ICA models as a func-

tion of the number of model components, where each component represents

a sub-spectrum that is a mode of correlated spectra variation
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sophisticated, modelling sources of variability, learning correlations

between any number of peaks and attributing them to meaningful

classes of data. This latter method is far more efficient, as much

more signal is retained. The peak ratio method uses only 14% of the

total signal available in the preprocessed lamb spectra, whereas

the LP-ICA approach uses 90%, which immediately should provide

an advantage through sample size alone. The LP-ICA approach

achieves levels of measurement precision double that attainable

through peak ratio analysis, with 1 standard deviation errors reduc-

ing from 616 and 68% to as small as 69 and 64%, for milk and

lamb tissue mixtures, respectively. Achieving this increased precision

using the peak ratios method would require at least quadruple the

quantity of data (assuming errors fall with the square-root of sample

size). Grey: white matter measurement errors reduced from 66

to 64%, suggesting that most information is already extracted from

the single peak at m/z 734.5.

The efficient use of data is perhaps best illustrated by the LP-ICA

method when the most informative milk peak (m/z 706.2) is

removed. Despite the ambiguity of remaining peaks, measurements

could still be made using the ICA method with errors of 611%. If

the inverse variance is used as a measure of information content, the

LP-ICA analysis precision using all milk peaks (69%) is consistent

with combining the all-but-one analysis (611%) with the conven-

tional peak ratio results from the 706.2 peak (616%).

In addition to the increased precision gained using the new

method, the LPM error theory (Section 2.6) provides the capability

to predict measurement errors on a spectrum-by-spectrum basis.

These predictions explain the majority of measurement noise, as

confirmed by Pull distributions which should have a mean of zero

and width of unity. Figure 7 shows that there is no bias (mean con-

sistent with zero) and that true errors (assessed against ground-

truth) are close to those predicted. Error predictions within a factor

of 2 are generally deemed sufficient for scientific use, e.g. Barlow

(1989) and Flannery (2009). As these errors are predictable from the

input data, they do not require ground-truth to be computed. These

predictive powers provide several advantages, permitting goodness-

of-fits to be constructed, such as v2, and revealing data-specific

errors (see variable-sized error bars in Fig. 6). In contrast, the peak

ratio method uses empiricism alone to determine measurement pre-

cision. This provides a single error estimate, the use of which relies

upon an assumption of uniform errors across all spectra, which

logically should not be the case due to differences in normalization.

Furthermore, alternative analyses, such as PCA or conventional ICA

do not provide error predictions, and must also rely upon empiri-

cism and ground-truth.

Despite the success of the error predictions, observed errors were

still larger than expected. The additional sources of unpredictable

error include: the spread of local minima in the numerical ICA solu-

tions; the Gaussian measurement noise superposed upon the Poisson

sampling process; non-linearity; the potential need for a greater num-

ber of linear components; and imperfect preprocessing. The effect of

local optima was assessed by making 50 attempts to build ICA mod-

els. The typical (median) precision attainable for brain:liver mixtures

was 64.59%, for milk mixtures the typical precision was 69.77%

and for white:grey matter 65.15%. The best local solutions found

were 63.96% and 69.05%, from brain:liver and milk respectively,

which are the solutions used in the associated figures. Rather than

relying upon a single model (i.e. one local ICA solution) a mean linear

mixing prediction can be made from many local solutions, thereby

reducing variability. The mean predictions from the 50 model at-

tempts provide precisions of 63.77% (brain:liver), 68.72% (milk)

and 64.19% (white:grey).

The Poisson sampling assumption was validated via Bland-

Altman analysis, showing that errors grow with the square-root of

peak intensity, with an overall scaling factor of 24 (Fig. 4). The scal-

ing factor measured is also consistent with the v2 per degree of free-

dom of ICA models (i.e. 24 plateau reached in Fig. 5). Alternative

modelling approaches, such as PCA, and other ICA methods, would

be inappropriate due to their Gaussian noise assumptions and lack

or predictive error theories.

Fig. 6. Composition of spectra in terms of weighted contributions of extracted

LP-ICA components. Each 10% increment is shown as a step, where each

step contains repeatability data for independent spectra with the same mix-

ing proportions. The dots show the best fitted trend. Each bar shows the rela-

tive proportion of each LP-ICA component present within a spectrum. The

error bars are the Linear Poisson Model predicted errors. The components

‘comp 1’ etc. are listed in the keys from top to bottom in the same order as

they appear in the figure

Fig. 7. Left: Predictive ability of LPM error theory, as measured using pull dis-

tributions. A pull distribution should have a mean of zero and standard devi-

ation of unity if predicted errors match observed errors. This is achieved in all

variants of our experiments. Right: Measurement precision of peak ratio ana-

lysis versus LP-ICA analysis. Values are 1 standard deviation relative errors,

expressed as percentage of quantity measurements. LP-ICA method is more

precise in all experiments
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If the MS acquisition pipeline was ideal, there would only be two

sources of variability: changes in signal due to changing mixture

proportions; and random Poisson sampling noise. Despite best ef-

forts to homogenize mixtures, wash away salts and perform basic

preprocessing, resulting spectra still contain numerous modes of

variation. Six linear components were required to model milk and

eight to model lamb tissue. Within these components, one was re-

jected from each model on account of its inability to provide infor-

mation regarding mixture proportions. This could be due to either

the component representing contamination, or the component could

contain common structure indistinguishable between the sample

classes. The remaining components are presumed to be modelling

those sources of variation noted in Section 1, i.e. fragmentation, ion-

isation modes, isotopic variations etc. The number of components

required to model the data could potentially be used as a measure of

data quality. Preparation, acquisition and preprocessing steps could

be optimized to minimize the number of required components.

Despite the numerous components required to describe the data,

the MAX SEP algorithm provides the ability to attribute Poisson

sampled components physical meaning, allowing their quantities to

be used for measurement. The attribution of component quantities

to classes of tissue are only valid if this physical meaning can be es-

tablished. An alternative approach, based upon PCA or factor rota-

tions for example, would not have been appropriate due to enforced

orthogonality and non-physical negative weightings.

Finally, as a tool for future MALDI image data-mining, we be-

lieve the LPM approach could improve the information content of

images by replacing pixels based upon peaks to pixels based upon

LP-ICA component weights. Such images are expected to have better

signal-to-noise, as pixels would incorporate information from many

peaks. They may also better correlate with tissue types, giving a

higher-level interpretation than simply being a map of specific chem-

icals. And finally, through the LPM error theory, pixels values are

made quantitatively meaningful. The ability to quantitatively assess

correlated chemicals and map them onto biological structures will

be the focus of future work.

5 Conclusion

We have shown that a Linear Poisson Model analysis of MALDI

mass spectra provides improved quantitative accuracy for the meas-

urement of biological samples when compared to a conventional

single-peak approach. There are only a relatively small number of

peaks which are applicable to a single-peak analysis, as most are

adversly affected by high levels of uncontrolled variability. LPMs

successfully model this variability, permitting information in any

number of peaks to be included in measurement estimation. The ac-

curacy of milk, brain and liver mixture proportion measurements

were doubled using our new approach.

In addition, the modes of variation found within MALDI mass

spectra, in terms of sub-spectra combinations, can now be extracted

and analyzed providing physically interperatable lower-parameter

models, marking a step improvement in related ICA work in the field.

The high levels of variability, sources of ambiguity and lack of error

predictions also suggests that simple single peak ratios are unlikely to

be quantitatively trustworthy. The approach we have demonstrated

will be extended in future work to data-mine MALDI images.
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