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Abstract: The data on the specifics of synthesis of elemental silver nanoparticles (Ag-NP) having
various geometric shapes (pseudo spherical, prismatic, cubic, trigonal-pyramidal, etc.), obtained by
using various biological methods, and their use in biology and medicine have been systematized
and generalized. The review covers mainly publications published in the current 21st century.
Bibliography: 262 references.
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1. Introduction

Elemental silver nanoparticles (Ag-NP) have been known in anthropogenic activities since very
ancient times (although nobody had an idea about their existence). For example, detailed study of one
of the late Roman Empire cultural masterpieces, namely the Lycurgus Cup (IV century ad), has shown
that the glass inserts in its bronze frame owe their specific coloring (red in reflected light and gray-green
in transmitted) to the presence of nanoparticles that are 70% elemental silver [1]. Even earlier (II century
ad), so-called “Holy Water”, which is not exposed to infection by microorganisms and spoilage for
many months and years, was known; moreover, it has a very detrimental effect on a wide variety of
pathogenic microorganisms [2]. At the end of the 19th century, the phenomenon “oligodynamia”—the
silver bactericidal effect on the cells of microorganisms by Ag+ ions—was found by the Swiss botanist
K. Nägeli [3]. However, more detailed study about the antibacterial activity of “Holy Water”, carried out
in the second half of the 20th century, showed that it is connected with both the presence of Ag+ ions and
the presence of Ag-NP [4]. Herewith, among elemental metal nanoparticles, namely elemental silver has
the strongest bactericidal effect [5,6], which is a direct consequence of the optimal ratio of their surface
areas and volumes. Now the bactericidal, bacteriostatic, antiviral, antifungal and antiseptic effect of
silver ions and Ag-NP suspensions has been shown on more than 500 pathogenic microorganisms,
yeast fungi and viruses. Moreover, their antibacterial and antiviral activity is even more pronounced
than the effect of penicillin, biomycin and other “classic” antibiotics [7,8]. Low probability of certain
mutations with the result of resistance to Ag-NP becomes extremely important in the struggle of
microbiologists with an ever-growing assortment of pathogenic bacteria and viruses that are resistant
to traditional antibiotics. This important circumstance, relatively low toxicity and allergenicity of
Ag-NP, and its good tolerance by patients, has contributed to the increased interest in Ag-NP in many
countries of the world and the creation of various medical preparations based on anti-inflammatory,
antiseptic and bactericidal action.

The study of the mechanism of antibacterial activity of Ag-NP showed that this property is
due to morphological and structural changes in bacterial cells [4]. A priori, it is obvious that the
degree of this effect should depend significantly on the size and shape of Ag-NP. On the other hand,
in many studies of recent decades, the size, morphology, stability, and both chemical and physical
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properties of elemental metal nanoparticles, including silver, were very dependent on the parameters
of the processes by which they are formed. These parameters are directly related to the specifics
of the given processes, reactions of the metal ions interaction with reducing agents, and sorption
processes of stabilizing agents on nanoparticles, which prevent their aggregation with each other [9].
In general, control of the shape, size and distribution of the resulting Ag-NP is achieved by varying
the methods of their synthesis, reducing the influence of fluctuations, and stabilizing factors affecting
the above parameters of nanoparticles [10–14]. By varying the conditions for the synthesis of Ag-NP,
characteristics such as color, melting point, magnetic properties, redox potential of Ag(I)/Ag, etc. can
be changed and controlled in a fairly wide range [15–20]. Comprehensive coverage of Ag-NP problems
was presented in reviews [19,20]. However, the main focus was on the synthesis of Ag-NP using various
physicochemical methods. Another synthetic method, in which some objects of biological origin are
used to obtain elemental silver nanoparticles, has become increasingly popular. This approach has
certain advantages in comparison with traditional physicochemical methods, and the possibilities of
its implementation for the production of Ag-NP are not only not exhausted, but even not completely
identified. The review is dedicated to this issue.

2. General Principles of Biosynthesis of Elemental Silver Nanoparticles (Ag-NP)

The basis of all chemical and physicochemical methods for the synthesis of Ag-NP is the idea
of a specific increase in the area of their faces in the presence of certain chemical reagents. Biological
methods base on similar idea, but biological objects (microorganisms, products of their vital activity,
extracts of plants, etc.) are used for the formation of Ag-NP. As a rule, Ag-NP is obtained as a result of
the reduction of certain Ag(I) compounds (usually AgNO3), under the influence of various reducing
inorganic agents (f.e., hydrazine N2H4, sodium tetrahydridoborate(III) Na[BH4]), as well as organic
(f.e, ethyleneglycol, ascorbic acid). The process of reducing Ag(I) compounds to elemental silver
according to the Ag(I)→Ag scheme can occur in a variety of reaction media; at the same time, specific
chemical reagents (most often polyvinylpyrrolidone) are used to stabilize the resulting nanoparticles
(to prevent their aggregation). The formation of Ag-NP, according to data [19,21,22], begins with the
incipience of a decahedral “embryo” formed by five tetrahedral clusters that have common faces.
Since the dihedral angle in the tetrahedron is ~70.5◦, namely the decahedron, consisting of five
tetrahedrons, is that structural element from which the most thermodynamically stable forms of
Ag-NP. It should be noted that the dihedral angle in the tetrahedron indicated above is slightly smaller
than the angle in the above decahedron (72◦); therefore, tetrahedrons cannot be perfectly packed into
a decahedron without gaps (which lead to the formation of structural defects) [19]. Such a scheme
displays only a simplest variant of the formation of Ag-NP, which leads to the formation of elemental
silver nanocrystals in the form of nanorods or “nanowires”. In reality, this process often turns out
to be significantly more complex and interesting, and as a result, other geometric forms—tabular
prisms, cubes, octahedrons, pyramids etc., can be realized [19,20]. As it was shown in various studies,
the shape and size of the resulting Ag-NP depend on many experimental parameters. These can be
the temperature, the concentration of the compound Ag(I), the pH of the solution, the molar ratio
between stabilizing agent and the precursor containing Ag(I) (AgNO3, AgCl, et al.), the degree of
chemical interaction of the molecules of the stabilizing agent with various crystallographic planes of
elemental silver [22]. The nature of the reducing agent of Ag(I) compounds (citric acid, L-ascorbic
acid, NaBH4 et al.) and the method used to produce Ag-NP (chemical, physical or biological) play
an extremely important role, too. Using particles with a specific morphology (for example, polyhedral
or twin) as a “primer”, it is possible under certain synthesis conditions to purposefully control the final
“architecture” of Ag-NP [19,23,24].

The chemical and physicochemical methods used to produce Ag-NP, are usually quite expensive;
in addition, toxic chemical compounds are often used in them. Biological methods are practically devoid
of these disadvantages. Of course, they are also not ideal: it should be noted that the reproducibility
of the Ag-NP synthesis results is worse than in the case of physicochemical methods. Despite this,
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the number of works about Ag-NP biosynthesis has a pronounced tendency to annual growth.
In modern literature, Ag-NP biosynthesis is often called “green synthesis”.

The three key types of biological objects used for this purpose–extracts of various plants, various
microorganisms, and animal products, can be distinguished in the literature about Ag-NP biosynthesis.
It should be noted that many works devoted to this problem, were published either in biological journals
or in medical journals. Most of these publications were devoted not only to Ag-NP biosynthesis,
but also the possibility of using silver nanoparticles as antibacterial agents. This aspect of Ag-NP
characterization of, of course, is very important and interesting, and it will also be analyzed in this
review along with a discussion of their synthesis.

Now there are a lot of papers in the field of the Ag-NP “green synthesis”. In this regard,
a difficult question arises as to how to systematize the available material on the given problem.
The “catchiest” characteristic of nanoparticles and Ag-NP, undoubtedly, is their shape, because it
largely determines their properties (including the properties of the materials in composition of which
are these nanoparticles). For this reason, available literary material was systematized by the types of
biological objects used for the synthesis of Ag-NP and by the shape of elemental silver nanoparticles
formed in this process.

Getting a little ahead in the course of the presentation, we would like to note that such geometric
shapes of Ag-NP, which were obtained using chemical and physicochemical methods, apparently,
could also be obtained using biological methods, although not all of these possible shapes were
received experimentally.

3. Synthesis of Ag-NP Using Extracts of Various Plants

Plant extracts obtained from leaves, stems, roots, etc. as the result of exposure to various liquid
solvents—extractants. Water, ethanol, dimethyl ether, plant oil, etc. can act as extractants. Plant extracts
are complex in composition, containing various chemical compounds arising in the process of plant life,
and transferring into solution during extraction. In the process of the synthesis of Ag-NP according
to the general scheme Ag(I)→Ag, the chemical compounds contained in the extract can fulfill three
functions: (1) act as a reducing agent of silver(I) compounds to elemental silver, (2) act as an agent
that has a specific influence on the formation of a certain shape and size of Ag-NP due to inhibition
of the growth of certain faces of the nanocrystals of these nanoparticles and (3) to act as a stabilizer
formed during the synthesis of Ag-NP, preventing their self-association and (or) aggregation with each
other. Due to the fact that the composition of the original plant material depends significantly on the
type of a particular plant, the qualitative and quantitative composition of the resulting extracts can
vary widely. Moreover, even for the same plant species, it does not remain constant and in some cases
depends significantly on the conditions of its growth. Therefore, it is likely that the technology of
synthesis of Ag-NP using extracts of the same plant, but in laboratories located in different regions
of our planet, can lead to very different final results (we mean the shape and size elemental silver
nanoparticles). Thus, the reproducibility of Ag-NP biosynthesis results will not be too good a priori.
It should be noted that despite the very large number of works devoted to the Ag-NP biosynthesis
using plant extracts, among them there are not even two such works in which extracts from the same
plant species were used, but grown in different geographical, climatic and soil conditions.

An extremely large number of publications have been devoted to the “green synthesis” of Ag-NP
using biological objects of this type [25–108]. In all of them only AgNO3 was used as a precursor
containing Ag(I) for the Ag-NP synthesis. Particles having a spherical and/or oval (ellipsoidal) shape
were identified in most of the experiments; shapes differed from those, were observed in the experiment
much rarely [91–108]. In this connection, it should be noted that, spherical and oval shapes are
conglomerates of smaller “embryonic” particles of elemental silver, which are complex combinations of
“starting” geometric forms indicated in [19]. To some extent, this can be confirmed by scanning electron
microscope (SEM) images of spherical Ag-NPs at high resolution [24], shown in Figure 1. Given this
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fact, it would be better to call such Ag-NP pseudospherical nanocrystals. Despite this, we will continue
to use the generally accepted term to refer to these objects (i.e., spherical Ag-NPs).
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Figure 1. Typical scanning electron microscope (SEM) images of pseudo-spherical elemental silver
nanoparticles (Ag-NP) at high resolution (a) none modifier; (b) at the presence of 1.0 g/L N-methyl
2-pyrrolidone [24].

Among the earliest works of the 21st century devoted to the production of silver nanoparticles
using plant extracts is the publication of Shankar, Ahmad and Sastry [25], in which Geranium
Pelargonium graveolens leaf extract was used to synthesize Ag-NP. The spherical Ag-NP particles were
obtained with the size varied in the range of 16–40 nm. Later, a group of researchers [26] received
spherical silver nanoparticles using Emblica officinalis (amla, Indian Gooseberry) fruit extract with
sizes from 15 to 25 nm, and, also, elemental gold nanoparticles with slightly smaller (10–20 nm) sizes.
Similar results were achieved by Chandran et al [27], in which Aloe Vera leaf extract was used to
synthesize Ag-NP. The spherical Ag-NP particles, the size of which varied in the range (15.2 + 4.2) nm,
were shown. The authors of [28] obtained spherical silver nanoparticles using Capsicum annuum L.
extract with sizes from 50 to 70 nm. The results the given work allow to affirm that silver nanoparticles
synthesized from such a method, show antibacterial activity against E. coli. Cruz et al. [29] obtained
a spherical Ag-NP with an average diameter of 15–30 nm, using leaf extract of Lippia citriodora (Lemon
Verbena). Close-sized Ag-NPs were received in the work [30] using the leaf extract of Acalypha indica.
Spherical Ag-NPs were also shown by the authors of [31] using an extract of the dried leaves of the
plant Tribulus terrestris. The sizes of the Ag-NPs synthesized by them were in the range of (18–47) nm.
The Ag-NPs obtained retained high stability (i.e., did not aggregate with each other) even after three
months of storage at 37 ◦C. Along with this, Ag-NP received in [31] showed a pronounced antibacterial
effect on a number of clinically isolated microorganisms, which have now developed resistance to
many drugs. Ag-NPs of similar shape from the leaf extract of Mimusops elengi, were described by
Prakash with co-authors in [32], but these silver nanoparticles had diameters in the range of 55 to 83 nm.
In [33], spherical Ag-NPs 25–59 nm in size were synthesized using the Chrysanthemum indicum flower
extract. In all, in the last 10 years a variety of plants were used to synthesize spherical Ag-NPs [34–93];
the information about these plants, as well as the shape and size obtained with their use of elemental
silver nanoparticles are presented in Table 1 at the end of this section of the paper. As can be seen
from the data in the given table, during the synthesis of Ag-NP leaf extracts were usually preferred,
although in some cases other parts of the corresponding plants—flowers, roots, fruits, etc. were used
for this purpose, as it took place in particular in [33,41,43,67,75,79,86,87]. Scanning electron microscopy
(SEM) of Ag-NP, obtained in the one of these works [86], is presented on Figure 2. A few exceptions
are publications [42,57,65], in which seaweed Ulva lactucain (Figure 3) [42], Sargassum wightii [57]
and Sargassum vulgare [65] were used as an accompanying agent for “green synthesis” of Ag-NP.
It is significant that, the synthesis of silver nanoparticles in these works was carried out, as a rule,
in a neutral medium. The Ag-NP size was very diverse among using plant extracts (Table 1). At the
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same time, however, the question of the amount effect of plant extract used in the synthesis on the size
of Ag-NP is rarely considered. One of the few such works is [58], which examines Olax scandens.

Table 1. Sizes and shapes of Ag-NP obtained by “green synthesis” using plant extracts.

Plant Part Used
for Synthesis Shape (form) Size of

Ag-NP (nm)

Max of Absorption
of Ag-NP

in Visible Spectrum (nm)
Ref.

Pelargonium graveolens
(Geranium) Leaves Spherical 16–40 440 [25]

Emblica Officinalis
(Amla, Indian Gooseberry) Fruits Spherical 15–25 400–420 [26]

Aloe Vera Leaves Spherical 15.2 ± 4.2 410 [27]

Capsicum annuum Leaves Spherical 50–70 428 [28]

Lippia citriodora
(Lemon Verbena) Leaves Spherical 15–30 430–440 [29]

Acalypha indica Leaves Spherical 20–30 425 [30]

Tribulus terrestris Exsiccated
leaves Spherical 18–47 450 [31]

Mimusops elengi Leaves Spherical 55–83 440 [32]

Chrysanthemum indicum Flowers Spherical 25–59 430 [33]

Cinnamomum canphora Leaves Spherical 55–80 440 [34]

Eclipta Leaves Spherical 2–6 419 [35]

Ocimum sanctum (Tulsi) Leaves Spherical 4–30 413 [36]

Cassia auriculata Leaves Spherical 1–100 450 [37]

Euphorbia hirta
Nerium indicum Leaves Spherical 29–31 380, 460 [38]

Rosa Chinensis Leaves Spherical 25–60 No λmax data [39]

Tribulus terrestris Fruit Spherical 16–28 435 [40]

Dioscorea bulbifera Tuber Triangular,
Nanorod 8–20 455 [41]

Ulva lactucain Whole plant Spherical 76 434 [42]

Trianthema decandra Root Spherical 36–74 Absent [43]

Cissus quadrangularis Whole plant Spherical 50–100 450 [44]

Iresine herbstii Leaves Spherical 44–64 420 [45]

Ananas comosus Fruits Spherical ~12 430 [46]

Boswellia serrata Gum Spherical 7.5 ± 3.8 420 [47]

Hibiscus cannabinus Leaves Spherical 9–10 446 [48]

Piper pedicellatum Leaves Spherical 2–30 440 [49]

Tithonia diversifolia Leaves Spherical ~25 Absent [50]

Ficus panda Leaves Spherical 12–36 421 [51]

Citrullus colocynthis
Leaves
Root
Seeds

Spherical
Spherical
Spherical

13.37
7.39

16.57
No. λmax data [52]

Alternanthera sessilis Leaves Spherical 30–50 420 [53]

Podophyllum hexandrum Leaves Spherical ~14 430 [54]

Cocos nucifera Inflorescence Spherical ~22 420 [55]

Olea europaea (Olive) Leaves Spherical 20–25 441–456 [56]

Sargassum wightii (algae) Whole Spherical 5–22 439 [57]
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Table 1. Cont.

Plant Part Used
for Synthesis Shape (form) Size of

Ag-NP (nm)

Max of Absorption
of Ag-NP

in Visible Spectrum (nm)
Ref.

Olax scandens Leaves Spherical 30–60 410–430 [58]

Piper longum Fruits Spherical ~46 465 [59]

Delonix elata Leaves Spherical 35–45 432 [60]

Adansonia digitata Fruits Spherical 3–57 434 [61]

Emblica officinalis Fruits Spherical 15–20 425 [62]

Rheum emodi Root Spherical 10–40 425 [63]

Allium sativum Whole plant Spherical 100–800 No. λmax data [64]

Sargassum vulgare (algae) Whole plant Spherical ~10 No. λmax data [65]

Erythrina indica lam Root Spherical 20–118 438 [66]

Plumeria alba Flowers Spherical 36.2 455 [67]

Cymodocea serrulata Whole plant Spherical 17–29 430 [68]

Skimmia laureola Leaves Spherical 460 [69]

Butea monosperma Leaves Spherical 20–80 440–475 [70]

Capparis decidua Leaves Spherical 1.5–25 452 [71]

Azadirachta indica Leaves Spherical ~34 436–446 [72]

Syzygium cumini
Azadirachta indica

Flowers
Leaves

Spherical
Spherical

<40
<40 400–450 [73]

Capparis spinosa Leaves Spherical 10–40 420 [74]

Cola nitida Pods Spherical 12–80 431 [75]

Artemisia marschalliana Aerial part Spherical 5–50 430 [76]

Ziziphus oenoplia Leaves Spherical 10 436 [77]

Croton bonplandianum Baill. Leaves Spherical 32 425 [78]

Dimocarpus longan Peel Spherical 8–22 No. λmax data [79]

Rubus glaucus Leaves Spherical 12–50 440–445 [80]

Raphanus sativus Leaves Spherical 4–30 426 [81]

Melia azedarach Leaves Spherical 34–48 482 [82]

Calliandra haematocephala Leaves Spherical 13.5–91.3 414 [83]

Crocus sativus Leaves Spherical 12–20 450 [84]

Costus afer Leaves Spherical ~20 405–411 [85]

Punica granatum Peel Spherical 20–40 Absent [86]

Cleome viscosa Fruits Spherical 20–50 410–430 [87]

Anthemis atropatana Aerial part Spherical 10–80 430 [88]

Citrullus colocynthis Callus Spherical ~31 No. λmax data [89]

Datura stramonium Leaves Spherical 15–20 444 [90]

Morinda citrifolia Root Spherical 30–55 413 [91]

Ficus talboti Leaves Spherical 10–14 438 [92]

Potentilla fulgens Root Spherical 10–15 410 [93]

Syzygium cumini
Citrus sinensis
Solanum tricobatum
Centella asiatica

Leaves
powder Triangular

53
41
52
42

420 [94]

Rheum palmatum Root Hexagonal 121 ± 2 440 [95]
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Table 1. Cont.

Plant Part Used
for Synthesis Shape (form) Size of

Ag-NP (nm)

Max of Absorption
of Ag-NP

in Visible Spectrum (nm)
Ref.

Alysicarpus monilifer Leaves Hexagonal,
Spherical 5–45 422 [96]

Melia azedarach Leaves Cubic 78 436 [97]

Eucalyptus macrocarpa Leaves Cubic 10–50 430 [98]

Cucurbita maxima
Moringa oleifera
Acorus calamus

Petals
Leaves

Rhizome
Cubic 30–70 Absent [99]

Ocimum tenuiflorum
Solanum tricobatum
Syzygium cumini
Centella asiatica
Citrus sinensis

Leaves Prismatic

28
22.3
26.5
28.4
65

420
420
420
415
415

[100]

Achillea biebersteinii Flowers Pentagonal
Spherical 10–40 450 [101]

Solanum trilobatum Fruits Polygonal 41–42 420 [102]

Musa paradisiaca (banana) Peels Irregular ~24 433 [103]

Annona squamosa Leaves Irregular ~300 420 [104]

Artemisia nilagirica Leaves Irregular ≤30 463 [105]

Tinospora cordifolia Leaves Irregular
Spherical ~30 430 [106]

Leucas aspera
Hyptis suaveolens

Leaves
Leaves

Irregular
Polygonal

7–22
5–25

401
408 [107]

Órchis máscula Tuber “Flower-like”

<100
(width)

~500
(length)

444 [108]

Figure 2. Scanning electron microscope (SEM) images of Ag-NP obtained using aqueous peel extract of
Punica granatum [86].
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Figure 3. SEM images of Ag-NP obtained using aqueous extract of marine seaweed Ulva lactucain [42].

Leaf extract was used in the synthesis process. According to the data of this work, the average
size of Ag-NP is 30–60 nm; however, the situation is rather more difficult: when the volume ratio of
the AgNO3 solutions used by them and the extract was 1:1, the size of Ag-NP was in the range of
20–110 nm at ratios of 1:2.67 and 1:3.33—from 10 to 85 nm, with a ratio of 1:5—from 10 to 90 nm [58].
Presumably the same phenomenon would have occurred with the use of other plant extracts described
in [25–108], but this point remained out of the field of view of their authors.

Ag-NPs from plant extracts with a shape different from spherical, were noted in a relatively
small number of published works. In [34,41,94], the synthesis of trigonal Ag NPs having the shape of
triangular plates was described. Hexagonal and spherical shapes of Ag-NPs having a size of (121± 2) nm
were described by Arokiyaraj et al, using water extracts of Rheum palmatum roots [95]. The synthesized
nanoparticles showed very high antibacterial activity against some pathogenic microorganisms:
Staphylococcus and Pseudomonas. Using a leaf extract of Alysicarpus monilifer, the authors of [96] could
obtain monodisperse Ag-NPs of predominantly spherical shape with a small hexagonal distortion
with sizes in the range (5–45) nm and average particle size (15 ± 2) nm. At the same time, along with
spherical Ag-NPs, they discovered the formation of a certain amount of Ag-NPs having a trigonal
tabular and hexagonal tabular form. A small amount of the mixed phase containing hexagonal Ag-NP
was also noted in an earlier article [28].

Ag-NP with a cubic form from plant extracts was also known in [97–99]. In the first of these
publications, elemental silver nanoparticles were prepared using a leaf extract of Melia azedarach.
The cubic Ag-NPs synthesized in [97] had a size of about 80 nm (Figure 4). The authors of the
publication [98] reported “green synthesis” of Ag-NP, spherical and cubic shape, using leaf extracts
from Eucalyptus macrocarpa and carried out at room temperature. During their experiment, it was
also found that in the process of synthesis, this extract acts both as a reducing and stabilizing agent.
Herewith, according to transmission electron microscope (TEM) data, the size of spherical Ag-NPs was
in the range (10–100) nm, while the size of cubic Ag-NPs was in the range (10–50) nm. In this connection,
we should note that the three-dimensional field-emission SEM (FESEM) image obtained several hours
after the completion of the experiment showed that namely cubic but not spherical nanoparticles with
sizes from 50 to 100 nm became the dominant shapes [98]. In [99], three different plants were used to
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receive such cubic nanoparticles, namely Cucurbita maxima, Moringa oleifera, and Acorus calamus. In this
regard, it is interesting that various parts of these plants (peels, leaves and rhizome, respectively) were
used to prepare plant extracts. The sizes of silver nanoparticles obtained in [99] varied in the range of
30–70 nm.

Figure 4. SEM images of Ag-NP obtained using aqueous leaf extract of Melia azedarach [97].

The authors of [100] observed the formation of prismatic Ag-NPs with sizes of 22–65 nm using leaf
extracts of Ocimum tenuiflorum, Solanum tricobatum, Syzygium cumini, Centella asiatica, and Citrus sinensis
for “green synthesis”. For these Ag-NPs, a strong tendency toward coalescence was found, which is
most represented in the case of Centella asiatica and least in the case of Syzygium cumini (Figure 5).
Baharara et al. in the publication [101] described the synthesis of elemental silver nanoparticles,
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Figure 6. SEM images of Ag-NP obtained using aqueous leaf extract of Artemisia nilagirica [105].

From the extract of the leaves of Tinospora cordifolia [106] Ag-NP particles were obtained with
an external form that resembles a highly distorted sphere, and with the use of extracts of Leucas aspera
and leaves of Hyptis suaveolens particles, some of which had a distorted spherical shape, and other
polygonal shape were shown [107].

The completely unusual “flower-like” form of Ag-NP was observed by Pourjavadi and
Soleyman in [108]. In their study, with the remarkable name “Novel silver nano-wedges for killing
microorganisms”, a peculiar photochemical surface “green synthesis” was first applied to produce
Ag-NP using the “Salep” (tuber extract of Orchis mascula). In the framework of such a synthesis,
the reduction of Ag(I) to Ag-NP, in addition to the extract itself, was facilitated by sunlight (ultraviolet
(UV) radiation). “Salep” also served as an effective capping biomaterial, providing the formation
of “flower-like” self-organizing structures in the form of unique silver “nano-wedges”. In addition,
there was an aggregation of such structures, which resulted in the formation of Ag-NPs with the above
unusual shape.

As can be seen from the data presented in Table 1, in most cases for Ag-NP synthesized using
plant extracts, in the visible region of the spectrum, either a single absorption band with a maximum in
the range of 400–460 nm or a “wing” band with a maximum in the Ultra-Violet region (UV) region
were detected. Accordingly, their colloidal solutions are usually colored in orange, red or red-brown.
However, any correlation between the sizes, as well as the shape of the nanoparticles and the position of
this maximum in the ultraviolet–visible (UV–Vis) absorption spectra, as can be seen from experimental
data presented in the Table 1, was not observed.

Review articles [109–113] were also devoted to the discussion of recent results on Ag-NP
biosynthesis using plant extracts, in which references to a number of other, earlier works devoted to
the “green synthesis” of silver nanoparticles using extracts of various plants can be found. A possible
mechanism of the plant extracts’ influence on the process of formation of Ag-NP has been considered
in detail in recently published reviews [113,114].

4. Synthesis of Ag-NP Using Various Microorganisms

The use of microorganisms (bacteria, microscopic fungi, etc.) for the synthesis of Ag-NP according
to the general scheme Ag(I)→Ag is based on the idea that they produce specific chemicals during
their life, each of which can a priori perform the same functions (1–3), which were described in the
previous section. In addition, these microorganisms are able to affect a certain influence on the size
and shape of the elemental silver nanoparticles formed by themselves (i.e., outside of the connection
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with the nature of those products that are formed in the process of their development). In particular,
in the final period of the formation of Ag-NP, when these nanoparticles will have reached relatively
large sizes, microorganisms can overlap, with some fragments of their bodies, individual faces of
already formed elemental silver nanocrystals, preventing their further growth. Thus, the action of
microorganisms on the process under consideration is more multifactorial than the impact of plant
extracts. However, in this variant of Ag-NP biosynthesis, the reproducibility of the results should be
higher, because modern biotechnologies make it possible to purposefully control both the growth of
microorganisms and the various substances produced by them.

The specificity of Ag-NP biosynthesis using various microorganisms was studied in the
works [115–186]. In most of these publications, various bacteria were used as biological
objects [115,116,122–125,127,128,130,132–136,138,140,141,143,144,146,147,150,151,153–156,158,161,163–
166,169,171–180,183–186]; rare such synthesis was carried out with the participation of various microscopic
fungi [117–121,126,129,131,137,139,142,145,148,149,152,157,162,167,168,170,181,182]. It should be noted,
as well as in the case of using plant extracts, the formation of pseudospherical Ag-NP most often took
place [115–166]; other forms of silver nanoparticles, although noted in the experiment, were much
rarer [115,116,132,133,167–186]. Data on the size and shape of Ag-NP obtained using various
microorganisms are presented in Table 2.

One of the earliest works devoted to the biosynthesis of Ag-NP using microorganisms are the
publications [115–118], where, along with spherical Ag-NP, nanoparticles with a different shape,
namely, triangular and hexagonal, were described. After that, a lot of works on this topic appeared.
The most popular microorganisms in the “green synthesis” of elemental silver nanoparticles are bacteria
of the genus Bacillus [122,123,130,132,133,140,143,154,159,169,179,180,183]. So, the authors of [122],
using Bacillus licheniformis, obtained pseudospherical Ag-NP with an average size of about 40 nm, in the
visible spectrum of which there was only a “wing” of the absorption band with a maximum in the UV
region. The same kind of microorganisms was also used by Kalimuthu with co-authors [123], who,
under somewhat different experimental conditions, showed pseudospherical Ag-NP with an average
size of about 50 nm, in the visible spectrum of which there was a band with a peak at 440 nm.
Saravanan et al. [159] synthesized Ag-NP having a size range of 41–68 nm with a spherical shape
using B. brevis (NCIM 2533). Similar results were received using B. megaterium (NCIM 2326) for the
synthesis of Ag-NP in another work of this author [169]. Overall, in most cases, only pseudospherical
nanoparticles were the final products of biosynthesis using microorganisms. However, in some of
the works, the researchers also recorded the formation of silver nanoparticles with other external
shapes (Table 2). For example, using B. subtilis and B. amyloliquefaciens, the authors [132] and [133]
respectively were able to observe the formation of triangular and hexagonal silver nanoparticles,
along with spherical Ag-NP, and triangular, hexagonal and cubic shapes were described in [180].
The sizes of Ag-NP obtained in this case ranged from 2 nm in [180] to 99 nm in [169] (Table 2). It should
be noted in this connection that triangular and hexagonal Ag-NP, using not these bacteria themselves
(in this case, B. licheniformis), but the isolated enzyme from them, α-amylase, was received by Mishra
and Sardar [183]; the silver nanoparticles obtained had a size from 22 to 44 nm. Bacteria of other genera
were used for the biosynthesis of Ag-NP as a whole much rare, although in general their assortment is
quite large (Table 2). Most often pseudo-spherical Ag-NP with very diverse sizes, very significantly
depending on the nature of the microorganism, were shown. Examples of Ag-NP images with such
an external shape received using bacteria are shown in Figure 7. It should be noted that any correlation
(at least in qualitative terms) between the genus of bacteria and the parameters of those nanoparticles
of elemental silver (size and shape of Ag-NP), which are formed with the active participation of these
microorganisms, has not yet been detected.
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Table 2. Sizes and shapes of Ag-NP received by “green synthesis” by using various microorganisms.

Microorganism
(Type) Shape (form) Size of

Ag-NP (nm)

Max of
Absorption
of Ag-NP

in Visible Spectrum (nm)

Ref.

Pseudomonas stutzeri (bacteria)
Spherical

Triangular
Hexagonal

70–200 400 [115]

Pseudomonas stutzeri (bacteria)
Spherical

Triangular
Hexagonal

70–200 400 [116]

MKY3 strain (bacteria) Spherical
Hexagonal ~26 420 [117]

Fusarium oxysporum (fungus) Spherical 5–15 413 [118]

Fusarium oxysporum (fungus) Spherical 20–50 420 [119]

Aspergillus flavus (fungus) Spherical ~9 420 [120]

Fusarium acuminatum (fungus) Spherical 5–40 420 [121]

Bacillus licheniformis (bacteria) Spherical ~40 Absent [122]

Bacillus licheniformis (bacteria) Spherical ~50 440 [123]

Escherichia coli (bacteria) Spherical ~50 420 [124]

Klebsiella pneumonia (bacteria) Spherical 1–6 420 [125]

Aspergillus niger (fungus) Spherical 3–30 430 [126]

Brevibacterium casei (bacteria) Spherical 10–50 420 [127]

Pseudomonas aeruginosa (bacteria) Spherical ~13 430 [128]

Rhizopus stolonifer (fungus) Spherical 3–20 Absent [129]

Pseudomonas antarctica (bacteria)
Pseudomonas proteolytica (bacteria)
Pseudomonas meridian (bacteria)
Arthrobacter kerguelensis(bacteria)
Arthrobacter gangotriensis (bacteria)
Bacillus indicus (bacteria)
Bacillus cecembensis (bacteria)

Spherical 6–13 400–430 [130]

Penicillium purpurogenum (fungus) Spherical 8–10 390–420 [131]

Bacillus subtilis (bacteria)
Spherical

Triangular
Hexagonal

45–70 440 [132]

Bacillus amyloliquefaciens (bacteria) Spherical
Triangular ~15 420–425 [133]

Streptomyces sp. (bacteria) Spherical 21–48 441 [134]

Streptomyces albogriseolus (bacteria) Spherical 16.25 ± 1.6 409 [135]

Salmonella typhirium (bacteria) Spherical
Ellipsoidal 87 ± 30 427 [136]

Pencillium sp. (fungus) Spherical 25 425 [137]

Acinetobacter calcoaceticus (bacteria) Spherical 8–60 420–440 [138]

Aspergillus fumigatus (fungus) Spherical 20–140 420 [139]

Bacillus subtilis (bacteria) Spherical No data 420 [140]

Streptomyces sp. (bacteria) Spherical 50–86 420 [141]
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Table 2. Cont.

Microorganism
(Type) Shape (form) Size of

Ag-NP (nm)

Max of
Absorption
of Ag-NP

in Visible Spectrum (nm)

Ref.

Penicillium sp. (fungus) Spherical 25–30 420 [142]

Bacillus sp. (bacteria) Spherical 42–94 450 [143]

Actinomycetes (bacteria) Spherical 10–20 415 [144]

Penicillium glabrum (fungus) Spherical 26–32 420 [145]

Streptomyces sp. (bacteria) Spherical 50–76 420 [146]

Ochrobactrum sp. (bacteria) Spherical 38–85 450 [147]

Fusarium oxysporum (fungus) Spherical 15–40 420 [148]

Penicillium atramentosum (fungus) Spherical 5–25 420 [149]

Variovorax guangxiensis (bacteria) Spherical 10–40 418 [150]

Sporosarcina koreensis (bacteria) Spherical 10–30 424 [151]

Penicillium brevicompactum (fungus) Spherical 30–50 420 [152]

Pseudomonas deceptionensis (bacteria) Spherical 10–30 428 [153]

Bacillus methylotrophicus (bacteria) Spherical 10–30 416 [154]

Streptomyces rochei (bacteria) Almost ideally
spherical 22–85 410 [155]

Streptomyces atrovirens (bacteria) Spherical 58 ± 2 418 [156]

Rhizopus stolonifer (fungus) Spherical 3–50 420 [157]

Aeromonas sp. (bacteria) Spherical 8–16 400 [158]

Bacillus brevis (bacteria) Spherical 41–68 420 [159]

Phenerochaete chrysosporium (bacteria) Spherical 34–90 430 [160]

Streptacidiphilus durhamensis (bacteria) Spherical 8–48 430 [161]

Penicillium italicum (fungus) Spherical 14.5–23.3 423 [162]

Streptomyces xinghaiensis (bacteria) Spherical 5–20 420 [163]

Enterobacter cloacae (bacteria) Spherical 7–25 440 [164]

Streptomyces olivaceus (bacteria) Spherical ~12.3 450 [165]

Paracoccus sp. (bacteria) Spherical
Ellipsoidal 2–5 416 [166]

Aspergillus fumigates (fungus) Irregular 5–25 420 [167]

Aspergillus clavatus (fungus) Irregular 550–650 420 [168]

Bacillus megaterium (bacteria) Irregular 80–99 Absent [169]

Aspergillus flavus (fungus) Irregular 17 ± 5.9 421 [170]

Pseudomonas aeruginosa (bacteria) Irregular 2–20 425 [171]

Idiomarina sp (bacteria) Irregular 26 450 [172]

Staphylococcus aureus (bacteria) Irregular 28–50 420–430,
550–570 [173]

Streptomyces sp. (bacteria) Irregular 68 423 [174]

Enterococcus sp. (bacteria) Irregular 30–100 Absent [175]

Streptomyces sp. (bacteria) Irregular 70–100 400 [176]
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Table 2. Cont.

Microorganism
(Type) Shape (form) Size of

Ag-NP (nm)

Max of
Absorption
of Ag-NP

in Visible Spectrum (nm)

Ref.

Acinetobacter baumannii (bacteria) Irregular 37–168 Absent [177]

Pseudomonas sp. (bacteria) Irregular 10–40 412 [178]

Bacillus flexus (bacteria) Triangular 12–65 420 [179]

Bacillus stratosphericus (bacteria)
Triangular
Hexagonal

Cubic
2–20 405 [180]

Fusarium semitectum (fungus) Hexagonal
Spherical 10–60 420 [181]

Aspergillus clavatus (fungus) Hexagonal
Spherical 10–25 415 [182]

Bacillus licheniformis (bacteria) Hexagonal
Triangular 22–44 422 [183]

Streptomyces viridodiastaticus (bacteria) Polygonal 15–45 400 [184]

Arthrospira maxima (cyanobacteria)
Arthrospira platensis (cyanobacteria)
Hapalosiphon fontinalis (cyanobacteria)
Spirulina sp. (cyanobacteria)
Cylindrospermum stagnale
(cyanobacteria)
Spirulina sp. (cyanobacteria)
Phormidium sp. (cyanobacteria)
Spirulina sp. (cyanobacteria)
Calothrix brevissema (cyanobacteria)

Triangular
Triangular
Triangular
Pentagonal
Pentagonal
Hexagonal

Cubic
Cubic
Cubic

61
46
50
51

38–40
47
48
49
42

465
445
450
450
440
446
446
450
443

[185]

Hargavaea indica (bacteria)

Pentagonal
Spherical

Icosahedral
Hexagonal
Triangular
Icosahedral
Truncated

triangle

30–100 460 [186]
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Very interesting results were presented in an article by Husain, Sardar, and Fatma [185], in which
the authors studied the possibilities of “green synthesis” of Ag-NP using various cyanobacteria.
According to the data presented in this publication, out of 30 microorganisms used for the biosynthesis
of Ag-NP, and in nine cases, nanoparticles with shapes other than spherical, and, namely, triangular,
pentagonal, hexagonal and cubic were described (Table 2). In the spectrum of each Ag-NP showed
in [185], there was one absorption band in the violet, blue, or blue region of the visible spectrum with
λmax in the range 440–490 nm. A larger assortment of elemental silver nanoparticle forms was noted
by P. Singh et al. in [186], where in addition to the triangular, pentagonal, hexagonal and cubic already
mentioned above, icosahedral and truncated triangle shapes were presented. In addition, that it is
interesting, in this work, such diversity was achieved using only ONE microorganism: Bhargavaea
indica (Figure 8). Despite such a considerable variation in the shape, as well as in size (30–100 nm)
of Ag-NP obtained in [186], the authors of this work noted the presence of a band with only one
λmax value, namely 460 nm, in all these nanoparticles. (Although there are strong reasons to believe
that Ag-NPs of different shapes should have λmax values that are different from each other). In some
publications on the biosynthesis of Ag-NP using various microorganisms [169,171–179], the formation
of nanoparticles with irregular shape was also noted (Figure 9).

Figure 8. Transmission electron microscope (TEM) image of Ag-NP having various shapes and obtained
in [186]. At a scale of 100 nm (left) and at a scale 200 nm (right)

Figure 9. SEM image of Ag-NP having irregular shape and obtained in [176]. At a scale of 400 nm (left)
and at a scale 1 m (right).

Along with microorganisms microscopic fungi were used as substrates for AgNP biosynthesis. First of
all, it was fungi of the genus Aspergillis [120,126,139,167,168,170,182], Penicillium [131,142,145,152,162] and
Fusarium [118,119,121,148,181]. This “green synthesis” of Ag-NP, as a rule, also led to the formation
of pseudo-spherical Ag-NP with a wide variety of sizes (Table 2). So, in [118], as well as in [119],
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Ag-NP with such an external shape were obtained using Fusarium oxysporum fungi, and in the first of
these works, silver nanoparticles were noticeably smaller than in the second (5–15 nm and 20–50 nm,
respectively). Micro-fungi F. semitectum, were used as a substrate by the authors [181]; besides, Ag-NP
with sizes in the range of 10–60 nm were received. Using fungi of the genus Aspergillis elemental
silver nanoparticles with sizes ranging from 3 nm [126] to 140 nm [139] were described. The same
situation took place for Ag-NP with using fungi of the genus Penicillium, but the size range was much
smaller—from 8 nm [131] to 50 nm [152] (Table 2). Mostly get Ag-NP with the use of micro-fungi
were also pseudo-spherical, but in some cases also took place the formation of small quantities
of silver nanoparticles different geometric shapes [167,168,170,181,182]. For example, the authors
of [181], along with pseudospherical Ag-NP, also obtained silver nanoparticles having a hexagonal
shape. The formation of elemental silver nanoparticles having an irregular shape were observed
in [167,170]. (An irregular shape of Ag-NP was also described by the authors [168] with a size
of 550–650 nm, which although it refers to AGP aggregates, goes beyond the range accepted for
nanoparticles (1–100) nm).

As with the use of plant extracts in Ag-NP biosynthesis, in most cases, for elemental silver
nanoparticles synthesized using microorganisms, either a single absorption band with a maximum
in the range of 400–460 nm in the visible spectral region or a “wing” band with a maximum in the
UV region were also detected. Their colloidal solutions are also colored either in orange, or in red,
or in red-brown. As an exception, only Ag-NP obtained by Manikprabhu and Lingappa in [173] using
bacteria of the genus Staphylococcus, for which authors found the presence of two bands in the visible
region of the spectrum, namely, violet with λmax in the range 420–430 nm and in yellow-green with
λmax in the range of 550–570 nm was presented. However, the second of these bands was weakly
expressed, as a result of which the Ag-NP obtained in [173] in color did not stand out among the other
Ag-NP received with the use of microorganisms. These nanoparticles had sizes ranging from 28 to
50 nm and an irregular shape [173].

Concluding this section, we note that during the biosynthesis of Ag-NP using both plant extracts
and microorganisms, it has not yet been possible to obtain such shapes of silver nanoparticles as
nanorods, nanowires, or nanobars, which were once observed during physicochemical synthesis of
Ag-NP, in particular, in the publications [187–189]. During this biosynthesis, Ag-NP particles with
that unique “flower-like” shape that was described in the work cited above [109] have also not yet
been discovered. On the biosynthesis of Ag-NP using various microorganisms, there is, in particular,
a review article [114].

5. Synthesis of Ag-NP Using Various Protein Products

The literature contains a number of data showing the possibility of using for the synthesis of
Ag-NP various products of animal origin, in particular polypeptide high molecular weight compounds
(proteins). Owing to the large size of their molecules, the molecular mass of which (M) is tens
and hundreds of thousands of carbon units (c.u., Daltons), their role in this process is reduced
mainly to function (3), i.e. substrates that hinder the aggregation of already formed nanoparticles
(although in principle their participation in the functions referred to in paragraph III (1–2) is not
excluded); in that way, these nanoparticles are immobilized in masses of these substrates. An example
of such a substrate is gelatin, which is the main component of various food (in particular, meat)
jellies. As known [190–194], this natural compound is a polydisperse mixture of low molecular
(molecular weight M = 50,000–70,000 c.u.) and high molecular (M = 200,000–300,000 c.u.) polypeptides.
The dimensional structure, which is now well studied [195–197], and in this structure there are
many cavities of nanoscale size, which can serve as a kind of molecular nanoreactors. The reduction
reaction Ag(I)→Ag occurs namely in such cavities; in this case, some water-insoluble silver compound
(AgCl, AgBr, Ag4[Fe(CN)6] et al) immobilized in a gelatin mass acts as a silver-containing precursor.
The reducing agent is an organic or inorganic substance with strongly pronounced electron-donor
properties. One of the most suitable for this purpose is tin dichloride SnCl2, which was used to obtain
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gelatin-immobilized Ag-NP in [198–201]. The reduction according to the Ag(I)→Ag scheme occurred
in a strongly alkaline (pH~12) medium in the presence of reagents capable of forming fairly strong
and water-soluble complexes with Ag(I) (thiocyanate anion SCN−, thiosulfate anion S2O3

2−, ammonia
NH3, ethylenediamine, monoethanolamine, etc.). Due to this fact, not AgCl, AgBr, or Ag4[Fe(CN)6],
but Ag(I) complexes with the inorganic and organic compounds named above, were actually reduced.
The size of the pseudospherical Ag-NP obtained in this variant of biosynthesis is in the range from 10
to 40 nm; this was first experimentally established in [199]. In this regard, when these nanoparticles
are isolated from the gelatin matrix (for example, by the action of proteolytic enzymes, as described
in [199], their aggregation naturally occurs; nevertheless, a significant part of these particles retains its
former nano size. Details of the production of Ag-NP using such a specific method were presented
in [200,201]. The idea that in the specific conditions of chemical processes in the gelatin matrix, as well
as due to the above-mentioned specific structure of the gelatin itself, nanoparticles of a wide variety of
chemical compounds can be formed in it, was expressed in a number of earlier works, particular in
reviews [195–197,202,203].

Gelatin is not the only polypeptide substrate that can be used for this purpose; so, the various
albumins are known for the synthesis of Ag-NP [204–206]. For example, the chicken egg protein
was used for this purpose [204]; as a result, spherical Ag-NP with an average size of ~20 nm and
a maximum in the visible spectral region at 425 nm were obtained. The same substrate was used in [205],
and in [206]—bovine serum albumin. Some publications concerning protein- and peptide-directed
syntheses of inorganic materials, and, in particular, of elemental noble metal nanoparticles having
various sizes and morphologies, can be found in review [207].

Another suitable substrate for the synthesis of Ag-NP can be a natural biopolymer chitin and
chitosan derived from it. Chitosan is characterized by so-called mucoadhesive properties (ability to
adhere to various mucous membranes) [208], which seems to be very important for creating drugs that
enter the body through the mucous membranes [209–211]. In this connection, it seems appropriate
to obtain chitosan-immobilized Ag-NP, which could be used as effective antibacterial agents. Now,
however, only fragmentary information is available [212–220]. The influence of chitosan molecular
weight on Ag-NP dimensional characteristics when they were formed in situ as a result of reduction of
AgNO3 precursor in solution of this biopolymer was studied by Apryatina et al. [212,213]. It is very
important that the authors [212,213] were able to regulate the size of silver nanoparticles formed in
the range from 8 to 12 nm by changing the molecular weight of chitosan (which also plays the role of
a stabilizer of silver nanoparticles occuring during biosynthesis). The effect of the chitosan (M) molecular
mass on the spectral characteristics of Ag-NP is also interesting: for example, at M = 40,000 c.u. the
absorption maximum in the visible spectrum (λmax) is at 424 nm, at M = 127,000 c.u., at 412 nm,
at M = 165,000 c.u., at 400 nm, at M = 240,000 c.u., at 383 nm. Herewith, Ag-NP formed in
chitosan solutions with a higher molecular mass and having a size of 8 nm, exhibit much more
pronounced bactericidal activity than Ag-NP with a size of 12 nm [212,213]. In a recently published
paper [214] Uryupina with co-authors obtained pseudospherical Ag-NP with an average size of 65 nm
using chitosan.

In [215–219], another derivative of chitin, namely 6-O-carboxymethylchitin, was tested as
a substrate, and the use of γ-radiation from the 60Co isotope contributed to the restoration of the AgNO3

precursor. As a result of the studies, new radiation-induced bactericidal metal-polymer nanosystems
containing the above biopolymer and elemental silver nanoparticles, were created. Besides, by varying
the dose of γ-radiation, as well as the degree of filling of the biopolymer macromolecules with Ag+ ions,
the authors of works [215,216] were able to create macromolecular systems with silver nanoparticles
1–5 nm in size and, most importantly, to control these sizes during the experiment. The Ag-NP obtained
in these studies, however, had an irregular shape. Research in the field of chitosan-immobilized Ag-NP
undoubtedly requires continuation.

Thus, in principle, other high-molecular compounds belonging to the number of polysaccharides,
for example, agar-agar, carrageenan and guar, can be used as substrates for the production of silver
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nanoparticles. In [220] pseudo-spherical Ag-NP using the guar as a substrate with sizes of 10–30 nm
and λmax in the range of 410–425 nm were received. However, according to the authors of this article,
systematic research in this direction has not yet been undertaken.

6. Bio Applications of Ag-NP

Currently, elemental silver nanoparticles obtained by various methods are used in a very diverse
fields of science and technology. Thus, an important area of application of Ag-NP is catalysis, which can
be implemented in two versions: with the influence on the reaction system of electromagnetic radiation
(photocatalysis) and without it. For example, in [221,222] it was shown that Ag-NP on a SiO2 matrix
exhibits catalytic properties in redox reactions involving benzene, carbon monoxide, some dyes, and,
possibly, many other chemical compounds. In particular, benzene under these conditions is almost
completely oxidized to phenol even when the Ag-NP content in the matrix is about 1 mass. %. Reactions
between sodium borohydride and dyes such as methylene blue and eosin, in the presence of Ag-NP in
the reaction system, proceed at a very high rate, whereas in their absence such reactions practically do
not take place. Besides, the SiO2 substrate actually serves only to prevent the aggregation of Ag-NP in
a colloidal solution [222]. An important feature of Ag-NP is that they allow photocatalysis to be realized
for the creation of resonant surface plasmons from light in the visible range, as well as to enhance
the fluorescence intensity [223–228]. Owing to their stability and oxidation stability, elemental silver
nanoparticles are widely used, for example, in electronics and photonics [229], as a biosensor [230],
in biocatalysis [231], for protein coagulation [232] and for drug delivery [233]. A layer of silver
nanoparticles covered cutlery, door handles and even a keyboard and mouse for computers; they are
used to create new coatings and cosmetics, in filters of air-conditioning systems, in pools, showers
and other places. The method of isotropic printing for the manufacture of silver microelectrodes
is described, in which samples of electronic components with a minimum width of about 2 µm
were received by applying a concentrated paint consisting of silver nanoparticles on semiconductor,
plastic and glass substrates [234].

The foregoing, however, relates mainly to those Ag-NP that were produced by chemical and
physicochemical methods. And although Ag-NP obtained using “green synthesis” could also find
their application in the above areas of science and technology, nevertheless, their modern practical
application is related to the field of their production. As in this case biosynthesis of Ag-NP, as a rule,
was carried out in laboratories of biological and/or biochemical section with participation of experts in
the field of biochemistry and biotechnology; attention of researchers was focused on the application of
Ag-NP in biology, first of all in medicine and pharmacology.

Currently, significant factual material related to bioapplications of Ag-NP already exists [235–238].
First of all, it is the possibility of antimicrobial activity of Ag-NP; according to the data presented in [7,8],
their antimicrobial effect is more expressed than that of penicillin, biomycin and other antibiotics, due to
the inhibitory effect on antibiotic-resistant strains of bacteria. According to the data of these works,
the effect of killing bacteria with preparations containing elemental silver nanoparticles is 1.500 times
higher than phenol at the same concentration, and 3.5 times higher than mercury(II) dichloride
(with much less toxicity). Ag-NP have an antimicrobial effect on many pathogenic microorganisms,
such as Staphylococcus aureus, Streptococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa and Escherichia
coli: from bacteriostatic (ability to inhibit microbial reproduction) to bactericidal (ability to destroy
microbes) [8]. Currently published works describe the use of biosynthesized Ag-NPs as antibacterial
agents against a wide variety of microorganisms. So, in a number of works cited above devoted
to the “green synthesis” of Ag-NP with the participation of plant extracts, a high efficiency of
silver nanoparticles against pathogenic microorganisms of genera Bacillus [43,73,74,81,87,103,106],
Staphylococcus [36,40,43,47,56,69,74,81,85,87,90,93,100,103,106,108], Pseudomonas [40,43,47,69,77,85,93,
100,103], Klebsiella [41,69,77,85,87,93,100,106], Escherichia [36,56,69,73,74,77,81,83,85,87,90,93,100,103,
108], Salmonella [74,77], Enterococcus [43] and Serratia [81], was noted. A similar Ag-NP effect received by
various microorganisms and microscopic fungi on the genera Bacillus [133,155,162,186], Staphylococcus [138,
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140,146,147,155,162,176,186], Pseudomonas [138,146,155], Klebsiella [176], Escherichia [133,155,162,176,
186], Salmonella [138,140,147,155,162,176,186], Enterococcus [138] and Streptococcus [140] was observed.
The introduction of Ag-NP causes structural and morphological changes in cells that can lead to
bacterial death. When silver nanoparticles come into contact with bacteria, they adhere to the cell wall
and cell membrane, prevent replication and contribute to cell death [239]. Meanwhile, the so-called
electronic effects are observed for Ag-NP with an average size of 10 nm or less, as a result of which
their bactericidal activity increases sharply compared to that for Ag-NP with large dimensions [240].
In quantitative ratio, this effect is different for each specific type of cell, since, on the one hand,
the composition of their cell membranes varies widely, on the other hand, with a decrease in the size
of Ag-NP, their reactivity increases due to an increase in their surface area and reduce their volume.
According to work [108] the discovered silver nano-wedges, due to their unique pointed shape, act on
any microorganisms like real “daggers”, tearing their bodies apart. Therefore, such Ag-NP with
a similar form may be promising candidates for wide range of biomedical applications, and especially
in the manufacture of antibacterial drugs. High fungicidal activity of biosynthesized Ag-NP on
some microscopic fungi [108,119,126,139] was shown. But it is noteworthy that, apparently, there are
no works devoted to the biosynthesis of Ag-NP with the participation of micro-fungi in which the
authors pointed to the fungicidal activity of the obtained Ag-NP to the micro-fungi, by which these
nanoparticles were synthesized.

An important fact is that clearly expressed anticancer activity of silver nanoparticles was
identified [52,54,61,70,73,79,87,88,101,156,162]. In [241], and Ag-NP were proposed for cancer diagnosis
and drug standards. In [242], chemotherapeutic anticancer drugs were developed with photo-soluble
linkers that "attached" them to a substrate on the surface of Ag-NP. The principle of action of such drugs
is reduced to destruction under the influence of UV radiation, resulting in its active form, which has
a destructive effect on cancer cells [242]. Earlier, an alternative approach, in which the anticancer drug
“attached” directly to the functionalized surface of Ag-NP, was proposed [243]. The advantages of
cancer treatment methods described in [242,243] are that, on the one hand, the drug is transported
into the patient’s body without the use of any toxic compounds, on the other hand, it is selectively
released precisely in the affected organ. Ag-NP can also be useful for overcoming multidrug resistance,
which often prevents the delivery of the right drug to the affected organ [244].

Ag-NP seems to be characterized by a highly synergistic bactericidal action in combination with
such well-known antibiotics as penicillin, ampicillin, erythromycin, clindamycin and vancomycin;
such a phenomenon has been observed, for example, against bacteria of the genus Staphylococcus and
Escherichia [245]. It should be noted that preparations based on elemental nanoparticles are widely used
in bone transplants for the treatment of burns, because Ag-NP associated with the implant provide
better antimicrobial activity and contribute to a significant reduction in the number of scars arising in
the healing process of the affected tissue. Owing to antimicrobial activity, elemental silver nanoparticles
find a certain application also in the food industry and in food technologies, described in [246,247].

Another possibility for the application Ag-NP is their use as part of larvicidal compositions.
In particular, it was proposed to use biosynthesized Ag-NP against malaria mosquitoes of the genus
Anopheles [33,105,248–253], and pathogens of malaria, Plasmodium falciparum [254], and mosquito
carriers of yellow fever, the genus Aedes and Culex [104–106,248,249,251–253,255]. (It is interesting that
graphene was used in [251,254] as one of the components of such preparations). However, the number
of works devoted to the larvicidal (and insecticidal) activity of biosynthesized Ag-NP is still relatively
small compared to that for the works about the antibacterial activity of these NP.

Nevertheless, it should be noted that Ag-NP is still toxic to the human body. Because of Ag-NP
dissolves to form Ag+ ions, which are known to have toxic effects [256], some studies have been
conducted to determine whether Ag-NP toxicity is a result of the release of silver ions or is associated
with the nanoparticles themselves [257,258]. The results of these studies indicate that elemental silver
nanoparticles can indeed cause allergies. However, these results do not exclude the possibility that the
toxicity of Ag-NP is no less associated with the formation of silver ions in cells, because according
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to [259], Ag-NP and Ag+ ions have almost the same cytotoxicity. The authors of [260] came to the same
conclusion: the combination of Ag-NP and Ag+ is responsible for the toxic effect of silver nanoparticles;
in addition, a toxic effect on cells was shown for the Ag-NP regardless of free silver ions. On the other
hand, the toxicity of Ag-NP in human cells is due to oxidative stress and inflammation caused by the
formation of reactive oxygen species stimulated by either Ag-NP, Ag+ ions, or both [261]. According to
the authors of [262], the introduction of Ag-NP into tissue cells leads to the formation of free radicals,
which pose a potential health risk.

7. Conclusions

Thus, the perspectives of the biosynthesis of Ag-NP look very impressive. The list of biological
substrates that have so far been used in published works is extremely long, and in this review paper it
is impossible even to quote all these publications. However, now the development and improvement
of these methods using those discussed biological substrates, the control of the size, shape and degree
of dispersion of biosynthesized Ag-NP, cannot yet be considered to have been adequately determined
experimentally. That is why, for the implementation of the controlled biosynthesis of Ag-NP with
predetermined target parameters, undoubtedly, some new principles and methodological approaches
should be elaborated. For this, a thorough knowledge of the mechanism of the process of nanoparticle
biosynthesis is necessary in general and of Ag-NP in particular, the specifics of which in most cases has
remained unexplored. Each of these bio-syntheses requires information about the effect on the process
of concentration-time and temperature parameters used in the experiment, which in most published
works is scattered and clearly insufficient to make complete conclusions. A very important task is
also to increase the yield of the target product (i.e., synthesized Ag-NP). Finally, it is very important
to improve existing methods and develop new methods of isolating nanoparticles from the parent
systems in which they were formed (which may be necessary to produce commercially available
products containing these nanoparticles).
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