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Abstract: Neurotrophins constitute a group of growth factor that exerts important functions in the

nervous system of vertebrates. They act through two classes of transmembrane receptors: tyrosine-

kinase receptors and the p75 neurotrophin receptor (p75NTR). The activation of p75NR can favor

cell survival or apoptosis depending on diverse factors. Several studies evidenced a link between
75NTR

p

of several neurotrophins and their receptors, including p75NTR, in the brain of naturally scrapie-

and the pathogenesis of prion diseases. In this study, we investigated the distribution

affected sheep and experimentally infected ovinized transgenic mice and its correlation with other
markers of prion disease. No evident changes in infected mice or sheep were observed regarding
neurotrophins and their receptors except for the immunohistochemistry against p75NTR. Infected

mice showed higher abundance of p75NTR

immunostained cells than their non-infected counterparts.
The astrocytic labeling correlated with other neuropathological alterations of prion disease. Confocal
microscopy demonstrated the co-localization of p75NTR and the astrocytic marker GFAP, suggesting
an involvement of astrocytes in p75™N'R-mediated neurodegeneration. In contrast, p75N'R staining
in sheep lacked astrocytic labeling. However, digital image analyses revealed increased labeling
intensities in preclinical sheep compared with non-infected and terminal sheep in several brain nuclei.
This suggests that this receptor is overexpressed in early stages of prion-related neurodegeneration

5NTR

in sheep. Our results confirm a role of p7 in the pathogenesis of classical ovine scrapie in both

the natural host and in an experimental transgenic mouse model.

Keywords: prion disease; scrapie; neurotrophin; p75NR; astrocyte; transgenic mice

1. Introduction

Neurotrophins are a group of growth factors that exert important functions in the
nervous system of vertebrates. They are synthetized and secreted by neurons and other
cell types and regulate critical processes, from neuron maturation and synaptic plasticity
to maintenance of the nervous tissue during adulthood [1,2]. Their activity has been linked
to a number of neuropathological conditions, and changes in their expression have been
observed as a response to cell and tissue damage [3,4].

Neurotrophins constitute a family of structurally and functionally related peptides
that include the nerve growth factor (NGF), the brain-derived neurotrophic factor (BDNF),
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and the neurotrophin 3 (NT-3), among others [2]. All of them are synthesized in the form
of pro-neurotrophins, which are later processed intra or extra-cellularly and converted into
their mature forms [5,6].

The action of neurotrophins depends on two types of transmembrane receptors:
the tyrosine-kinase receptors TrkA, TrkB, and TrkC, and the p75 neurotrophin receptor
(p75NTR), that belongs to the tumor necrosis factor receptor (TNFR) superfamily [7]. While
Trk receptors A, B, and C join to mature forms of NGF, BDNEF, and NT-3, respectively,
and trigger pro-survival signals, p75N'R respond to both pre-processed and mature forms,
although it has higher affinity for pro-neurotrophins [2,6]. In both cases, this receptor acti-
vates alternative signaling pathways leading to apoptosis and cell death [1]. Interestingly,
p75NIR is also able to interact with other membrane elements, including Trk receptors,
in which case it increases their affinity for mature neurotrophins and contributes to pro-
survival signaling [8,9], and with sortilin, which participates in the apoptosis outcome
through not-yet clarified mechanisms [2,10]. For all these reasons, p75™ 'R is positioned
at the crossroad between cell survival and death and thus has attracted interest due to its
potential use as a biomarker for neurodegenerative disorders and, more importantly, as a
therapeutic agent.

Prion diseases represent a new paradigm of neurodegenerative conditions. They are
caused by unconventional transmissible agents called prions, consisting of a misfolded
protein (pathogenic prion protein, or PrP5) with the ability to transfer its aberrant con-
formation to the otherwise healthy, physiological cellular prion protein, or PrP¢ [11,12].
The accumulation of the pathogenic isoform in the brain triggers currently unclarified
mechanisms that lead to a neurodegenerative disorder characterized by spongiosis, gliosis,
and sometimes presence of amyloid deposits [13-17].

Prions are present in multiple species, including humans and domestic animals.
Bovine spongiform encephalopathy (BSE) affects cattle and can be transmitted to humans
through consumption of contaminated meat, causing the variant form of Creutzfeldt-Jakob
disease (vC]D) [18]. Sheep suffer a form of prion disease called scrapie, which transmits
horizontally between individuals. Prion diseases can be experimentally induced in trans-
genic mice expressing the cellular prion protein (PrPC) of other species, by intracerebral
inoculation of brain material from infected individuals [19]. These murine models recapitu-
late most of the features of the natural disorder, and have been routinely used for the study
of all aspects of prionopathies [20-22].

Studies addressing the relationship between prion pathogenesis and neurotrophins,
although scarce, go in line with several pieces of evidence that link these growth factors
and neurodegeneration. One example of such a study proved that PrP106-126, a synthetic
peptide homologous to the fragment between amino acids 106 and 126 of human PrP,
was able to induce apoptosis in an in vitro model (N2a cells) through the activation of
p75NTR and the nuclear factor kB (NF-«B); this suggests a direct interaction between these
molecules [23,24]. Another study, this time using an in vivo approach, found a positive
correlation between the neuropathological hallmarks of prion disease (spongiosis, PrP
accumulation and gliosis) and overexpression of p75N™R in a bovinized murine model
inoculated with BSE [25]. A third work evidenced a decrease in the levels of p75NTR and
other related factors in the brain of scrapie-infected hamsters, which was progressive
throughout the course of the disease and correlated with PrPS¢ accumulation and neuronal
death [26]. These works have prompted the interest on neurotrophins as molecules whose
study may shed light on the pathogenesis of prion diseases and other neurodegenerative
conditions.

In this study, we analyzed the distribution of three neurotrophins (NGF, BDNF, and
NT-3) and four neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR) in brain samples
sourced from two different models of scrapie: sheep as the natural host, and Tg338 trans-
genic mice, which express the ovine PrP, as an experimental model. After a pilot study
that confirmed previous observations in other experimental scenarios [25], we focused on
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the p75 neurotrophin receptor (p75N'R) and decided to investigate further its distribution,
expression, and correlation with other markers of prion disease.

2. Results
2.1. Mapping of Neurotrophins and Neurotrophin Receptors in the Brain Reveals Different
Staining Patterns

Two different scrapie models were used: sheep, as the natural host, and Tg338 mice, a
transgenic line that expresses ovine PrPC and, therefore, can be experimentally infected
with scrapie prions. In the pilot study, two groups of animals of each model were included:
the sheep were either healthy or naturally infected with scrapie, and the mice were either
inoculated with a scrapie isolate or with physiological saline.

Three neurotrophins (NGF, BDNF, and NT-3) and four neurotrophin receptors (TrkA,
TrkB, TrkC, and p75NTR) were mapped in the brain of sheep and Tg338 mice. Each com-
bination of marker and model (ovine or murine) gave a distinctive distribution pattern.
However, no clear association with the disease was observed in any case, except for p75N TR
in mice.

Both mouse and sheep brains showed neuronal labeling together with neuropil stain-
ing of variable intensity for NGF and BDNF (Supplementary Figure S1A-H). In neuronal
bodies, immunostaining was located within the cytoplasm. Staining of other cell types or
structures in the brain was not observed, suggesting that the distribution of these markers
is restricted to neurons at both the pericarion and their projections through the neuropil.
This labeling pattern was ubiquitous in medulla oblongata, midbrain, cortices, and hip-
pocampus of both infected and control mice and in medulla oblongata and hippocampus
of sheep.

The distributions of NGF and BDNF were similar, suggesting similar or parallel roles
in the nervous tissue. No evident differences in the immunostaining of any of these markers
were detected between infected and control individuals on either sheep or mice.

Similarly, NT-3 presented a low-intensity intracytoplasmic neuronal pattern in mouse
brains (Supplementary Figure S1I) together with a diffuse neuropil labeling which was
conspicuous in the grey matter of striatum (Supplementary Figure S1I [inset]). The neu-
ronal staining seemed to be higher in infected mice (Supplementary Figure S1J), although
differences with control mice were scarce. In sheep, intracytoplasmic neuronal labeling
was granular in nature (Supplementary Figure S1K,L) and more intense than that of mice,
while differences between control and infected sheep were subtle or inexistent.

With regard to neurotrophin receptors, TrkA followed a weak and inconstant intra-
neuronal labeling in both mice (Supplementary Figure S2A,B) and sheep (Supplementary
Figure S2C,D) and was also detected at the level of neuropil.

TrkB was located at the level of neuronal membranes (perineuronal labeling) and
neuronal prolongations through neuropil in control mice (Supplementary Figure S2E),
while in infected mice it was less evident (Supplementary Figure S2F). In contrast, infected
and control sheep manifested a mild granular intracytoplasmic staining (Supplementary
Figure 52G,H). Finally, TrkC followed a neuronal intracytoplasmic staining pattern together
with a conspicuous labeling of neuronal and glial branching in control mice; these branches
were particularly notorious in the molecular layer of cerebellar cortex (Supplementary
Figure S2I [inset]). Infected mice showed also strong labeling of Purkinje neurons in the
cerebellum (Supplementary Figure S2] [inset]). In sheep, intracytoplasmic labeling was
weaker and, in opposition with the situation in mice, Purkinje cells staining was only
observed in control, but not in infected sheep (Supplementary Figure S2K,L [insets]).

Remarkably, p75 neurotrophin receptor manifested two distinct, clearly differentiable
immunostaining patterns. As the rest of analyzed markers, the first pattern was a neu-
ronal intracytoplasmic staining that was observed in all brain areas and in both mice
(Figure 1A,B) and sheep (Figure 1E,F).
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Figure 1. p75NTR receptor in the brain of infected and control mice and sheep. In the upper row
(A,B,EF), the general patterns (neuropil staining [not marked] and neuronal intracytoplasmic staining
[asterisks]) observed in the two models are displayed, while the lower row (C,D,G) shows specifically
the glial staining found in mice (arrows) and sheep (arrowheads). Microphotographs taken from
medulla oblongata (A,B,D,EF), corpus callosum (C), and hippocampus (G).

The second pattern was only visualized in mice and consisted of star-shaped im-
munostained cells, different from neurons and likely corresponding to the glia, and whose
morphology and distribution resembled those of astrocytes. This labeling was particularly
conspicuous in white matter structures, including the corpus callosum (Figure 1C). In
addition, these immunostained star-shaped cells were more abundant and fibrous in the
brains of infected mice than in control mice (Figure 1D).

Sheep showed the neuronal intracytoplasmic labeling but not the glial labeling, not
even after harsher epitope retrieval protocols were tested. However, in the white matter of
sheep, some positive glial cells (probably astrocytes and oligodentrocytes) were detected
(Figure 1G). No changes were observed between control and infected sheep.

2.2. Glial Immunostaining for p75NTR Is Increased in Terminally Scrapie-Infected Mice

After careful assessment of each of the neurotrophins and receptors, we decided to
further analyze the distribution of p75NTR. Thus, we performed immunohistochemistry for
this receptor on an ampler selection of mouse and sheep brain samples. This included three
groups for each model: terminally diseased, preclinical and control, non-infected animals.

The glial labeling was more intense in terminal mice (Figure 2E,F), in comparison with
control mice (Figure 2A,B). This was especially notorious in medulla oblongata, where
p75NTRpositive star-shaped cells were more abundant and fibrous. This increased glial
p75NTR pattern was less evident in the preclinical group (Figure 2C,D).

The intensity of glial p75™!R labeling was semi-quantitatively evaluated in ten areas
of mouse brains. Significant differences were found between control and terminal animals
in medulla oblongata (p = 0.0187) and mesencephalon (p = 0.0067). Significant variability
was also found at the striatum (p = 0.0020), and although post-hoc pairwise comparison
did not disclose significant differences between groups, terminal animals showed clearly
increased values (Figure 2G).
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Figure 2. (A-F) Visual comparison of p75NTR glial immunolabeling between control (A,B), preclinical
(C,D), and terminal mice (E,F). Notice the presence of more abundant and fibrous p75NTR-positive
glial cells (purportedly astrocytes) in infected animals, together with the presence of vacuolization
(spongiform lesion) in infected but not in control mice. (G) Semi-quantification of glial p75NTR
labeling in ten brain areas. Mobl: medulla oblongata, Cb: cerebellar cortex, Mes: mesencephalon, Hy:
hypothalamus, Th: thalamus, Hp: hippocampus, Tc: parietal and temporal cortices at the level of
thalamus, Str: striatum, Sn: septal nuclei, Fc: frontal cortex. Error bars represent SEM. Kruskal-Wallis
test followed by Dunn’s post-hoc pairwise comparison, * p < 0.05, ** p < 0.01.

2.3. Global p75N™R Immunolabeling Is Not Altered by Disease Progression in Mice

In contrast to the semi-quantitative evaluation approach, which quantified exclusively
the glial pattern, the global p75N™® immunolabeling was assessed by image analysis.
No significant differences were found between terminal, preclinical, and control mice
in any area (Supplementary Figure S3). This suggests that, although higher numbers of
5NTR_positive glial cells are present in diseased animals, the overall levels of this receptor
seem not to be affected by the disease progression. Rather, this higher abundance of alleged
astrocytes is likely to reflect the presence of astrogliosis, a neuropathological feature usually
found in prion disease—terminally affected individuals.

2.4. Global p75N™R Immunolabeling Is Increased in Several Brainstem Nuclei of Preclinical Scrapie
Infected Sheep

In contrast with mice, p7 immunostaining in sheep consisted mainly of an intense
intraneuronal, pancytoplasmic labeling, together with a generalized staining of neuropil.
However, and in accordance with pilot experiments, sheep brain samples lacked the
ramified astrocytic labeling observed in mice.

Careful visual examination identified other staining patterns in sheep brains. For
instance, in hippocampus, control sheep showed intraneuronal granular deposits located
in one of the poles of the pericarion (Supplementary Figure 54, panel G) and diffuse, fine
punctuate staining in the neuropil, while infected sheep showed coarse granular deposits
in neuropil (Supplementary Figure 54, panels H-I) together with granular accumulations
widely spread in the cytoplasm of neurons. However, the observed differences were subtle,
and it was not possible to quantify them for statistical purposes.

5NTR
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In addition, no differences in immunostaining were observed between control and in-
fected animals in brainstem or spinal cord, in which an intense intraneuronal pancytoplasmic
staining, sometimes granular, was observed (Supplementary Figure 54, panels A, B, D-F),
or in white matter tracts, which showed a strong intracytoplasmic targeting of glial cells
probably corresponding to oligodendrocytes (Supplementary Figure S4, panel C).

The assessment of global p75NTR staining through image analyses disclosed significant
differences in several brain nuclei between infected and control sheep (Figure 3). Most
of the differences consisted of higher immunostaining intensity in preclinical animals
compared with control, non-infected sheep and with clinical sheep.

p75NTR (OD)

1.0

0.4

p75NTR (OD)

0.2

AN\

DMNV Hypg Cb

Medulla oblongata Cerebellum

°

r1.0

p75NT® (OD)
2 3

hed
()

AN\
A\

o
o

SupCol SNigra Hy Th DL Th DM Th Ven Sept Lent Caud Fec

Mesencephalon Diencephalon Telencephalon
(striatum and cortex)

[] Controls Preclinical @@ Clinical

Figure 3. Image analysis of p75NTR immunostaining in sheep brains showed significant differences
between groups of animals in several brain areas and nuclei. The upper panel (framed) represents the
overall staining in the different brain areas (Mobl: medulla oblongata, Pons: pons, Cb: cerebellum,
Mes: mesencephalon, Di: diencephalon, Str: striatum, Fc: frontal cortex), while the lower panels
(non-framed), show the staining in specific nuclei within those regions (Cune: cuneate nucleus,
DMNV: dorsal motor nucleus of the vagus, Hypg: hypoglossal nucleus, Retc: reticular formation,
Fac: facial nucleus, Vestb: vestibular nucleus, SupCol: superior colliculus, SNigra: substantia nigra,
Hy: hypothalamus, Th DL: dorsolateral nuclei of thalamus, Th DM: dorsomedial nuclei of thalamus,
Th Ven: ventral nuclei of thalamus, Sept: septal area, Lent: lenticular nucleus, Caud: caudate
nucleus). The height of the bars represents the mean optical density (OD). Error bars represent SEM.
Kruskal-Wallis test followed by Dunn’s post-hoc pairwise comparison, * p < 0.05, ** p < 0.01.

The area where the most significant differences were recorded (p = 0.0018) was medulla
oblongata. Image analysis of the different nuclei included in this region revealed significant
differences in hypoglossal nucleus (between control and preclinical and between preclinical
and clinical, p = 0.0147) and olivary nuclei (between control and preclinical, p = 0.0221).

Significance was also found in comparisons between control and preclinical sheep in
pons (p = 0.0085) and between preclinical and terminal sheep in mesencephalon (p = 0.0176)
and diencephalon (p = 0.0019). Additionally, significant differences were noted between
control and preclinical animals in reticular formation (p = 0.0303) and vestibular nucleus
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(p = 0.0103), between control and clinical animals in substantia nigra (p = 0.0046), and be-
tween preclinical and clinical animals in superior colliculus (p = 0.0053), ventral nucleus of
the thalamus (p = 0.0443), lenticular nucleus (p = 0.0120), and caudate nucleus (p = 0.0530).

2.5. Similarities in the Distribution of p75NTR- and GEAP-Immunolabeled Glial Cells Suggest
p75NTR Expression in Astrocytes from Mice, but Not Sheep

We next wondered whether the glial staining pattern seen in mice corresponded
to astrocytes. Presence of reactive astrocytes is a frequent hallmark of prion diseases at
advanced stages of neurodegeneration [17].

There was an evident parallelism between the immunostaining for glial fibrillary
acidic protein (GFAP), a marker of reactive astrocytes, and for p75N'R in mouse brains.
Immunohistochemistry against GFAP (Figure 4C,D) revealed a distribution of astrocytes
that closely resembled that of p75NTR-positive glial cells (Figure 4A,B). However, p75N TR
did not only target astrocytic populations but also neurons, as evidenced by the similarity
between the staining patterns of p75N'R and NeuN (neuronal nuclei, a neuron-specific
marker) in certain areas such as medulla oblongata (Figure 4E,F).

p75NTR NeuN

Figure 4. Comparison between p75NTR, GFAP, and NeuN immunostaining patterns in mice. Im-
munohistochemistry against p75NTR (A,B), GFAP (C,D), or NeuN (E,F) in corpus callosum (A,C,E)
and in medulla oblongata (B,D,F). Notice that p75N'R labels both glial cells (probably astrocytes)
(A, arrowheads) and neurons (B, arrows), while GFAP targets astrocytes (C, arrowheads) but not
other cell types (D). Importantly, GFAP-positive astrocytes (C, arrowheads) are more abundant
than p75NTR-positive glial cells (A, arrowheads), suggesting that only a subpopulation of astrocytes
express p75N IR,

Importantly, the number of astrocytes targeted for GFAP (Figure 4C) seemed to be
higher than that of glial cells targeted for p75N'R (Figure 4A), suggesting that only a
subpopulation of astrocytes expresses detectable levels of p75NTR in mouse brain. Sim-
ilar to p75NTR-targeted glial cells, GFAP-targeted astrocytes were more abundant and
hypertrophic in infected mice, especially in medulla oblongata of terminal animals.

In sheep, immunohistochemistry against GFAP disclosed GFAP-positive protoplasmic
astrocytes in high numbers in the stratum lacunosum-moleculare and the polymorphic layer
of the dentate gyrus (Figure 5). More fibrous astrocytes were observed in white matter
tracts of the hilus. Infected sheep had an increased population of GFAP-positive astrocytes
in these zones, in comparison with control sheep (Figure 5D-F).
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Control sheep

Infected sheep

Figure 5. Comparison between p75NTR (A—C) and GFAP immunostaining (D-F) patterns in control
(A,B,D,E) and infected (C,F) sheep. Notice the higher abundance of GFAP-positive reactive astrocytes
(astrogliosis) in infected mice, and the lack of correlation between p75NTR and GFAP distribution
patterns, indicative of the fact that ovine astrocytes do not express significant levels of the receptor.
Microphotographs taken from hippocampus.

No correlation was observed between p75N R (Figure 5A-C) and GFAP immunostain-
ings (Figure 5D-F), in agreement with the lack of the glial pattern in p75NTR-immunostained
sections from sheep. The reason why ovine astrocytes do not express detectable levels of
p75NTR remains unknown.

2.6. Glial p75NTR Staining Pattern Correlates Positively with the Severity of Spongiosis, PrP¢
Deposition, and Gliosis in Mice

The visual approach used to assess the relationship between p75NTR and astrocytes
in mice was complemented with a semi-quantitative measurement of the severity of the
gliosis in GFAP-immunolabeled sections. In addition, spongiform changes and PrP>
accumulation in the brain were evaluated on hematoxylin-eosin stained sections and with
PET-blot, respectively.

Significant differences between groups were found in all areas except cerebellar cortex
for spongiosis and cerebellar cortex and hippocampus for PrP> deposits. Gliosis showed
significant differences in medulla oblongata, mesencephalon, hypothalamus, striatum, and
septal nuclei (Supplementary Table S1), roughly in agreement with what was observed
with glial p75NTR labeling.

Correlation coefficients of these three parameters with glial p75NTR labeling were
computed and significant results were found in each case (Figure 6), indicating that the
accumulation of the causal agent (PrP>¢) and its related neuropathological alterations
(spongiosis and gliosis) are linked to the presence of p75NTR-positive glial cells. Considering
all the aforementioned observations, these glial cells are probably astrocytes.
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Figure 6. Distribution of spongiform change (A), PrP> deposits (B), and gliosis (C) in comparison with
the distribution of glial p75NTR labeling in the brain of control, preclinical, and terminal mice. Notice
the overlapping of the curves representing the three parameters and the bars representing glial p75NTR
staining intensity. Positive Spearman’s correlation coefficients (r) were obtained in each case, which were
highly significant (p < 0.0001). Mobl: medulla oblongata, Cb: cerebellar cortex, Mes: mesencephalon,
Hy: hypothalamus, Th: thalamus, Hp: hippocampus, Tc: parietal and temporal cortices at the level of
thalamus, Str: striatum, Sn: septal nuclei, Fc: frontal cortex. Error bars represent SEM.

2.7. Spongiosis and PrP5¢ Deposits Do Not Correlate with Global p75N™R Labeling in Mice
or Sheep

In contrast with glial p75N™R labeling, no positive correlation was noted between
global p75NTR labeling (assessed by image analysis) and spongiosis or PrPS deposition
in mice. Only a slight correlation was found between total p75NR and gliosis, which was
statistically significant (p = 0.0259). However, the low correlation coeficient (r = 0.2133)
rendered this observation negligible.

On the other hand, spongiosis and PrP*¢ deposits assessed semi-quantitatively in
sheep brains showed statistically significant variation between groups (Supplementary
Table S2), but did not correlate with the global p75™R immunostaining measured by image
analysis (Supplementary Figure S5).

2.8. Confocal Microscopy Confirms the Relationship between Glial p75NTR Patterns and Astrocytes
in Mice, but Not Sheep

Considering that medulla oblongata was the brain area with the most abundant
p75NTR labeling and PrPS¢ deposits in both mice and sheep, we wondered whether there
was a direct, topological relationship between these two parameters. To assess this, we
used sheep brain samples and performed confocal microscopy combining the anti-PrP
antibody L42 with the anti-p75NTR antibody.

Immunolabeling for p75N™R disclosed patterns that matched with those observed by
immunohistochemistry in sheep, including: perineuronal labeling with neuropil staining
(Figure 7A), glial labeling, probably corresponding to oligodendrocytes in the white matter
(Figure 7B), and intraneuronal staining with evidence of the neurite branching (Figure 7C).
In the samples targeted for p75NTR and PrP, a mild labeling of PrPS¢ deposits appeared in
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5N TR

some areas, but co-localization with p7 , although found in some cases, was not the

general rule (Figure 7D-F).

Figure 7. Confocal microscopy for p75NTR (green) and PrP (red) in sheep brain samples. Notice
that p75NTR distribution patterns agreed with those observed by IHC, including neuropil and
perineuronal staining (A), glial staining (probably oligodendrocytes) (B), and neuronal intracytoplas-
mic staining with evidence of neuron processes (C). Co-localization of p75NTR with PrP, although

observed in several cases (D-F), was not the general rule.

Given the apparent labeling of astrocytes by the anti-p75NTR antibody and its positive
correlation with the distribution of the astrocyte-specific marker GFAP in mice, we aimed
at further confirming the co-localization of these two markers. Therefore, we combined the
anti-p75NTR and the anti-GFAP antibodies.

A very clear co-localization was observed in mouse samples (Figure 8A), which con-
firmed that the p75N™R-positive star-shaped cells in mouse brains were indeed astrocytes,
as suggested by the observations on immunohistochemistry. In contrast, and also rein-
forcing previous immunohistochemical findings, no co-localization between GFAP and
p75NTR was noted in sheep brain samples (Figure 8B), confirming the absence of p75NTR
expression in ovine astrocytes, at least to levels detectable by either immunohistochemistry
and confocal microscopy.
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GFAP p75NTR GFAP + p75NTR

Figure 8. Confocal microscopy for GFAP (red) and p75NTR (green) in sheep (A) and mouse (B)
brain samples. Notice the lack of correlation between both markers in sheep tissues and the clear

A

Sheep

Tg338 mice

co-localization that in contrast is observed in mice, suggesting that mouse but not sheep astrocytes
express detectable levels of p75NTR.

3. Discussion

Our results indicate that increased numbers of p75NTR-positive astrocytes are present

in terminal stages of neurodegeneration in a murine model of scrapie. This finding corre-
lates with other neuropathological features of prion disease, including spongiosis, PrP5
accumulation, and gliosis. In a comparison between control, preclinical, and terminal
individuals, all areas with significant differences in glial p75N'R labeling showed also
significant differences in these three prion disease biomarkers. These results are in agree-
ment with previous studies that also described glial p75N™® immunostaining in a similar
murine model of prion disease, as well as an increase of this labeling in infected individuals
that roughly coincides with what we described [25]. These pieces of evidence point to a
biologically relevant association between this receptor and prion disease pathogenesis.

Some studies have proposed an important role for p75NTR in the pathogenesis of prion
diseases and other neurodegenerative disorders. Not only is this receptor able to mediate
cell death after binding of its natural ligands (pre-processed and mature neurotrophins),
as extensively reviewed [1], but also upon in vitro interaction with non-neurotrophic
molecules, such as PrP106-126 [23,24] and APP (amyloid protein precursor) [27,28]. Such
a direct link between the receptor and peptides involved in the pathogenesis of neurode-
generation prompts the suggestion that a similar mechanism be triggered in vivo by PrP>
deposits in the brain.

However, few studies address these questions using the mouse as the experimen-
tal model. Most investigations on neurotrophin actions are performed in rats [29-31],
humans [32,33], and non-human primates [34,35].

In experimentally scrapie-infected mice, it is well known that prion-related lesions
in the brain follow a topographical distribution tightly controlled by a combination of
agent strain and factors intrinsic to the host. This has led to the development of strain
discrimination methodologies based on the assessment of lesion profiles [36] or PrP*
accumulation patterns [37,38]. However, the mechanisms controlling or influencing this
distribution are unclear. Given the role of p75NR in triggering cell death, it is possible that
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differential expression of this receptor among brain areas or cell populations governs at
least in part the distribution of prion-related lesions, as already proposed [25].

Our observations confirm that the glial cells targeted for p75N'R that were found
increased in diseased mice were astrocytes. As exposed above, a previous work with
both wild type and transgenic mice modeling prion disease found increased presence of
p75NTR-positive astrocytes in terminally diseased animals [25]. Other studies, far from
the field of prion diseases, described how astrocytes can both secrete several kinds of
neurotrophins [39,40] and act as a target of these molecules through the expression of
their receptors, including p75NR [41,42]. Importantly, according to our results, only a
subpopulation of astrocytes seems to express detectable levels of the receptor, as the number
of p75NTR positive glial cells was lower than that of GFAP-positive astrocytes.

Some physiological functions of p75N'R in astrocytic populations have been described,
for instance, arresting of cell cycle and attenuation of astrocytes proliferation [43,44]. Other
authors have demonstrated its involvement in pathological conditions, for example, in
p75NTR-mediated astrocytosis in astrocyte-induced toxicity to motor neurons in amy-
otrophic lateral sclerosis (ALS) [45-48]. In addition, upregulation of the p75N™R receptor
has been observed after some types of damage of nervous tissue in vivo [49]. Other glial
cell types also upregulate p75N TR expression in several neuropathological conditions, in-
cluding microglia and oligodendrocytes in multiple sclerosis [50], and Schwann cells and
aldynoglia in peripheral nerve injury and during the regeneration process [41,42,51,52].

In general, further analyses are needed to understand the involvement of p75NTR
in the neuroinflammatory response mediated by reactive astrocytes during prion dis-
ease pathogenesis. In any case, our results reinforce the crucial role of astrocytes in the
neurodegeneration associated to prion diseases, in agreement with previous results [53].

On the other hand, experiments with the natural model of scrapie are also scarce given
the intrinsic drawbacks of working with large animals like sheep. In our study, the natural
ovine model of the disease did not show the glial p75NTR immunolabeling found in mice,
which suggests the absence of p75NR in sheep astrocytes. This is not rare, since other
studies have failed in finding an association between p75N™R and astrocytes in distinct
models of prion disease, such as hamsters [26].

Despite the absence of p75NR astrocytic labeling in sheep, image analysis found
an increase in the global p75NTR immunostaining in several brain areas and nuclei of
preclinical sheep, in comparison with both control and clinical sheep. This observation
suggests that an upregulation of this receptor occurs during initial stages of prion-related
neurodegeneration.

Overexpression of p75™TR has also been found in other pathological conditions associ-
ated with cell death and neurodegeneration. For example, in Alzheimer’s disease (AD), re-
expression of p75NTR was observed in human cortical neurons by immunohistochemistry [54].
The reasons for this increase are unclear. Some authors propose that the re-expression of
p75NTR in brains of AD patients is mediated by the upregulation of its ligand, NGF [54],
since ligand and receptor are linked by a “feed-forward” relationship [55]. However, in our
pilot experiments, the levels of NGF were not noticeably increased in infected individuals.
Moreover, levels of BDNF and NT-3, known to bind to p75NTR as well, were also found
unaltered. A more in-depth assessment of the expression of these neurotrophic ligands should
be done to accept or discard this hypothesis in our particular case.

In contrast with the preclinical group, animals in the clinical stage showed p75NTR
levels similar to those of control animals. A likely explanation for this is the neuronal
loss occurring at later stages of prion neurodegeneration. In agreement with this, several
authors have described a similar loss of p75NTR neuronal expression in organotypic brain
slice cultures from rat [56] and mouse [57] and in cultured canine dorsal root ganglia
neurons [58], and attributed this observation to neuronal death.

Neurotrophins and their receptors, and particularly p75NTR, are known to play critical
roles in the physiology of the nervous tissue and also to be involved in the pathogenesis of
several neurodegenerative disorders, although the underpinnings of this process remain
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ill-defined. The results presented here aim at shedding light on this issue and provide
some new insights into the particular case of prion diseases.

4. Materials and Methods
4.1. Sheep

Nine Rasa Aragonesa sheep were included in this study. All of them were ho-
mozygous for alanine at codon 136, for arginine at codon 154, and for glutamine at
codon 171 (ARQ/ARQ). A single sheep from the control group bore heterozygosity
leucine/phenylalanine at codon 141 (141L/F) and another sheep from the terminal group
was heterozygous histidine/arginine at position 143 (143H/R). They belonged to three
different groups: control, preclinical, and clinical. Clinical animals were diagnosed through
assessment of clinical signs and sacrificed in the terminal stage of the disease; diagno-
sis was later confirmed by detection of PrP5¢ in their brains by immunohistochemical
procedures. Preclinical animals were identified by immunohistochemical detection of
PrP5¢ in samples of rectal mucosa-associated lymphoid tissue obtained by rectal biopsy, as
previously described [59], and confirmed post-mortem. Control animals were sacrificed
without clinical signs at ages similar to those of the other groups and were negative to
PrP5¢ immunohistochemical detection. All three groups were culled at mean ages of 3 to
4 years old. After sacrifice by intravenous injection of sodium pentobarbital, complete
necropsy and sampling was performed. Brains were sectioned and fixed in 10% formalin
for at least 48 h before processing.

4.2. Mice

The Tg338 line used in this study carries the ovine prion protein gene (Prnp) and
expresses ovine PrPC (VRQ) under the control of the ovine Prnp promoter at levels 8-
fold that of sheep brain [60]. A total of 18 animals were included in the study. Six were
inoculated with physiological saline (control group) and 12 with a second passage scrapie
isolate (i.e., a pool of brain homogenates from Tg338 mice inoculated with a natural case of
scrapie). Inoculation was performed by the intracerebral route using a precision syringe
and under general anesthesia; after inoculation, they were provided adequate analgesia.
Mice were caged together and monitored three times per week. From the scrapie-inoculated
mice, 6 (the terminal group) were sacrificed at the end stage of disease with 264 £ 11 dpi
(mean + SEM), and the other 6 (the preclinical group) were culled before the onset of
clinical signs at 126 + 4 dpi. The control group was culled at 420 &= 5 dpi without signs.
Sacrifice was done by cervical dislocation under heavy anesthesia. After sacrifice, brains
were harvested and fixed in 10% formalin for at least 48 h.

4.3. Ethics

All experimental procedures in this study were approved by the Ethics Committee
for Animal Testing of the University of Zaragoza (permit numbers P102/08 and PI19/14,
approved on 07/04/2014 and 01/02/2018 respectively) and performed in strict accordance
with the recommendations for the care and use of experimental animals and in agreement
with national law (RD 1201/05).

4.4. Tissue Processing

Mouse brains were trimmed in four sections for the assessment of prion lesions, as
previously described (Fraser and Dickinson, 1968), while sheep samples were processed
following an adapted protocol. Tissues were then embedded in paraffin wax and mounted
in appropriate cassettes. Four micrometer-thick sections were obtained using a microtome
and recovered on slides or nitrocellulose membranes for subsequent analysis.

4.5. Immunohistochemistry

Dewaxing and rehydration of the sections was achieved by sequential immersion
in graded alcohols. For neurotrophins immunohistochemistry, a heat-induced antigen



Int. J. Mol. Sci. 2021, 22,2714

14 0f 18

retrieval step was included by incubating the samples in citrate buffer at 96 °C for 20 min,
while for GFAP, this step was skipped. Endogenous peroxidase activity was blocked using a
commercial blocking solution (Dako Agilent, Santa Clara, CA, USA), followed by overnight
incubation with primary antibodies raised against NGF (rabbit monoclonal antibody, Sigma-
Aldrich, Darmstadt, Germany), BDNF (rabbit monoclonal antibody, Abcam, Cambridge,
UK), NT-3 (rabbit polyclonal antibody, Abcam, Cambridge, UK), TrkA (rabbit monoclonal
antibody, Abcam, Cambridge, UK), TrkB (rabbit polyclonal antibody, Abcam, Cambridge,
UK), TrkC (rabbit polyclonal antibody, Abcam, Cambridge, UK), and p75NTR (rabbit
polyclonal antibody, Abcam, Cambridge, UK), or by one-hour incubation with a rabbit
polyclonal anti-GFAP antibody (Dako Agilent, Santa Clara, CA, USA). The EnVision+
System (Agilent Dako, Santa Clara, CA, USA) was used as the secondary antibody in all
cases, followed by development with the DAB+ System (Agilent Dako, Santa Clara, CA,
USA). Counterstaining of the samples was performed with hematoxylin.

4.6. Hematoxylin-Eosin (H&E) Staining

Dewaxing and rehydration of preparations by sequential immersion in xylene and
graded alcohols was followed by incubation in a hematoxylin solution. After rinsing with
tap water, preparations were incubated in acid alcohol (1% acetic acid in a 70% ethanol
solution) and then counterstained with an eosin solution. Finally, preparations were
dehydrated and mounted prior to visualization under light microscope.

4.7. Paraffin-Embedded Tissue Blot

Mouse brain samples were subjected to PET-blot as described elsewhere [61]. Briefly,
4-um paraffin-embedded brain sections were collected onto a nitrocellulose membrane
and dried at 37 °C for 24 h. Membranes were then subjected to dewaxing and rehydration
and incubated for 2 h in a solution of proteinase K (250 ng/mL) (Invitrogen, Carlsbad,
CA, USA) at 56 °C to completely digest PrP¢. Denaturation of the remaining PrP™® was
achieved by incubating the membranes in a solution of guanidine thiocyanate 3M. After
blocking the membrane with 0.2% BSA to avoid cross-reactivity, detection was carried
out through sequential incubation with the monoclonal anti-PrP antibody Sha31 (1:8000)
(SPI-Bio, Sherbrooke, Canada) and a secondary alkaline phosphatase (AP)-conjugated
antibody (Agilent Dako, Santa Clara, CA, USA), followed by development with NBT/BCIP
(Thermo Scientific, Waltham, MA, USA). Membranes were then washed and dried for 24 h
at room temperature.

4.8. Semi-Quantitative Assessments

Spongiosis and PrP> deposition were evaluated in H&E-stained and PET-blotted
or immunostained brain sections from both mice and sheep. Glial p75N™R and GFAP
immunostaining were also measured in mouse brains. A semi-quantitative standardized
methodology was used by attributing scores from 0 (total absence) to 4 (abundant pres-
ence) to each parameter in pre-determined brain areas. The average score for each area
was computed as the arithmetic mean of the scores in each experimental group (control,
preclinical, and terminal).

4.9. Image Analysis

Microphotographs of sheep and mouse brain areas and nuclei were taken using an
Axioskop 40 microscope and an Axiocam MRc5 camera (Zeiss, Oberkochen, Germany)
and the software AxioVision40 v4.6.3.0 (Zeiss, Oberkochen, Germany). Image analyses
were performed as previously described [62]. At least three microphotographs of each
area or nuclei were taken. The software Image] was used for image analysis. Briefly,
microphotographs were subjected to color deconvolution using the algorithm for DAB-
stained samples. The mean gray value of the processed images was measured and these
values were employed to calculate the optical density (OD) of the pictures applying
the formula OD = log (max intensity/mean intensity), where max intensity = 255 for
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8-bit images. The average optical density for each area or nucleus was computed as the
arithmetic mean of measured optical density values.

4.10. Statistics

Graphical representations and statistical analyses of data were done using the software
GraphPad Prism 5. In all cases, Shapiro-Wilk and Kolmogoérov—Smirnov tests were applied
prior to further analyses, in order to assess the normality of the data, which led to the
selection of non-parametric tests. The Kruskal-Wallis test was used to search for differences
among control, preclinical, and clinical mice and sheep groups, and was followed by
pairwise comparisons using Dunn’s post-hoc test. Finally, correlations between total
p75NTR immunolabeling, glial p75NTR immunolabeling, spongiosis, PrPS¢ deposition, and
astrogliosis were studied using Spearman’s correlation coefficients.

4.11. Confocal Microscopy

Dewaxing, rehydration, and heat-induced antigen retrieval were performed as for
immunohistochemistry. To avoid background signal caused by paraffin green autofluo-
rescence, sections were immerged in a solution of Sudan Black B (SBB) for 10 min and
protected from light, followed by rinsing with 70% ethanol. Endogenous enzymatic activity
was blocked with 10% fetal bovine serum for 60 min, and then, samples were incubated
with a mixture of two primary antibodies raised in distinct species (rabbit polyclonal
anti-p75NTR antibody (Abcam, Cambridge, UK) and either mouse monoclonal anti-GFAP
antibody (Dako Agilent, Santa Clara, CA, USA) or monoclonal mouse anti-PrP antibody
L42 (SPI-Bio, Sherbrooke, Canada)), at 4 °C overnight. Next, two fluorophore-conjugated
secondary antibodies, emitting at different wavelengths (Alexa Fluor 488 and Alexa Fluor
Plus 594, Thermo Scientific, Waltham, MA, USA) were employed to visualize the attach-
ment of each of the primary antibodies. Slides were examined using a LSM 510 equipment
(Zeiss, Oberkochen, Germany).
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PrPC Cellular prion protein
PrPSe Pathogenic prion protein

Prpres Proteinase K-resistant core of PrP5
NGF Neuronal growth factor

BDNF  Brain-derived neurotrophic factor
NT-3 Neutrophin 3

Trk Tropomyosin-receptor kinase
p75NTR  b75 neurotrophin receptor

GFAP Glial fibrillary acidic protein
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