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Simple Summary: Brain tumors remain the most common childhood solid tumors, accounting
for approximately 25% of all pediatric cancers. They also represent the most common cause of
cancer-related illness and death in this age group. Recent years have witnessed an evolution in
our understanding of the biological underpinnings of many childhood brain tumors, potentially
improving survival through both improved risk group allocation for patients to provide appropriate
treatment intensity, and novel therapeutic breakthroughs. This review aims to summarize the
molecular landscape, current trial-based standards of care, novel treatments being explored and
future challenges for the three most common childhood malignant brain tumors—medulloblastomas,
high-grade gliomas and ependymomas.

Abstract: Brain tumors are the leading cause of childhood cancer deaths in developed countries.
They also represent the most common solid tumor in this age group, accounting for approximately
one-quarter of all pediatric cancers. Developments in neuro-imaging, neurosurgical techniques,
adjuvant therapy and supportive care have improved survival rates for certain tumors, allowing a
future focus on optimizing cure, whilst minimizing long-term adverse effects. Recent times have
witnessed a rapid evolution in the molecular characterization of several of the common pediatric
brain tumors, allowing unique clinical and biological patient subgroups to be identified. However, a
resulting paradigm shift in both translational therapy and subsequent survival for many of these
tumors remains elusive, while recurrence remains a great clinical challenge. This review will provide
an insight into the key molecular developments and global co-operative trial results for the most
common malignant pediatric brain tumors (medulloblastoma, high-grade gliomas and ependymoma),
highlighting potential future directions for management, including novel therapeutic options, and
critical challenges that remain unsolved.
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1. Introduction

Brain tumors are the most common solid tumors of childhood, accounting for approxi-
mately 25% of all pediatric malignancies, and represent the leading cause of cancer-induced
morbidity and mortality in this age group [1]. With an incidence of approximately 6 per
100,000 children in industrialized society [2], these tumors represent a spectrum of clinically,
pathologically and biologically diverse subtypes which can pose significant challenges in
conducting research and clinical trials, necessitating international collaboration.

Over recent decades, cure rates for selected pediatric brain tumors (most notably
medulloblastoma) have improved [3], predominantly as a consequence of advances in
multiparametric neuro-imaging, neurosurgical techniques, radiation therapy and multi-
agent chemotherapy, together with improved supportive care. However, such survival
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advances are typically offset by a therapy-induced toxicity burden for the patient, with
wide-reaching consequences for the child, their family and society. Moreover, for the
majority of brain tumors, prognosis has remained static for over 30 years despite these
technological improvements.

To overcome this impasse, the pediatric neuro-oncology community has shifted focus
to develop risk-stratified treatment protocols that aim to reduce iatrogenic morbidity
while maintaining outcomes for favorable-risk lesions, and improve cure rates for tumors
refractory to conventional therapy, either through intensification or novel agents. This
strategy has been supplemented by an evolution in our understanding of the molecular
pathogenesis of almost all pediatric brain tumors.

Such molecular advances have identified potential cells of origin, and led to the identi-
fication of multiple biologically distinct subgroups within most brain tumor entities, therein
allowing accurate risk stratification for affected children when incorporated with clinical,
histological and survival data. In addition, oncogenic biological pathways amenable to
manipulation using novel targeted agents have been identified.

This article will provide a summary of the most common malignant pediatric brain
tumors (medulloblastoma, high-grade gliomas and ependymoma) with particular focus
on inherent molecular advancements and potential future directions for management,
including novel therapeutic options.

2. Medulloblastoma
2.1. Background

Medulloblastoma (MB) represents the most common malignant brain tumor in chil-
dren, accounting for approximately 20% of all central nervous system (CNS) tumors [2,4].
It also comprises over 60% of intracranial embryonal tumors, a recently characterized
entity consisting of atypical teratoid rhabdoid tumors (ATRTs), embryonal tumors with
multilayer rosettes (ETMRs), CNS neuroblastoma with FOX2 alteration and malignant
neuroepithelial tumors with BCOR alteration [5].

Arising within the cerebellum, MBs are observed across all age categories but are
most frequently identified at a median age of five years [6]. Demographic, histologi-
cal and prognostic heterogeneity embody MB, while it represents the first brain tumor
where revolutionary global initiatives (such as the Medulloblastoma Advanced Genomics
International Consortium (MAGIC)) have transformed our understanding of the molec-
ular underpinnings of MB pathogenesis, enabling improved patient risk stratification to
potentially influence clinical outcome [7].

2.2. Histopathology

MBs share a primitive embryonal phenotype comprising malignant cells of stereotypic
histological patterns, dominated by neuronal antigen expression [8]. World Health Organi-
zation (WHO) pathological classification systems have historically divided MB into a classic
subtype accounting for 72% of all cases, a desmoplastic/nodular variant of which medul-
loblastoma with extensive nodularity (MBEN) is a subgroup and a large cell/anaplastic
variant which has historically been assigned an adverse prognostic association [5,9].

2.3. Molecular Classification

In the past decade, seminal transcriptomic MB analyses led to a global consensus
establishing the identification of four discrete molecular subgroups, likely arising from dis-
tinct cells of origin—wingless-activated (WNT), sonic hedgehog (SHH), Group 3 and Group
4 MB [10,11]. Further molecular scrutiny of these four groups has now identified somatic
mutations targeting chromatin modification as the leading driver for MB heterogeneity
via epigenetic dysregulation [12]; further subdivisions have now been established [13–16]
(Figure 1).
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Figure 1. Molecular subgroups and in-group subtypes of medulloblastoma; the four globally recognized molecular subgroups of medulloblastoma (WNT, SHH, Group 3 and Group 4) 
are shown, together with the current subtypes within WNT and SHH subgroups, as per [13], and Groups 3 and 4, in accordance with [14,15]. Two WNT-activated subtypes are reported, 
alongside 4 SHH subtypes. Groups 3 and 4 are likely now best considered as a spectrum of 8 different subtypes, each with biological and clinical characteristics. Age-related cartoons 
depict infant, young child (2–5 years), child (5–12 years), adolescent and older (12+ years). Key: OS = overall survival, DN = desmoplastic/nodular histology, LCA = large cell anaplastic 
histology, MBEN = medulloblastoma with extensive nodularity, amp. = amplification, mut. = mutation, del. = deletion, and actvn. = activation.  

Figure 1. Molecular subgroups and in-group subtypes of medulloblastoma; the four globally recognized molecular subgroups of medulloblastoma (WNT, SHH, Group 3 and Group 4) are
shown, together with the current subtypes within WNT and SHH subgroups, as per [13], and Groups 3 and 4, in accordance with [14,15]. Two WNT-activated subtypes are reported,
alongside 4 SHH subtypes. Groups 3 and 4 are likely now best considered as a spectrum of 8 different subtypes, each with biological and clinical characteristics. Age-related cartoons
depict infant, young child (2–5 years), child (5–12 years), adolescent and older (12+ years). Key: OS = overall survival, DN = desmoplastic/nodular histology, LCA = large cell anaplastic
histology, MBEN = medulloblastoma with extensive nodularity, amp. = amplification, mut. = mutation, del. = deletion, and actvn. = activation.
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2.3.1. WNT Activated (WNT)

WNT MBs account for approximately 10% of all MBs, and often arise in older children
with equal gender distribution [11]. Typically occurring in the midline, they frequently
invade the lateral recess of the brainstem through the foramen of Luschka, due to a lower
rhombic lip cell of origin [17,18]. They rarely metastasize and morphology is typically of
the classic variant [8].

Somatic activating mutations in exon 3 of CTTNB1, which encodes B-catenin, are
found in 80–90% of WNT MB, with 85–90% displaying monosomy 6 [19–23]. Mutations in
the adenomatous polyposis coli (APC) gene are common in WNT tumors lacking CTTNB1
mutations [15,24]. Less frequently occurring mutations include TP53, SMARCA4, KMT2D
and DDX3X [11,15,25,26]. TP53 mutation occurs only in a minority of WNT MB, and is not
prognostic, unlike the SHH subtype [27].

2.3.2. Sonic Hedgehog-Activated-Activated (SHH)

SHH MB represents approximately 30% of all cases, presenting predominantly in
a bimodal age distribution; below three years and in young adults [5,8,10]. Originating
from granule progenitor cells SHH MBs localize almost exclusively within cerebellar
hemispheres [17,28]. All nodular desmoplastic MBs belong to the SHH subgroup, although
other histologies can be observed [21,29]. They are most commonly localized at diagnosis
and morphology frequently correlates with underlying genetic abnormalities.

SHH MBs are characterized by activation of the SHH pathway as a result of somatic
or germline mutations in a number of genes including SMO, PTCH1 and SUFU [30]. While
PTCH1 mutations are seen across 30–50% of SHH MBs, SUFU and SMO mutations are
typically seen in infant and adult SHH MBs, respectively [30]. TP53 mutations typically
arise in childhood SHH MBs [27]. Recent epigenomic profiling has identified a further
four clinically distinct granular molecular subclasses of SHH MB, alpha, beta, gamma and
delta [13]. SHH-alpha MBs predominate in children, whereas infants are most commonly
associated with SHH-beta and SHH-gamma, and SHH-delta is typically observed in adult
patients [8].

2.3.3. Group 3

Group 3 tumors account for 25% of all MB cases, predominate in males and occur
most frequently in younger children between the ages of 2 and 5 years [8]. Thought to
arise from neural stem cell origin [31], Group 3 MBs have a short symptom interval and
are frequently metastatic at diagnosis with small primary tumors [11,28,32].

As with Group 4 MB, Group 3 tumors are not characterized by a signature oncogenic
pathway. Nevertheless, Group 3 MBs can be associated with activation of GABAergic and
photoreceptor pathways [33,34]. Broad genomic aberrations are a feature, while recur-
rent somatic nucleotide variants are infrequent [7,12,26]. MYC amplification is the most
common finding (in approximately 17% of cases) commonly occurring within a complex
chromosomal rearrangement at the 8q24 locus, resulting in MYC–PVT1 fusion [7,12,13,34].
The presence of isochromosome 17q, activation of growth factor proto-oncogenes GFI1 and
GFI1B, and amplification of transcription factor OTX2 are also observed [13,15,35].

2.3.4. Group 4

Group 4 tumors represent 35% of all MBs, have a male predisposition and are the
dominant molecular subgroup in children of 3 to 16 years of age [8,36]. Similarly to Group
3 MB, they arise in the fourth ventricle and are frequently metastatic at diagnosis, but have
a longer symptom interval [11,32].

Genetic abnormalities seen in Group 4 tumors include inactivating mutations of the
histone demethylase KDMS6A and histone modulator PRDM6, tandem duplications of
SNCAIP and amplifications of CDK6 and MYCN [7,12,25,26,33]. Chromosomal copy num-
ber variations include deletion of chromosome 8, 11 or 18p, gain of chromosome 1 or 17q
and isochromosome 17q, the most common cytogenetic abnormality in the subgroup [37].
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2.4. Prognostic Factors

Typical risk-stratification systems for MB incorporate age, extent of tumor resection,
and metastatic status to define standard and high-risk cohorts, in turn determining therapy
administered. Standard-risk patients are older than 3 years, have undergone gross or near
total excision (below 1.5 cm2 of residual tumor) with localized disease while remaining
patients are classified as high risk. However, these and historical prognostic markers (such
as anaplastic morphology) may indeed be surrogates for the underlying MB molecular
subgroup, suggesting future stratifications require further refinement.

Pediatric patients with standard-risk WNT-activated MB have an excellent prognosis
with a 5 year progression-free survival above 90% following standard therapy. SHH MB
demonstrates a range of outcomes. Infant SHH MBs beta and gamma have disparate
outcomes, with beta conferring a poor prognosis, and gamma good outcomes [38,39]. TP53
germline positive SHH MBs confer a poor prognosis with a post-therapy 5 year survival
of just 30–40%, particularly when associated with MYCN and GLI2 amplification [40],
whereas wildtype SHH MB are associated with a favorable outcome with a 5 year survival
of approximately 80% [8,27,30].

Group 3 and 4 MBs also demonstrate variable outcomes, influenced by inherent molec-
ular heterogeneity spanning both groups [14]. For example, Group 3 MB generally carry a
poor prognosis, particularly MYC amplified cases which are often refractory to conven-
tional therapy [41–43], while Group 4 MBs demonstrate a variable prognosis, incorporating
favorable-risk MBs harboring chromosome 11 loss or chromosome 17 gain [14]. Infantile
Group 4 MBs are infrequent but carry a poor prognosis [44].

2.5. Current Management/Clinical Trials

The sequential trial-based addition of adjuvant craniospinal radiotherapy and com-
bination chemotherapy to maximal safe tumor resection has improved survival rates for
standard-risk patients immeasurably over the last 50 years and is now the accepted stan-
dard of care (Table 1). However, such improved cure rates are achieved at a significant
burden to the survivor, with most experiencing chronic neurocognitive and neuroendocrine
morbidities [45,46]. While standard-risk patients have benefited from a trial-validated re-
duction in craniospinal radiotherapy intensity [47] (Table 1), high-risk patients continue to
require high-dose radiotherapy (36 Gy) and intensified chemotherapy regimens to maintain
a 5 year progression-free survival (PFS) of up to 70% [48,49] (Table 1).

Current trial designs utilize refined patient risk stratifications which incorporate the
additional knowledge of molecular MB subgroups. Open standard-risk studies including
the Children’s Oncology Group (COG) ACNS1422 (NCT02724579), the North American
SJMB12 (NCT01878617) and the European SIOP PNET5 trial (NCT02066220) are assessing
whether treatment intensity can be reduced without compromising survival rates for
favorable-risk MBs (particularly WNT-activated MBs).
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Table 1. Multinational collaborative clinical trials in pediatric medulloblastoma, high-grade gliomas and ependymoma, published since 2000.

Year Trial Treatment Strategy Inclusion Criteria No.
Patients Results

Medulloblastoma

1992–2000 SIOP PNET III
[50]

Randomization
Arm 1: RT alone (35 Gy CSI + 20 Gy PF boost)
Arm 2: 4 cycles alternating Carbo/VP16 and Cyclo/VP16 followed by RT

Age 3–16 yrs
Standard-risk MB 179 5 yr EFS 59.8% vs. 74.2%

RT + chemotherapy superior

1996–2000 COG A9961
[3]

Radiotherapy: 23.4 Gy CSI + 32.4 Gy PF boost + weekly VCR
Continuation chemotherapy randomization:
Arm 1: CCNU/Cis/VCR
Arm 2: Cis/Cyclo/VCR

Age 3–21 yrs
Standard-risk MB 421 10 yr EFS 74% vs. 78%

None superior

2001–2006
HIT-SIOP
PNET-4

[51]

Radiotherapy randomization
Arm 1: HFRT (36 Gy CSI, 24 Gy PF boost, 8 Gy TB boost)
Arm 2: STRT (23.4 Gy CSI, 30 Gy PF boost)
Continuation chemotherapy
8 cycles Cis/CCNU/VCR

Age 4–<22 years
Standard-risk MB 340 5 yr EFS 77% vs. 78

None superior

2004–2016 COG ACNS0331
[52]

Radiotherapy
Children aged 3–7 years randomized:
Randomization 1: CSI: Low-dose (LDCSI) 18 Gy vs. Standard dose
(SDCSI) 23.4 Gy
Randomization 2: Involved field RT boost vs. Standard volume boost
Children ≥ 8 yrs receive CSI 23.4 Gy, then randomized:
Randomization 3: Involved field RT boost (IFRT) vs. Arm 2: Standard
volume boost (PFRT)
Continuation chemotherapy
9 cycles (6 × CCNU/Cis/VCR, 3 × Cytoxan/VCR)

Age 3–<21 yrs
Standard-risk MB 513

5 yr EFS/OS
LDCSI 72.1%/78.1%
SDCSI 82.6%/85.9%
LDCSI higher event rates
and worse
survival
PFRT 80.8%/85.2%
IFRT 82.2%/84.1%
None superior

1990–1996 POG 9031
[49]

Arm 1: 3 cycles Cis/VP16, followed by RT (CSI 35.2–44.0 Gy, PF dose
53.2–54.4 Gy)
then 7 cycles VCR/Cyclo continuation chemotherapy
Arm 2: RT (CSI 35.2–44.0 Gy, PF dose 53.2–54.4 Gy) followed by 3 cycles
Cis/VP16
and 7 cycles VCR/Cyclo continuation chemotherapy

Age 3–18 yrs
High-risk MB 224

5 yr EFS/OS:
66%/73.1% vs. 70%/76.1%
None superior



Cancers 2021, 13, 6099 7 of 28

Table 1. Cont.

Year Trial Treatment Strategy Inclusion Criteria No.
Patients Results

Medulloblastoma

1996–2007 SJMB96
[48]

Radiotherapy
Risk Stratified: SR: 23.4 Gy, 36 Gy PF dose and 55.8 Gy TB dose;
HR: 36–39.6 Gy and 55.8 Gy TB dose (50.4 Gy dose to metastatic sites)
Chemotherapy
4 × Cis/Cyclo/VCR with stem cell rescue

Age 3–20 yrs
Standard and High-risk MB 134

5 yr EFS/OS:
SR 83%/85%
HR 70%/70%

2007–2017 SJYC07
[38]

Induction chemotherapy
LR and IR: MTX/VCR/Cis/Cyclo
HR: MTX/VCR/Cis/Cyclo + Vinblastine
Consolidation therapy
LR: 2 cycles Carbo/Cyclo/VP16
IR ≥ 12 mths old: Focal RT (54 Gy TB dose); IR < 12 months old: 2 ×
cycles Carbo/Cyclo/VP16
HR < 3 years old: Topo/Cyclo (8 weeks); HR ≥3 years old: could opt for
CSI (23.4–39.6 Gy)
Continuation chemotherapy
All Groups: 6 cycles oral Cyclo/Topo/Erlotinib

Age < 3 yrs newly diagnosed
MB
OR

Age 3–5 yrs
-non-metastatic

-no high-risk features

81

LR: 1 yr EFS 78.3%, (accrual
suspended as EFS below
stopping rule).
5 yr EFS/OS:
LR 55.3%/85.9%
IR: 24.6%/52.8%
HR: 16.7%/41%

2013–2016 ACNS1221
[39]

Induction chemotherapy
3 cycles Cyclo/VCR/MTX/VP16/Carbo
Reassessment
CR/CCR: No further treatment
PRD: Second look surgery + 2 cycles Cyclo/VCR/Carbo/VP16

Age < 4 yrs
Localized ND or MBEN 25

2 yr PFS/OS 52%/92%
Failed to achieve 2 yr PFS
target of 90%; study closed
early

2007–2018 ACNS0332
[53]

Randomization
Arm 1: Standard treatment (CSI 36 Gy, PF 55.8 Gy + 6 cycles
Cis/Cyclo/VCR maintenance)
Arm 2: Standard treatment + RT with Carbo
Arm 3: Standard treatment + isotretinoin during maintenance
Arm 4: Standard treatment + RT with Carbo + isotretinoin during
maintenance

3–21 yrs
High-risk MB 261

Survival advantage for Grp 3
MB receiving RT with
carboplatin.
5 yr EFS/OS:
73.2%/82.3% vs.
53.7%/63.7%
Isotretinoin therapy futile
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Table 1. Cont.

Year Trial Treatment Strategy Inclusion Criteria No.
Patients Results

High-Grade Gliomas

2004–2005 ACNS0126
[54]

RT (HGG 54 Gy, DIPG 59.4 Gy) + concomitant low-dose TMZ,
followed by 10 cycles of higher dose TMZ continuation therapy Age 3–≤22 yrs HGG = 107

DIPG = 63

1 yr EFS/OS 14%/40%
No improvement vs.
historical
controls

2005–2007 ACNS0423
[55]

RT (GTR 54 Gy, STR 59.4 Gy, spinal cord lesions 50.4–54 Gy) + concomitant
low-dose TMZ,
followed by up to 6 cycles of higher dose TMZ + CCNU continuation

Age 3–≤22 yrs 108 3 yr EFS/OS 22%/19%
Improved vs. ACNS0126

2007–2008 ACNS0222
[56] RT (54 Gy) with motexafin-gadolinium as a potent radiosensitizer Age ≤ 21 yrs

Unifocal DIPG 60 1 yr EFS/OS 18%/53%
No Improvement

2011–2015 HERBY
[57]

Randomization
Arm 1: RT (54 Gy) + low-dose TMZ, continuation high-dose TMZ 12 months
Arm 2: RT (54 Gy) + low-dose TMZ + Bev, continuation high-dose
TMZ + Bev 12 mnths

Age ≥ 3–≤18 yrs
Non–brainstem 116

1 yr median EFS 11.8 vs.
8.2 mnths
No improvement

2014–2020 BIOMEDE 1
[58]

Randomization
Arm 1: RT + Everolimus
Arm 2: RT + Dasatinib
Arm 3: RT + Erlotinib

Age 6 mths–25 yrs
DIPG 193

Median OS
Arms 1, 2, 3
10.9, 9.5 and 9 mnths
No improvement

Ependymoma

2003–2007 ACNS0121
[59]

Stratum 1: Completely resected differentiated, ST ependymoma undergo
observation
Stratum 2: Incompletely resected ependymoma undergo chemotherapy,
second surgery and RT
Stratum 3: Near-total or macroscopic GTR undergo conformal RT
Stratum 4: Microscopic GTR undergo conformal RT, excluding
differentiated, ST lesions

Age 1–21 yrs 356

5 yr EFS/OS
Strata 1: 61%/100%
Strata 2: 37.2%/70.2%
Strata 3: 67%/83.3%
Strata 4: 70%/88.3%

2010–2017 ACNS0831
[60]

PF tumours gross/near total resection: randomization
Arm 1: RT alone
Arm 2: RT + 4 cycles VCR/Cis/Cyclo/VP16

Age 1–21 yrs 451 3 yr EFS 71% vs. 80%
? chemotherapy superior

RT: radiotherapy; CSI: craniospinal irradiation; PF: posterior fossa; Carbo: carboplatin; VP16: etoposide; Cyclo: cyclophosphamide; MB; medulloblastoma; EFS: event-free survival; VCR; vincristine; CCNU:
lomustine; Cis: cisplatin; HFRT: hyper-fractionated radiotherapy; STRT: standard radiotherapy; TB: tumor bed; OS: overall survival; SR: standard risk; HR: high risk; MTX: methotrexate; LR: low risk; IR:
intermediate risk; Topo: topotecan; CR: complete response; CCR: continuous complete response; PRD: persistent residual disease; Ifos: ifosfamide; GTR: gross total resection; DIPG: diffuse intrinsic pontine
glioma; yrs: years; mnths: months.
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Caution regarding de-escalation of therapy for WNT-activated MBs is evident from
the premature termination of trial NCT02212574 which abandoned craniospinal irradi-
ation for these patients, and a recent retrospective analysis of 93 WNT-activated MBs
where relapse was associated with a reduction in the cumulative dosing of maintenance
chemotherapy [61].

The PNET5 trial is also assessing the radio-sensitizing effect of carboplatin for non-
WNT MB, while SJMB12 is the addition of targeted drug therapy in conjunction with
conventional agents for specific molecular subgroups (SHH and high-risk Group 3 and
4 MBs). A European biomarker-driven phase III trial for newly stratified high-risk MB
opened to recruitment in 2021. Of interest, post-operative residual tumor is not considered a
high-risk feature in this study. The trial incorporates a double-randomized design, compar-
ing the efficacy of hyper-fractionated radiotherapy and additional high-dose chemotherapy
against standard radiotherapy, followed by a comparison of multimodal continuation
chemotherapy versus single agent temozolomide (EudraCT Number: 2018-004250-17).

Infant MB represents a distinct, intensive chemotherapy-only treatment group [29].
Outcomes for infants with nodular desmoplastic SHH MB can be excellent, although it
appears that this requires the inclusion of intrathecal methotrexate in addition to sys-
temic therapy [38,39,62,63]. The COG ACNS0334 study of non-nodular desmoplastic MBs,
incorporating both induction and high-dose tandem consolidation cycles of chemother-
apy reported 100% survival for metastatic SHH MBs and a survival advantage for the
incorporation of methotrexate at induction in Group 3MBs [64].

2.6. Novel Therapies

Advances in molecular understanding of MB pathogenesis have also provided the
opportunity for the application of subgroup-specific novel targeted therapeutics, notably
for SHH MBs. Vismodegib and sonidegib are SMO inhibitors that have shown objective
responses in pediatric recurrent SHH MB [65–71]. For most patients, such responses
were not sustained, as a result of mutations downstream from SMO re-activating the
pathway [30]. Another important consideration of this therapy is the association with
premature growth plate fusions which has led to modification of the current SJMB12
study [70–72]. Agents such as silmitasertib, targeting SMO downstream mutations in the
SHH pathway, are under evaluation in relapsed SHH MB (NCT03904862). GLI inhibition by
arsenic trioxide is another area of drug development in SHH MB and early phase pediatric
tumor trial data are awaited (NCT00024258).

For non-SHH tumors, the aforementioned SJMB12 study is evaluating the addition
of pemetrexed and gemcitabine to conventional chemotherapeutic agents for high-risk
Group 3 and 4 MBs (large cell anaplastic histology, metastatic disease or MYC/MYCN
upregulation) after promising high throughput in vitro drug assay analysis [73]. The
CDK4/6-cyclin D-Rb pathway was identified as a potential therapeutic target in xenograft
models for non-WNT MB [74]. Other proposed approaches include HDAC inhibitors, PI3K
inhibition and BET-bromodomain inhibition to downregulate MYC expression in Group
3 MBs, and LSD1 inhibition of GFI1/GFI1B overexpression when present in Group 3 and
4 MBs [75–78].

Finally, despite the challenge posed by the lack of immunogenic targets in CNS tumors,
immunotherapy has been proposed as a potential treatment option in relapsed/refractory
MB [79]. Anti-EPHA2, HER2 and IL-13Rα2 chimeric antigen receptor T-cell (CAR-T)
therapy has been shown to successfully treat murine Group 3 MBs [80] and early phase
trials in children have commenced (NCT03500991, NCT04661384).

3. High-Grade Gliomas
3.1. Background

This group encapsulates all malignant lesions of glial origin. Alongside embryonal
tumors, pediatric high-grade gliomas (pHGGs) are one of the most common malignant
tumor groups of the childhood central nervous system, with a collective incidence of 1.1 per
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100,000 children [2]. Despite a paradigm shift in our understanding of pHGG molecular
subgrouping being distinct from adult counterparts, and some therapeutic successes for
particular entities (such as infant HGG), little progress has been made over recent decades
to improve the dismal prognosis; pHGGs account for over 40% of all childhood brain
tumor deaths [81]. As a result, they remain the focus of several experimental therapeutic
research teams.

3.2. Histopathology

The vast majority of pHGGs can be classified as anaplastic astrocytomas (WHO Grade
III), or glioblastoma (Grade IV). Historically, a minority of diffuse intrinsic pontine gliomas
(DIPGs) were morphologically consistent with diffuse astrocytoma (Grade II), likely re-
sulting from sampling bias. However, the identification of pathognomonic oncogenic
mutations in DIPG (particularly in histones 3.1 and 3.3), together with established malig-
nant clinical characteristics, resulted in an amendment to current WHO nomenclature, with
DIPGs now classified as diffuse midline gliomas with H3K27 mutation (Grade IV) [5].

3.3. Molecular Classification

Clear biological distinctions between pHGGs and adult counterparts are now estab-
lished [82,83], providing a rationale for the failure of many novel therapies derived from
adult tumor research. Molecular heterogeneity within pHGGs is also well described [84–91].
The largest molecular meta-analysis of pHGGs published to date, incorporating genomic,
epigenomic and transcriptomic profiling has now identified at least nine pHGG subgroups
with inherent biological and/or clinical characteristics such as age, tumor location and
prognosis [90]. These subgroups express recurrent signature aberrations, which may lead
to further refinement of subdivisions in the future (Figure 2).

The predominant pHGG subgroups express mutations of histones HIST1H3B (H3.1)
at position K27, H3.2 (rarely) and H3F3A (H3.3) at positions K27 and G34 [90,92]. H3K27M
pHGGs are characterized biologically by aberrant expression resulting from loss of trimethy-
lation at lysine 27 on Histone 3 [93,94], and clinically by their midline location (pons,
midbrain, thalamus, spina cord) and younger patient age [90,91]. H3.3 G34 subgroup
pHGGs are typically located in hemispheric locations, impacting adolescent and older
age groups [90,91,95]. The midline location may contribute to the significantly poorer
prognosis reported in K27 pHGGs versus G34 counterparts [85,90,91,95], although the
mutations alone have been reported as independent prognostic markers in multivariate
analysis [90]. Secondary aberrations within the pHGG histone subgroups have also been
identified. TOP3A, CCND2, PDGFRA, PPM1D, TP53 and FGFR1 mutations are more fre-
quently identified in H3.3K27 pHGGs, while H3.1K27 tumors often demonstrate PI3K and
ACVR1 mutations and H3.3 G34 pHGGs typically contain TP53 and ATRX mutations [90].

Other subgroups include the IDH mutant pHGGs, associated with a frontal location,
an adolescent age range and improved prognosis, hypermutant pHGGs as seen in DNA
replication repair deficiency disorders, infant HGGs characterized by NTRK mutations
and pleomorphic xanthoastrocytoma-like pHGGs and BRAF mutated pHGGs, which may
represent low-grade lesions that have undergone malignant transformation [90,91,95].
The latter two subgroups may be amenable to novel targeted inhibitor agents and often
demonstrate good responses to therapy and improved survival outcomes. A final ‘wild-
type’ subgroup comprises pHGGs harboring mutations in genes such as NF1, MYCN,
EGFR, and CDK6 [90].
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3.4. Prognostic Factors

Prior to the advent of molecular subclassification as described above, the two leading
clinical prognostic factors were the extent of surgical resection and tumor histological grade
with incomplete resection and Grade IV HGGs conferring a dismal prognosis [96,97]; this
continues to be the case today but is supplemented by molecular stratification also. Some
studies have also reported a prognostic influence of methylguanine-DNA-methyltransferase
(MGMT) expression in the efficacy of temozolomide therapy and patient outcome [54,98].

3.5. Current Management/Clinical Trials

The global standard of care for pHGG, the Stupp regimen, stems from adult glioblas-
toma trial work, which demonstrated that the addition of the alkylating agent temozolo-
mide alongside and after focal radiotherapy, improved progression-free and overall patient
survival [99]. Given the molecular disparity between adult HGG and their childhood coun-
terparts, it is therefore unsurprising that temozolomide in a Children’s Oncology Group
(COG) pHGG trial analysis (ACNS0126) did not improve outcome compared with previ-
ous trials using varied adjuvant chemotherapies [54] (Table 1). However, it remains the
standard of care because of the relatively low toxicity profile in comparison to alternative
regimens.

The COG ACNS0423 trial noted a marginal outcome benefit for the addition of lo-
mustine with temozolomide [55]; however, it was unclear if this was specific to certain
molecular subgroups, while the myelosuppressive toxicity of the regime often proved re-
strictive. The German Hirntumor (HIT) co-operative group have also reported an improved
survival rate for a subset of children with glioblastoma achieving gross total resection com-
pared to historical controls, using an intensified chemotherapy regime alongside and after
RT [100].

No definitive therapeutic breakthrough has been made in the treatment of DIPG
(now diffuse midline glioma, H3K27 mutant), such that the standard therapy remains
radiotherapy alone (Table 1). Modern, multinational collaborative trials, such as the
Innovative Therapies for Children with Cancer (ITCC) BIOMEDE study, are developing
a more nuanced approach alongside focal RT, utilizing novel inhibitor therapy to target
corresponding molecular aberrations present in the lesion (dasatanib, everolimus, and
erlotinib) (NCT02233049). Interim overall survival analysis of 193/250 randomized patients
concluded that a preferential agent was unlikely to be demonstrated, with survival rates
comparable with RT alone, albeit everolimus had the most favorable toxicity profile [58].

3.6. Novel Therapies

The paradigm shift in understanding of the molecular heterogeneity of pHGG, to-
gether with the failure of conventional therapeutics to significantly improve outcomes for
several years, has shifted focus towards developing novel agents that manipulate the epige-
netic and genomic aberrations inherent in pHGG molecular subgroups, immunotherapies,
and the development of alternative drug administration routes to penetrate the blood–
brain barrier such as convection enhanced delivery for diffuse midline glioma H3K27
mutant/DIPG [92,101–105].

Success of mutational target inhibition in specific pHGG subgroups gives credence to
this new therapeutic standpoint. For pHGGs with BRAF V600E mutations, BRAF inhibitor
(BRAFi) activity has been demonstrated as salvage therapy [106–109]; international co-
operative studies are recruiting (NCT03919071). Similar findings of efficacy have been
made with neurotrophic tyrosine receptor kinase inhibitor agents for infant HGGs [110,111]
and immune checkpoint inhibition in hypermutant pHGGs resulting from replication repair
deficiency disorders [112–115]. Follow-up co-operative early phase trials are now open
(NCT04267146, NCT04323046 and NCT04655404).

With respect to the other main subgroups, targeting histone modification is a ther-
apeutic research focus for the H3.1–3.3 pHGG subgroup. Histone deacetylase inhibitors
(HDACi) such as panobinostat, vorinostat and valproic acid have been postulated to im-
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prove the therapeutic landscape for this subgroup following successful HDACi in vitro
pHGG studies, but translational results to date have proved disappointing [116–119]. Other
agents being looked at for this subgroup include ACVR1/ALK inhibitors [120,121] and the
imipridones incorporating agents such as ONC201 [122–124].

For the IDH mutant pHGG subgroup, blood–brain barrier penetrant IDH inhibitors
have been developed for glioma trials (NCT02273739, NCT03343197, NCT02073994 and
NCT04056910). These may be specific to IDH-1 (ivosedinib), IDH-2 (enasidenib) or both (vo-
rasidenib). In addition, the use of PARP (poly-adenosine 50-diphosphate-ribose) inhibitors
alongside temozolomide as a radiosensitizer is being explored [125].

Immunotherapeutic strategies other than checkpoint blockade are also being
evaluated in pHGGs, including cancer peptide vaccine therapy with antigens such as
Ephrin A2 (EphA2), interleukin 13 receptor alpha 2 (IL13Ra2), survivin and HLA-A2
(NCT01130077) [126–128], autologous dendritic cell vaccine therapy [129], and chimeric
antigen receptor (CAR)-T therapy where studies are recruiting (anti-IL13aR2; NCT02208362,
anti-GD2; NCT04196413, anti-B7 H3; NCT04185038).

4. Ependymoma
4.1. Background

Ependymoma is the second most common malignant brain tumor entity in children,
after medulloblastoma, representing approximately 10% of all childhood CNS tumors [130].
Most cases present in patients aged below five years and have a male predominance (male:
female ratio 0.23: 0.17) [130,131]. Although able to arise anywhere in the neuraxis, over
90% of pediatric ependymomas are intracranial (IC) in origin. Of these, two-thirds occur
in the posterior fossa (PF), with the remaining one-third located in the supratentorial
(ST) compartment [132]. Leptomeningeal metastasis is uncommon, reported in 2–20% of
cases [133,134].

No inherited disorders are consistently reported to predispose to IC pediatric ependy-
momas. Neurofibromatosis type 2 appears to be associated with the development of spinal
ependymomas but typically in the adult population [135].

4.2. Histopathology

Current histological classification of ependymoma remains according to the current
WHO grading scheme, resulting in four main histological subgroups: subependymoma
and myxopapillary ependymoma (grade I), classic (grade II) and anaplastic (grade III) [120].
Subependymoma typically arise in the ventricles of adults, while myxopapillary ependy-
moma occur exclusively in the spine [5,136]. Consequently, classic and anaplastic variants
typically account for all pediatric IC ependymomas. Morphologically they are both charac-
terized by the tumor cell formation into true rosettes (around a canal) or pseudorosettes
(around a blood vessel) while anaplasia is signified by increased mitotic figures, necrosis,
microvascular proliferation, and an increased an increased cellular nucleus/cytoplasmic ra-
tio [5]. Common immunohistochemical findings include positive staining for glial fibrillary
acid protein (GFAP), expression of EMA, S100 and vimentin [5,137].

The utilization of histological grading as a prognostic marker has failed to consistently
be of value, in part due to the subjective nature of grade assignation and tumor heterogene-
ity. These factors, alongside improved understanding of the genomic landscape of pediatric
ependymoma, has led to the Consortium to Inform Molecular and Practical Approaches to
CNS Tumor Taxonomy (cIMPACT) to recommend that the WHO adopt a new, integrated
histological/biological classification system for ependymomas [138].

4.3. Molecular Classification

Genomic and methylomic profiling of ependymoma has revealed nine distinct molec-
ular subtypes, four of which account for most pediatric IC ependymoma across the PF
(PF-A and PF-B) and ST (ST-ZFTA and ST-YAP) compartments [139] (Figure 3).
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Figure 3. Predominant molecular subtypes of pediatric intracranial ependymoma. Posterior fossa
and supratentorial childhood ependymomas are shown, further categorized into four in-group
subtypes; PF-A, PF-B, ZFTA-fused and YAP1-fused. The clinical and biological characteristics of these
subtypes are shown, in accordance with [59,120,139–153]. Nine molecular subtypes of ependymoma
are reported but the remaining subtypes occur in either the spinal cord (spinal subependymoma,
spinal myxopapillary ependymoma, spinal ependymoma) or the adult brain (subependymoma:
PF and ST) so are not depicted in this figure. Age-related cartoons depict infant, young child
(2–5 years), child (5–12 years), adolescent/adult (12+ years). Key: WHO = World Health Organization,
CIN = chromosomal instability, GTR = gross total resection, IR = incomplete resection.

PF-A ependymomas are biologically characterized by epigenetic dysregulation of
DNA methylation and histone modification, often accompanying lack of H3K27 trimethy-
lation [147,149,150]. With the exception of some genomic imbalances, namely 1q gain
and 6q loss, they typically demonstrate a balanced genome [139,147,149]. They are most
common in infants and young children, have a tendency towards infiltration, dissemi-
nation and consequent poor prognosis [153]. Due to their predominant lateral location
and inherent invasiveness, gross total resection (GTR) is often difficult to achieve and
therefore relapse rates are high [154]. PF-B ependymomas are characteristically enriched
with numerous cytogenetic abnormalities and are more common in adolescents and young
adults [139,152,155]. They originate in the midline yet are often amenable to surgical
resection, have a low metastatic potential and therefore have a superior outcome to PF-A
tumors [139,152,155]. Recent methylation profiling work to further categories these two PF
subgroups have reported two major subgroups, nine minor PF-A subtypes and five PF-B
subgroups displaying variable clinical and genetic heterogeneity [140,156].
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Greater than 70% ST ependymomas contain a zinc finger translocation associated
(ZFTA, previously C11Orf95) gene fusion, most commonly RELA-ZFTA and are termed
ST-RELA or, more recently ST-ZFTA [139,143,151]. This subtype is found in children and
adults, but rarely infants and is often located in frontal or parietal lobes, often with intra-
tumoral hemorrhage, cysts or necrosis [157]. ST-YAP is the remaining molecular subgroup,
characterized by the fusion of the YAP1 oncogene with MAMLD1 [142]. ST-YAP tumors
typically arise in ventricular or periventricular locations among infants [142]. Up to 15% of
ST ependymoma may not harbor a RELA or YAP1 fusion [158].

4.4. Prognostic Factors

Interest remains in identifying prognostic markers to aid patient risk stratification for
future ependymoma trial design to improve upon the relative poor long-term outcomes
that exist. Akin to medulloblastoma, several clinical and histological putative markers
(location, age, tumor grade) have been rendered obsolete by the identification of molecular
subgrouping.

The most consistent clinical marker is the extent of surgical resection, with some
studies reporting a 60% difference in survival between cases of complete and incomplete
tumor resection [59,120,132,159–162]. The positive prognostic effect of complete excision is
maintained across molecular subgroups [120,139].

The infiltrative nature, localization and predisposition to metastasis suggests PF-A
ependymomas should exhibit a poorer prognosis when compared with PF-B counterparts,
an assumption supported by a retrospective analysis 820 patients with PF ependymoma
across four independent cohorts [161]. The recent prospective Children’s Oncology Group
(COG) ACN0121 clinical trial, however, found no difference between PF-A and PF-B patient
survival, although likely reflecting a paucity of PF-B cases [59]. The study did identify an
adverse association with 1q gain in PF-A cases, with survival as low as 30% despite tumor re-
section and radiotherapy administration [59]. As stated above, tumor gain of chromosome
1q and loss of chromosome 6q are the most commonly observed chromosomal imbalances
in ependymoma and appear adverse prognostic factors [59,120,139,141,144–146,148,152]. A
recent retrospective molecular profiling study of 212 primary PF-B ependymomas identified
loss of 13q as a potential novel adverse marker [140].

A retrospective cohort study of 122 ST ependymomas identified ZFTA/RELA fusion
as a poor prognostic marker, regardless of the attainment of resection status, with 10 year
PFS and overall survival (OS) of approximately 20% and 50%, respectively [139]. The same
study conversely identified excellent ST-YAP1 survival rates of 100% [139]. Nevertheless,
data from the ACNS0121 clinical trial failed to show any adverse prognostic implication for
ST molecular subgroups, again potentially influenced by the case numbers involved [59].

4.5. Current Management/Clinical Trials

The globally accepted standard for pediatric IC ependymomas is maximal, safe surgi-
cal resection followed by involved field adjuvant radiotherapy (RT), dosed at 54–59.4 Gy,
founded from a 2009 St Jude’s Children’s Research Hospital single-center study of 107 chil-
dren, demonstrating a 7 year PFS of 77% and OS of 85% [160]. Exceptions to this are in
metastatic cases where craniospinal radiotherapy is typically utilized for older children,
and infant IC ependymomas, where a chemotherapy only strategy is reserved in order to
avoid or delay radiotherapy to the developing brain, with eligibility thresholds of 12 to
18 months for PF tumors and up to 3 years for ST tumors.

Concerns regarding radiotherapy-induced neurotoxicity in young children have re-
sulted in IC ependymoma being the most common pediatric tumor treated with proton
beam radiotherapy. By reducing radiation exposure to healthy tissue while delivering
therapeutic doses, this modality delivers comparable disease control to modern photon
radiotherapy without unexpected toxicity [163–165]. Data continue to be collated on latent
toxicity [164].
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Recent, large international co-operative IC ependymoma trials have been designed
to validate the findings of the 2009 St. Jude’s study, evaluate the utility of an aggres-
sive surgical approach, and verify a therapeutic role for chemotherapy either pre or
post-radiotherapy (Table 1), since historical data have proven contradictory and incon-
clusive. The North American CCG-9924 study reported a PFS benefit from immediate
post-operative chemotherapy prior to radiotherapy in patients where over 90% of the
tumor has been resected [166]; however, this approach has been rebutted by other trial
groups [167]. Similarly, outcomes from chemotherapeutic, radiation-sparing strategies for
infants have been inconsistent and ultimately disappointing for the majority of children,
with only a minority ultimately sparing radiation [168–171].

The COG ACNS0121 trial confirmed the efficacy of an aggressive surgical approach
followed by immediate post-operative radiotherapy, even for children below 3 years of
age when compared to historical controls [59]. Long-term follow-up of these younger
patients is eagerly awaited. The impact of post-operative chemotherapy to facilitate second-
look surgery could not be determined. The COG ACNS0831 study followed on from
ACNS0121, with the randomized addition of continuation chemotherapy (vincristine,
cisplatin, cyclophosphamide and etoposide) for children treated with adjuvant focal RT
following a complete or near total resection [60]. An interim “as treated” analysis of patients
was undertaken due to significant non-compliance in patients randomized to receive
chemotherapy. This reported a survival advantage for patients receiving chemotherapy
(3 year EFS 80% vs. 71%; 1-sided p-value = 0.0121) [60].

The open phase II/III SIOP-Europe Ependymoma II trial (NCT02265770) has design
similarities with the COG studies, making compliance with post-irradiation chemotherapy
randomization imperative to validate the findings from ACNS 0831. Through patient
allocation to three strata, the trial also attempts to evaluate the value of pre-radiotherapy
chemotherapy and a 8 Gy radiotherapy boost in cases of incomplete resection, and the
addition of a of a histone de-acetylase (HDAC) inhibitor, sodium valproate, for infants
receiving one year of conventional multiagent chemotherapy.

4.6. Novel Therapies

Several biological models and patient derived xenografts have been developed to
recapitulate ependymoma subgroups in order to identify new therapeutic targets and test
novel therapies [172–174]. High throughput drug screening in murine models of ZFTA
fusion-negative supratentorial ependymoma, characterized by the Ephb2 oncogene identi-
fied 5-fluoracil (5-FU) as a potential active drug against this subtype [174,175]. Fibroblast
growth factor receptor inhibitors have also been shown to have activity against patient
derived ependymoma cell models and demonstrate efficacy in the clinic [176]. As detailed
above, the use of histone deacetylase inhibitors as differentiation therapy is currently
under evaluation in the current SIOP-Europe trial, following in vitro analyses [177,178].
Similarly, the phase I/Ib COZMOS trial is evaluating the DNA methyltransferase inhibitor
5′Azacitidine in combination with carboplatin, on the premise that inhibition of aberrant
DNA methylation will have therapeutic benefit (NCT03206021). Other novel therapies be-
ing explored include chimeric antigen receptor T-Cells (HER2; NCT03500991), based on en-
couraging pre-clinical murine work [80] and metronomic antiangiogenic therapy [179,180].

5. Conclusions

This review exposes the need for the pediatric neuro-oncology community to address
the disparity that has developed between advances at the bench compared to the bedside.
The potential for an era of biology driven patient care clearly exists yet, at present, interna-
tional clinical trials struggle to keep pace with the scientific progress made to date. Indeed,
many are being rendered outdated before they open to recruitment when evaluated against
current molecular advances. This challenge is not unsurmountable and indeed should be
embraced as recent years have demonstrated a paradigm shift in our understanding of the
molecular pathogenesis across principal malignant brain tumor groups, therein serving as
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the foundation for developing both risk stratification systems and novel agents as part of
the next generation of clinical trials. Nevertheless, results from the review highlight that
the statistical design, regulatory infrastructure and ultimately funding of such studies will
need urgent consideration to achieve these objectives.

5.1. Clinical Trials and Therapeutic Protocols

We have shown that for pediatric medulloblastoma, the four established intrinsic
molecular subgroups have now been superseded by the identification of up to 14 subtypes,
each demonstrating a disparate corresponding clinical profile. In contrast, most treatment
protocols over the past 20 years have continued to treat MBs with the historical backbone
of craniospinal radiotherapy and multiagent chemotherapy, only recently tailoring therapy
intensity according to WNT/non-WNT subgrouping, without particular focus on the
three other subgroups. Encouragingly, open international trials are now attempting to
stratify patients and adapt therapy according to molecular diversity. For example, the
SIOP-Europe PNET5 study is following a risk-adapted treatment stratification according to
low and high-risk WNT subgroups, the SHH-alpha MB subtype (which demonstrate TP53
mutations), standard-risk biological profiles (including MYCN amplified Group 4 MB)
and children with a germline mutational profile (NCT02066220). The SJMB12 trial, in
addition to evaluating treatment de-escalation for WNT-subgroup patients, is assessing
the addition of smoothened inhibitor Vismodegib for SHH MB, and the incorporation of
gemcitabine and pemetrexed for high-risk Group 3 and 4 MB patients (NCT01878617).
Finally, the SIOP-Europe high-risk medulloblastoma trial is using molecular screening
to identify appropriate cases for increased-intensity treatments, including MYC/MYCN
amplification (excluding MYCN amplified Group 4 MB) and SHH-alpha MB (EudraCT
Number: 2018-004250-17).

Attempts to integrate molecular pathogenesis to inform on therapeutic stratification
for most childhood high-grade gliomas or pediatric intracranial ependymoma unfortu-
nately lag significantly behind the progress observed with medulloblastoma. As shown
in this review, there is now compelling evidence that molecular subgrouping alone is an
independent survival marker for childhood ependymoma, while prognostic adversity
is further conferred by the presence of genomic aberrations including chromosome 1q
gain and 6q loss in PF-A ependymomas, and potentially 13q loss in PF-B ependymomas.
Despite this, international ependymoma clinical trials continue to risk stratify children
according to the clinical parameters of patient age and resection status alone; an omis-
sion that will require addressing in future clinical trial strategies. With the exception of
BIOMEDE 1, large-scale international pediatric HGG trials have also not incorporated
biologically derived therapeutic stratification systems, principally because the finding that
HGGs encompass an array of discrete subtypes is a relatively recent discovery.

As with medulloblastoma, the observation of up to 14 discrete molecular subtypes
of PF ependymoma, at least 3 subtypes of ST ependymoma and up to 10 pediatric HGG
subtypes clearly presents a challenge for future trial design. As can be seen from Table 1
of this article, the duration of an international pediatric brain tumor trial can take up
to 10 years to complete patient accrual, and even longer to publish data. In order to
tailor therapeutic intensity or introduce novel agents against the array of specific tumor
subtypes now published in this review, future trials will require novel statistical designs
that embrace truly global collaboration to generate timely, rigorous results as increasing
molecular subcategorization will lead to significantly smaller patient subpopulations from
which statistically sound conclusions must be drawn. Such collaborative efforts may also
support less affluent countries to provide equity in diagnostic and therapeutic approaches.
Duration of follow-up for specific patient populations will also need to be considered, as
evidenced by the high proportion of late relapses in Group 3/4, subtype VIII MB and some
non PF-A subgroups of ependymoma.
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5.2. Conventional and Novel Therapies

While advances in adjuvant therapy have undoubtedly improved the survival of
children with malignant brain tumors, the ‘one-therapy-fits-all’ paradigm fails to reflect
and tailor to the diverse molecular landscape now apparent. As highlighted by this review,
integrating clinical and biological data to generate risk-adapted treatment stratifications
can potentially modify conventional therapy intensity and enable the introduction of novel
agents.

De-escalation of radiotherapy dosing is being evaluated in several of the current
international medulloblastoma clinical trials highlighted in the review. However, such an
approach could also be considered for other molecularly-defined tumor entities including
Group 4 (often subtype IV) medulloblastomas with chromosome 11 loss, completely re-
sected ST-YAP1 ependymomas, completely resected PF-B ependymomas without 13q loss,
and ‘infant’ or ‘LGG-like’ pediatric HGGs. Clearly, any de-escalation of therapy must be
approached with extreme caution, as evidenced by the failure of trial NCT02212574 for
WNT-activated MB, where a post-operative chemotherapy only strategy led to unacceptable
relapse rates.

For some unfavorable-risk tumors, the option of increasing treatment intensity is a
possibility as evidenced by current high-risk medulloblastoma trial strategies; however,
any trial adopting this approach should consider incorporating disability or health status
outcome measures, as they will help determine the quality of potential survivorship
afforded [181]. The efficacy of chemotherapy in pediatric ependymoma remains contentious
but a potential option to explore for escalation of therapy in certain cases (for instance
PF-A tumors with chromosome 1q gain or 6q loss). The interim analysis results of the
COG ACNS0831 trial suggested a potential survival advantage for children receiving
continuation chemotherapy following tumor excision and post-operative irradiation, yet
this requires validation ideally by the open phase II/III SIOP-Europe Ependymoma II trial.
The administration of conventional chemotherapy agents and novel agents by alternative
means, such as convection enhanced delivery to overcome the blood–brain barrier in
diffuse midline glioma, H3K27M pediatric HGGs is also under consideration.

Parallel to modifying the intensity or administration of conventional therapies for
childhood malignant brain tumors, much hope rests on establishing novel agents to target
aberrant molecular aberrations underpinning tumorigenesis. This review highlights many
of the developments in this field across medulloblastoma, pediatric high-grade gliomas and
ependymomas. International trial outcomes are awaited for medulloblastoma subgroup-
targeted therapy in SJMB12 and combination HDACi therapy across infants in the SIOP
Ependymoma II study, while the success of BRAFi and NTRKi in certain pHGG subtypes
and the evolving array of targeted primary treatment options for pediatric low-grade
glioma give cause for optimism.

While encouraging, challenges nevertheless remain. As described in this review, novel
agents against malignant brain tumors are being evaluated in early-phase pediatric studies,
yet few successful candidates targeting the spectrum of molecular subtypes that now exist
have been identified. One explanation for this is that many early-phase neuro-oncology
trials in children assess novel agents in the relapse setting, rather than as primary therapy.
In turn, this could potentially generate misleading results on drug efficacy, as evidenced
by pre-clinical relapsed medulloblastoma work implicating clonal selection as a potential
cause for the disappearance of targetable aberrations between patient-matched primary and
relapsed tumors [182,183]. However, the paucity of effective novel agents also reflects the
ongoing need for improved pre-clinical models that accurately replicate the specific human
disease subtype interrogated, including appropriate immunocompetent murine models to
test potential immunotherapies. A further explanation is that many pediatric malignant
brain tumors appear driven by epigenetic dysregulation such that tumors rarely harbor
immediately actionable mutations, or display significant molecular heterogeneity making
resistance to single agent targeted therapy anticipated, as is described for SHH-activated
medulloblastoma [30]. Consequently, it is presumed that combination therapy, utilizing
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novel agents alongside conventional modalities, will better enable local and disseminated
disease control rather than a single agent approach in future studies.

5.3. Future Challenges

This review highlights the molecular heterogeneity across the most common pediatric
malignant brain tumors, together with its relevance to current diagnostic and therapeutic
protocols, and strategies to correct the consequent imbalance that arises from bench to
bedside. The tumor groups discussed in this review have key clinical challenges that now
warrant focus, including intensification or novel combination therapy for unfavorable-
risk tumors, de-escalation of intensity for favorable-risk lesions, the treatment of relapse,
and a reduction in morbidity, disability and late effects (Table 2). It is now incumbent
on the neuro-oncology community to meet and overcome these challenges; in an age of
digital technology and social media, where the latest global scientific breakthroughs are
acknowledged promptly in the public domain, the families of our patients are demanding
this of us.

Table 2. Future clinical challenges for pediatric malignant brain tumors.

Tumor Group Future Clinical Challenge

ALL

• Modernize trial risk stratification according to biology
• Improve trial design to allow timely conclusions across smaller patient populations
• Enable multinational trial collaboration, including less affluent countries
• Discovery of novel agents with rapid pre-clinical to clinical translation
• Improved understanding of, and therapies for, recurrence (need for repeat tissue analysis via surgery, etc.)
• Awareness of neuro-disability, quality of survival and protracted follow-up in trial designs

Medulloblastoma

WNT • Non-metastatic; de-escalation of therapy

SHH • Metastatic/MYCN amplified/TP53 mutant; therapy intensification or novel agent(s)

Group 3 • MYC amplified and/or metastatic; therapy intensification or novel agent(s)

Group 4 • Non-metastatic and chromosome 11 loss; de-escalation of therapy
• Metastatic; intensification or novel agent(s)

High-grade
gliomas

• Mandating tissue analysis of brainstem lesions for trial entry
• International collaborative efforts to test novel agents for specific molecular subgroups
• Consideration of alternative drug delivery methods, e.g., convection enhanced delivery

Ependymoma

PF-A • Chromosome 1q gain +/− 6q loss; novel agents(s) or techniques including increased radiosensitization

PF-B • Chromosome 13q balanced; de-escalation of therapy

ST-ZFTA • Stratification of therapy dependent on extent of surgical resection

ST-YAP1 • De-escalation of therapy
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