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Atmospheric pollution has been a principal topic recently in the scientific and political community due to its role and impact on
human and ecological health. 9,10-phenanthrenequinone (9,10-PQ) is a quinone molecule found in air pollution abundantly in the
diesel exhaust particles (DEP). This compound has studied extensively and has been shown to develop cytotoxic effects both in
vitro and in vivo. 9, 10-PQ has been proposed to play a critical role in the development of cytotoxicity via generation of reactive
oxygen species (ROS) through redox cycling. This compound also reduces expression of glutathione (GSH), which is critical in
Phase IT detoxification reactions. Understanding the underlying cellular mechanisms involved in cytotoxicity can allow for the
development of therapeutics designed to target specific molecules significantly involved in the 9,10-PQ-induced ROS toxicity. This
review highlights the developments in the understanding of the cytotoxic effects of 9, 10-PQ with special emphasis on the possible

mechanisms involved.

1. Introduction

Atmospheric pollution has been an important topic in the
scientific and political community due to its impact on
human and ecological health [1]. With industry development,
the increase in city heating, and the number of automobiles,
there was a severe increase in the concentration of air
pollutants[2]. After the Great Smog event in London in
1952[3], the scientific community and politic governments
are paying more attention to air pollution on human health
[1]. Over the Great Smog event days, mortality in the
general population was more than threefold times than
expected, leading to thousands of people death[2]. Since this
historical air pollution episode, a large number of studies
have demonstrated the association between air pollution and
human disease including respiratory and lung diseases such
as chronic obstructive pulmonary disease, asthma attacks,
pulmonary cancer, leukemia, birth defects and immune
system defects, cardiovascular problems, heart disease and
stroke, neurobehavioral disorders, and liver and other types
of cancer [4-18]. Diesel combustion to generate power has

existed for well over a century and is used in heavy machinery
such as large trucks and oil tankers [19-22]. The mechanism
by which diesel exhaust impacts human health is being
studied extensively [23-31]. One of the most significant
and detrimental impacts diesel combustion is atmospheric
pollution.

Diesel particles can either aggregate or remain as indi-
vidual particles when released into the atmosphere. Upon
inhalation, these fine particles can penetrate through the
lungs causing many diseases and disorders to develop over
time. DEP have been shown to play an important role
in the generation of pulmonary-related diseases including
bronchitis, asthma, carcinogenesis in the lungs, and other
allergic disorders [23-32]. DEPs are composed of complex
mixtures of particulates, including elemental carbon, poly-
cyclic aromatic hydrocarbons (PAHs), nitro-PAHs, quinones,
heterocyclics, aldehydes, and other hydrocarbons[33-36].

One major particle found in diesel exhaust is 9-10-
phenanthrenequinone (9,10-PQ, see its structure in Figure 1),
a type of quinone. Quinones are electrophilic compounds
derived from aromatic organic molecules through oxidation.
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FIGURE 1: 9-10-phenanthrenequinone structure.

These molecules have two ketone groups and, thus, are
biologically active. Understanding the toxic role of quinones
is of great interest as this allows for the development of
novel therapeutics designed to specifically target downstream
mediators. Exposure to 9,10-PQ containing particulate matter
(PM) has been associated with the development of many
disease processes including lung cancer, asthma, and allergic
inflammation [37-52].

2. 9,10-Phenanthrenequinone Is One of the
Major Components of Particulate Matter
Present in the Environment

As one of the most abundant quinones found in DEPs [43],
when inhaled, 9,10-PQ can be generated from phenanthrene
by P-450s as below pathway [37]. Phenanthrene is one of
major PAHs present in the air pollution [37-52].

In addition to phenanthrene photooxidation, 9,10-PQ
could be also directly emitted to the environment from auto
exhaust sources such as diesel exhaust particles. The levels
of airborne DEP have increased dramatically over the last
few decades due to the increase in the use of diesel-based
engines. Compared to gasoline-based engines, diesel-based
engines can provide higher fuel efficiency and lower carbon
dioxide emissions; they also emit about 30-100 times more
particulate matter into the atmosphere than gasoline-based
engines [53]. It has been estimated that DEP constitute as
much as 40% of the respirable particulate matter in a city
where the daily human intake has been estimated to be as
much as 300 ug m™ of particulate matter [54]

A few studies determined the 9,10-PQ concentration in
the airborne particulates [55, 56]. Various PAH-quinones
including l-acenaphthene, 9-fluorenone, 11H-benzo[a]fluoren-
11-one, 7H-benzo[c]fluoren-7-one, 11H-benzo[b]fluoren-11-
one, benzanthrone, and 6H-benzo[cd]pyrene-6-one, 1,4-
naphthoquinone, phenanthrenequinone, 5,12-naphthacene-
quinone, and benzo[a]pyrene-6,12-dione have been detected
at less than 1 ppm in the atmospheric particles in Boston,
MA [55, 56]. The four quinones, 1,2-naphthoquinone (1,2-
NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthraquinone
(9,10-PQ), and 9,10-anthraquinone (9,10-AQ), have been
detected in Standard Reference Material (SRM) 1649a and
in ambient air samples of PM, from several rural and
urban areas in Central Los Angeles [55, 56]. The mean
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concentrations of these four quinones are 9-40.4 ug/g in
the DEP and 5-730 pg/m’ in the PM, 5 samples [55, 56].
Among these four detected quinones, 9,10-PQ has been
found to have higher concentration [55, 56]. Kishikawa et al.
employed a high-performance liquid chromatography with
fluorescence detection method for detecting 9,10-PQ in the
sample of PM collected at an urban site in Nagasaki city,
Japan, weekly over a year from July 1997 to June 1998 [57].
This method is highly sensitive and allows detecting 9,10-
PQ at very low concentrations of airborne particulates [57].
The average concentration of 9,10-PQ in airborne particulates
was reported to be 0.287+/-0.128 ppm. Interesting, 9,10-PQ
concentrations were higher in winter than in summer. Also,
9,10-PQ concentrations were higher during weekdays than at
weekends [57].

9,10-PQ concentration in the PM has been investigated
in a few areas during the different season. The phenan-
threnequinone mean concentrations in Fresno, CA in win-
ter 2004-2005, and spring 2005 are 1.1+0.77ng:m” and
0.3110.13ng'm'3, respectively [58]. However, phenanthrene
average concentrations in urban ambient Southern California
are 50.34 ng-m~ measured over the period of September 8-
9, 1993[59]. 9,10-PQ in Central Los Angeles was found to
be 24.19ug/g in DEP[60]. So, the atmospheric PM2.5 and
DEP consist of significant levels of 9,10-PQ [61]. High levels
of 9,10-PQ were found in samples collected in San Dimas
and in Riverside compared to rural Atascadero due to lower
automotive exhaust emissions in rural Atascadero than that
in San Dimas and in Riverside [60].

3. Redox Cycling of 9,10-PQ in the Generation
of Reactive Oxygen Species (ROS)

As a redox-active quinone in diesel exhausts, 9,10-PQ has
been shown to generate ROS (Figure 2) via its redox cycling
resulting in its toxicity [37-52, 57, 62, 63, 67, 71-88] in vitro
and in vivo. 9,10-PQ can accept an electron to produce the
semiquinone form of 9,10-PQ [70]. Incomplete reduction of
molecular oxygen can cause the redox cycling of 9,10-PQ
as the semiquinone form is oxidized back to the original
quinone form [70]. During this process, the molecular oxy-
gen becomes incompletely reduced and becomes a superox-
ide anion radical (O,"") [89]. Superoxide radicals, considered
as primary ROS, then undergo further metabolism and inter-
act with other molecules to generate secondary ROS such
as hydrogen peroxide (H,0,) and highly reactive hydroxyl
radicals ("OH) [90]. ROS are often characterized by their
capability to bring an incredible amount of both discrimi-
nant and indiscriminate damage to biomolecules including
protein, lipids, and nucleic acids. In this context, there are
two reduced 9,10-PQ species of biological importance, its
semiquinone radical (9,10-phenanthraquinone; PQU-) and
its hydroquinone PQH2. The semiquinone form of 9,10-PQ
can trigger redox cycling by transferring electrons from a
source such as nicotinamide adenine dinucleotide phosphate
(NADPH) to oxygen to generate ROS. The semiquinone form
of 9,10-PQ was found to be generated via the enzymatic
reaction or nonenzymatic reaction. The enzymatic reaction
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FIGURE 2: Redox cycling of 9,10-phenanthrenequinone (9,10-PQ) for production of reactive oxygen species (ROS). First, 9,10-PQ quinone
undergoes 1 electron reduction to produce semiquinone radical. Semiquinone is unstable and is very reactive to oxygen. It reoxidizes back to
quinone and releases superoxide radical. Superoxide molecule is then reduced to hydrogen peroxide by the superoxide dismutase. Hydroxyl
radicals are formed when hydrogen peroxide reacts with metals such as ferrous ions via Fenton reaction. Second, semiquinone can also
undergo further 1 electron reduction to form 9,10-phenanthrene hydroquinone which can further redox cycles back to semiquinone by losing
an electron and yielding superoxide radical. Lastly, 2-electron reduction of 9,10-PQ quinone by NADPH-quinone oxidoreductase-1 (NQO1)
will directly form 9,10-phenanthrene hydroquinone. Thus, redox cycle of 9,10-PQ will generate a large amount of ROS.

was catalyzed by flavoenzymes such as NADPH-cytochrome
P450 reductase or neuronal nitric oxide synthase and a
nonenzymatic reaction was targeted with proximal protein
thiols.

H,0, levels within cells can be used to develop an
understanding of how oxidative stress and the generation of
ROS is involved in cell-induced apoptosis [91-96]. Treatment
of human T lymphoblast: acute lymphoblastic leukemia
(MOLT-4) cells with DCFH-DA as a fluorogenic probe can
detect the levels of hydrogen peroxide within the cell. DCFH-
DA is converted to DCFH which additionally is converted to
2,7 —dichlorofluorescein (DCF) by H,0,. If H, O, is present,
this conversion will occur, and DCF levels can be measured
by fluorescence to determine the levels of hydrogen peroxide
within the cell. Cells treated with 9,10-PQ were shown to
have a significant increase in H,O, levels than control cells
[50]. An interesting approach and technique that can be used
to further understand and thereby strengthen the idea of
the presence of ROS within the cells are to treat cells with

9,10-PQ as well as ROS scavengers such as polyethylene glycol
catalase (PEG-cat) [50]. Upon treatment with PEG-cat and
9,10-PQ, the levels of hydrogen peroxide returned to basal
control levels, indicating that 9,10-PQ indeed is involved in
the generation of ROS. In addition, pretreatment of cells with
PEG-cat and subsequent treatment with 9,10-PQ resulted in
increased cellular viability. This further explains the role of
9,10-PQ in the generation of ROS and how ROS scavengers
are involved in reducing the detrimental effects posed to the
cells upon exposure to 9,10-PQ.

4. Role of L-Xylulose Reductase (XR) in 9,10-
PQ-Induced Superoxide Production

XR is involved in the reduction of 9,10-PQ at a higher rate
than its substrates diacetyl and L-xylulose [50, 97]. This
enzyme was thought to be involved in cellular detoxification
by reducing a-dicarbonyl compounds, thus reducing reactive
carbonyl compounds. In contrast to what was expected,



upon treatment of bovine aortic endothelial cells (BAEC)
containing a sixfold overexpression of the XR enzyme with
9,10-PQ, cell viability drastically decreased and significantly
enhanced cytotoxicity when compared to wild-type cells
treated with only 9,10-PQ [50]. Selective inhibition of XR
by 4-methyl-[1,2,3]-thiadiazole-5-carboxylic acid benzyloxy-
amide (MTB) eliminated this enhanced cytotoxicity indicat-
ing that XR plays a crucial role in decreasing cellular viability
when exposed to 9,10-PQ [50]. Furthermore, when XR
transformed cells were pretreated with PEG-cat, GSH ester,
and N-acetyl-L-cysteine (NAC), the XR induced enhanced
cytotoxicity was significantly reduced [50].

Cytochrome C is an enzyme that can be used to measure
the production of superoxide anion, a very powerful radical
generated in the ROS pathway. As superoxide anion levels
increase the reduction rate of cytochrome C also increases.
In a reaction mixture containing cytochrome C, XR, and 9,10-
PQ, decrease in levels of cytochrome C significantly increased
compared to the control mixture lacking 9,10-PQ indicating
the generation of the superoxide anion. Also, when the
reaction mixture was treated with CuZn-SOD, a compound
involved in the conversion of superoxide anion into oxygen
and H,0O,, cytochrome C reduction levels decreased, further
explaining the role of XR in enhancing 9,10-PQ induced
cytotoxicity through the generation of superoxide anion [98].

After establishing the relationship between XR and cyto-
toxicity, it is crucial to understand how the induction levels
of XR change upon exposure to 9,10-PQ. When MOLT-4
cells were treated with 1 uM 9,10-PQ, XR mRNA levels were
increased 2 hours after treatment, indicating that XR may
be an oxidant-inducible enzyme. Cells treated with low con-
centrations of 9,10-PQ resulted in a greater expression of XR
mRNA, as opposed to cells treated with higher concentrations
of 9,10-PQ. A probable explanation for this phenomenon
can be obtained from the DNA fragmentation results. As
the cells were treated with higher concentrations of 9,10-PQ
increase in DNA fragmentation was observed. This increase
in DNA fragmentation can be a cause of reduced expression
of XR mRNA levels at higher concentrations of 9,10-PQ.
Furthermore, to strengthen the idea of 9,10-PQ induced
upregulation of XR mRNA expression, cells exposed to 9,10-
PQ were pretreated with radical scavengers PEG-cat and
NAC to understand how XR mRNA levels may change [98].
XR mRNA levels were indeed reduced upon pretreatment
of cells with radical scavengers; thus, it can be concluded
that enhanced expressions of XR mRNA in the presence of
9,10-PQ can be mitigated upon pretreatment with PEG-cat
and NAC. Upregulation of XR mRNA was not only observed
in cells treated with 9,10-PQ, cells treated with glucose
oxidase (GO) and glucose, a hydrogen peroxide generating
system, also increased the expression of XR mRNA levels
indicating the strong relationship between ROS generation
and upregulation of XR. Knowing this relationship between
ROS generation and enhanced XR levels, it can be predicted
that treatment of cells with XR inhibitory factors can reduce
ROS generation levels as well as increasing cell viability levels
when compared to cells treated with only 9,10-PQ without XR
inhibitors [98]. Indeed, upon treatment of cells with MTB,
an inhibitor of XR, cytochrome C reduction significantly
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decreased and cellular viability significantly increased. These
results further strengthen the important role that XR plays in
the molecular pathway of 9,10-PQ induced cellular toxicity.

5. 9,10-PQ and Cellular Toxicity

Many studies demonstrated that PQ can cause toxicity in vivo
and in vitro biological system via the redox cycling for the
generation of ROS [42, 46, 47, 50, 72, 78, 82]. Excessive ROS
is known to cause DNA damage resulting in gene mutation
[99-103]. 9,10-PQ has been shown to exert toxic effects in
human skin cell lines with low NQOLI activity [45]. Nitric
oxide (NO) is widely known to suppress cytotoxic effects of
oxidative damage. Pretreatment of endothelial cells resulted
in decreased toxicity of 9,10-PQ and conversely, depletion of
NO resulted in a greater level of toxicity, signifying the role
of NO in cellular detoxification [48]. Interestingly, antitumor
studies have been performed using analogs of 9,10-PQ due
to their role in apoptosis. In HCT-116 colon tumor cells and
HL-60 promyelocytic leukemia cells, 9,10-PQ analogs were
successful in inducing apoptosis [43]. In the trophoblast cell
line, JEG-3, 9,10-PQ exerted greater amounts of cytotoxicity
and increased levels of redox cycling were measured when
coupled with copper [67]. 9,10-PQ has been shown to cause
iron-mediated cellular damage in human pulmonary epithe-
lial cells. 9,10-PQ induced apoptosis and downregulated the
effects of CuZn-SOD, which converts superoxide anion into
oxygen or H,0, [52]. PQH,, a hydroquinone of 9,10-PQ,
has shown to play a significant role in generating oxidative
stress, protein damage, and cellular toxicity [70]. Exposure
to 9,10-PQ can be examined in urine specimen by testing
for the presence of 9,10-PQHG, a major metabolite generated
during the breakdown of 9,10-PQ. This metabolite of 9,10-PQ
was detected in rats injected with 9,10-PQ as well as humans
exposed to diesel exhaust particles [63].

One of the most crucial experiments highlighting the
molecular mechanisms of 9,10-PQ induced cellular toxicity
includes a study performed by Matsunaga et al. in 2007
This study evaluated the effect of 9,10-PQ on various cellular
mechanisms such as apoptosis, generation of ROS, and
the role of the cytoprotective enzyme XR in the apoptotic
signaling and ROS generating pathway in BAECs [50].

6. The Role of 9,10-PQ in Cellular
Viability and DNA Damage

In a study carried out by Matsunaga et al, it has been
shown that 9,10-PQ induces apoptosis in MOLT-4 cells
similar to other quinones such as 1,2-naphthoquinone and
1,4-naphthoquinone. MOLT-4 cells are human T lymphoma
cells, obtained from cancerous T cell leukemia tissue [50].
The use of cancerous tissue in the study of apoptosis can
be very useful in the development of not only anticytotoxic
treatments but also antitumor treatments. One of the most
important aspects of understanding toxicity is measuring
the effects of a compound on cellular toxicity. 9,10-PQ was
shown to decrease the viability of MOLT-4 cells as early
as 8 hours after treatment. Cells were also treated with
phenanthrene to measure cellular toxicity. The purpose of
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measuring toxicity upon treatment with phenanthrene was to
explain the significance the quinone group has on biological
activity, as the structure of phenanthrene is similar to 9,10- PQ
except it lacks the quinone group. Phenanthrene did not have
significant effects on the viability of the cells. Dose-dependent
response to cellular toxicity was also measured in this exper-
iment using varying concentrations of 9,10-PQ, 1,2-NQ, 1,4-
NQ, acenaphthenequinone, and phenanthrene. The results
suggest that all the quinones except acenaphthenequinone
contributed significantly to cell viability upon treatment with
1 uM of the quinone [50].

DNA fragmentation occurs when the integrity of the
nuclear membrane is compromised by exposure to xenobiotic
compounds, which in turn causes morphological changes
of the nucleus and DNA. These changes are pivotal features
and steps in cells undergoing apoptosis or programmed cell
death. Upon treatment of MOLT-4 cells with 9,10-PQ, DNA
was extracted and analyzed via gel electrophoresis [50]. A
clear and transparent increase in fragmentation of the DNA
was observed in cells treated with 0.05 to 5 uM of 9,10-PQ.
Treatment with 5 uM of phenanthrene did not have any effect
on the fragmentation of DNA, further strengthening the idea
that the quinone portion of 9,10-PQ is a vital component of
the molecule necessary in the exertion of nuclear toxicity
in cells. A separate study performed by Rodriguez et al.
on Saccharomyces cerevisiae analyzed the role of 9,10-PQ
in DNA damage, specifically examining deletions and point
mutations in DNA [49]. The results specify that 9,10-PQ
plays a role in DNA damage only when treated to cells in
the presence of oxygen. No changes in DNA abnormality
were observed within cells treated with 9,10-PQ in anaerobic
conditions in yeast cells indicating oxygen is required by
cells undergoing 9,10-PQ induced DNA damage. Also, an
important protein involved in the repair of DNA is Poly
(ADP-ribose) polymerase (PARP) [50]. The levels of activated
PARP can give an indication as to the amount of stress,
specifically DNA damage, a cell is experiencing [104-107].
PARP repairs DNA and increase in DNA damage triggers
an increase in PARP activity. 9,10-PQ has been shown to
increase the levels of activated PARP inside cells, further
strengthening the role of 9,10-PQ in DNA damage. Nucleic
morphology can provide imperative clues in understanding
the methodology by which cells are undergoing death.

The two main types of cell death are apoptosis and
necrosis [108-111]; noteworthy, molecular and morpholog-
ical differences are observed in each type of cell death.
Apoptosis is referred to as programmed cell death involving
well-organized sequence of morphological events [108-111].
Nuclear and cytoplasmic membranes of cells undergoing
apoptosis shrink and condense which results in the collapse
of the cytoskeleton causing the formation of blebs by the cell
membrane. These cells subsequently undergo degradation of
the genetic and protein material as the nucleus is condensed
and fractured. The cellular debris or blebs are eventually
phagocytosed by neighboring cells or macrophages [108-
111]. On the contrary, necrosis is referred to as accidental
or unscheduled cell death. Necrotic cells swell and distend
which drastically alters their structure due to an inability to
maintain membrane integrity. This in turn ultimately results

in the damage and destruction of the organelles, and the
interior composition of the cells leak out. Nucleic morphol-
ogy of cells treated with 9,10-PQ displayed the formation of
condensed and fragmented nuclei. These changes explain the
noteworthy role of 9,10-PQ in the induction of apoptosis [50].

7. The Role of 9,10-PQ on Mitochondria
Dysfunction and Caspase Activation

The mitochondria play an essential role in the steps leading
towards apoptosis; thus, studying this organelle is vital in
understanding how xenobiotic factors impair the activity
of cells through this organelle [112-114]. Three key proteins
located on the inner mitochondrial membrane include the
apoptotic Bax and the antiapoptotic Bcl-2 and Bcl-XL play a
crucial role in regulating the permeability of the membrane
[115-119]. Upregulating the activity of Bax and downreg-
ulating the activity of Bcl-2 and Bcl-XL result in the cell
progressing towards apoptosis. Other proteins involved in
the apoptotic pathway include cytochrome C and cysteine-
aspartic proteases (caspase) 3, caspase 8, and caspase 9. Cas-
pases are a family of cysteine-dependent aspartate-directed
proteases which play a critical role in the transduction
of apoptotic signals [120, 121]. Cytochrome C is a protein
normally localized in the mitochondria, but upon receiving
intrinsic apoptotic signals, cytochrome C translocates to the
cytosol where it interacts with apoptosis-activating factor
1 (Apaf-1) and caspase 9 which play a crucial role in the
activation caspase 3 [122-124]. Activation of caspase 3 results
in the apoptosis of the cell. Treatment of MOLT-4 cells with
9,10-PQ resulted in the decrease of Bcl-2 and Bcl-XL proteins
and an increase in the Bax protein as well as an upregulation
of cytosolic cytochrome C levels indicating mitochondrial
damage and cell progression towards apoptosis [50]. Also,
the membrane potential of the mitochondria was notably
reduced. Increase in the activity of caspases 3, 8, and 9 was
also observed. Time-dependent experiments were performed
to understand the precise time caspases 3, 8, and 9 were
activated. To trigger apoptosis caspase 3 should be activated
after caspases 8 and 9. Based on the analysis caspase 3 activity
increased by approximately 8-fold 8 hours after treatment
with 9,10-PQ, whereas caspases 8 and 9 activity was increased
by approximately 4-fold, the highest level, after 6 hours [50].
From this data, a possible mechanism involved in triggering
apoptosis includes activation of caspase 8 upon exposure
to 9,10-PQ. Activated caspase 8 eventually downregulates
antiapoptotic Bcl-2 and Bcl-XL proteins and upregulation of
the proapoptotic Bax protein. Increase in Bax activity causes
Bax to translocate into the mitochondria causing a reduction
in the mitochondrial membrane potential and increase in the
permeability of the mitochondria, which ultimately results in
the release of cytochrome C into the cytoplasm of the cell,
triggering caspase activated apoptosis [50].

8. The Role of 9,10-PQ in Glutathione and
Cellular Detoxification

A major component of cellular detoxification involves
Phase II reactions which are responsible for increasing the



hydrophilicity of the xenobiotic compounds to aid in the
excretion process [125]. Phase II reactions are often referred
to as conjugation reactions because of these reactions couple
hydrophilic groups to xenobiotic compounds. One of the
most studied Phase II coupling reactions involves glutathione
conjugation. GSH is a tripeptide which acts as a critical
component in the detoxification process of cells undergoing
oxidative stress [126-128]. This thiol compound containing a
reactive sulthydryl group is a very powerful and important
antioxidant. The enzyme responsible for this crucial reac-
tion is referred to as glutathione transferase (GST), which
adds glutathione to the parent xenobiotic compound either
by direct addition or by replacement of an electrophilic
substituent. Although GSH acts as a cofactor for GST, it
can independently act as a free radical scavenger [126-128].
To understand the role of 9,10-PQ in GSH levels, it can
be predicted that GSH levels will be low upon exposure
to 9,10-PQ. Upon treatment of MOLT-4 cells with 9,10-PQ
in a time-dependent manner GSH levels were significantly
decreased inside the cells to 40 percent of the original
concentration after 4 hours and after 24 hours GSH levels
were approximately 10 percent of the original concentration
[50]. GSH levels drop significantly when cells are under-
going oxidative stress as this mechanism is very vital in
the antioxidant detoxification process. To further prove and
confirm the depletion of GSH was indeed caused by 9,10-PQ
induced oxidative stress and apoptosis, MOLT-4 cells were
pretreated with varying concentrations of cell-permeable
GSH monoethyl ester (NAC) to mimic the effects of GSH
before being exposed to 5 uM concentrations of 9,10-PQ [50].
Pretreatment of cells with 1 and 2 mM NAC significantly
increased cell viability, thereby protecting the cells against
9,10-PQ induced cell death. NAC also protected the cells
against DNA fragmentation, although GSH was not directly
involved in DNA repair. These results suggest the relative
significance and importance of antioxidant compounds,
namely, GSH, in the cellular detoxification process as well as
maintaining the viability of cells.

9. The Role of 9,10-PQ in
Cardiovascular Disease

Common types of the cardiovascular disease mainly in-
clude hypertension, coronary heart disease (CHD), stroke,
rheumatic heart disease, congenital heart disease, and con-
gestive heart failure (CHF)[129]. Despite great progress has
been made in the management of CVDs, CVD do harm to
human health because of the high morbidity and mortality.
It has been shown that about 63% of premature deaths in
adults (aged 15-69 years) and three-out-of-four of all adult
deaths are mainly attributed to CVD [130]. It is shocking
that, by 2030, over 23.3 million people will die annually
from CVDI131].A large number of researches have shown
that long-term exposure to fine particulate matter, known
as PM2.5, can impact heart disease [132-144]. Both acute
and chronic PM exposures can significantly increase the
cardiovascular morbidity and mortality [133-144].

Previous studies demonstrated that 9,10-PQ can elicit
adverse cardiovascular effects such as alterations in vascular
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reactivity [48, 72, 82, 145-147] and aortic ring relaxation [53].
Exposure to diesel exhaust containing 9,10-PQ was found to
diminish humans forearm blood flow through endothelium-
dependent and -independent mechanisms [148]. In the ani-
mal experiment, it was found that gaseous components of
diesel exhaust can enhance vasoconstriction and suppress
vasodilation in septal coronary arteries of mice [146]. An
animal study examined the effects of phenanthraquinone
on eNOS activity, endothelium-dependent relaxation, and
blood pressure [53]. Exposure of rats to phenanthraquinone
(0.36 mmol/kg) via an intraperitoneal administration was
shown to result in the significant elevation of blood pres-
sure [53]. Administration of phenanthraquinone to rats also
decreased the level of NO2/NO3 in plasma. NO2/NO3
has been considered to be an excellent indicator of NO
production in vivo [53]. NO production was also suppressed
by phenanthraquinone in membrane fraction of BAECs with
a concentration-dependent manner by measuring citrulline
formation from L-arginine [149]. Thus, these in vitro and
in vivo studies demonstrated that 9,10-PQ can cause an
impairment of endothelium-dependent vasorelaxation and
are associated with cardiopulmonary-related diseases and
mortality (Table 1) [48, 72, 82, 147].

10. Conclusion

9,10-PQ is a quinone molecule found in air pollution abun-
dantly in the DEP. This compound has been studied exten-
sively and has been shown to develop cytotoxic effects both in
vitro and in vivo. Cytotoxicity generated by 9,10-PQ has been
proposed to be mediated by its cycling for ROS generation.
Exposure to 9,10-PQ can activate apoptotic factors such as
caspases. Understanding the molecular mechanisms involved
in the ROS pathway can allow for the development of novel
and effective treatment of 9,10-PQ-mediated toxicity.
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MTB:  4-methyl-[1,2,3]-thiadiazole-5-carboxylic
acid benzyloxy amide

NAC:  N-acetyl-L-cysteine

GO: Glucose oxidase

NO: Nitric oxide

PARP:  Poly (ADP-ribose) polymerase
Caspase: Cysteine-aspartic proteases

GST: Glutathione transferase
CHD:  Coronary heart disease
CHF:  Congestive heart failure
CVDs: Cardiovascular diseases.
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