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Abstract
We aimed to identify key genes associated with rheumatoid arthritis (RA).
The microarray datasets of GSE1919, GSE12021, and GSE21959 (35 RA samples and 32 normal controls) were downloaded

from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in RA samples were identified using the t test in
limma package. Functional enrichment analysis was performed using clusterProfiler package. A protein–protein interaction (PPI)
network of selected DEGs was constructed based on the Human Protein Reference Database. Active modules were explored using
the jActiveModules plug-in in the Cytoscape Network Modeling package.
In total, 537 DEGs in RA samples were identified, including 241 upregulated and 296 downregulated genes. A total of 24,451 PPI

pairs were collected, and 5 active modules were screened. Furthermore, 19 submodules were acquired from the 5 active modules.
Discs large homolog 1 (DLG1) and related DEGs such as guanylate cyclase 1, soluble, alpha 2 (GUCY1A2), N-methyl d-aspartate
receptor 2A subunit (GRIN2A), and potassium voltage-gated channel member 1 (KCNA1) were identified in 8 submodules.
Plasminogen (PLG) and related DEGs such as chemokine (C-X-C motif) ligand 2 (CXCL2), laminin, alpha 3 (LAMA3), complement
component 7 (C7), and coagulation factor X (F10) were identified in 4 submodules.
Our results indicate that DLG1, GUCY1A2, GRIN2A, KCNA1, PLG, CXCL2, LAMA3, C7, and F10 may play key roles in the

progression of RA and may serve as putative therapeutic targets for treating RA.

Abbreviations: ABL1 = c-abl oncogene 1, non-receptor tyrosine kinase, APP = amyloid beta (A4) precursor protein, AR =
androgen receptor, BP = biological process, C7 = complement component 7, CAV1 = caveolin 1, caveolae protein, 22kDa, CC =
cellular component, CREBBP = CREB-binding protein, CXCL2 = chemokine (C-X-C motif) ligand 2, DEGs = differentially expressed
genes, DLG1 = discs large homolog 1, DLG1 = discs large homolog 1, DLG3 = discs large homolog 3, EGF = epidermal growth
factor, EGFR = epidermal growth factor receptor, ERBB2 = v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2,
ERBB4 = v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4, F10 = coagulation factor X, FC = fold change, GO =
Gene Ontology, GRB7 = growth factor receptor-bound protein 7, GRIN2A = N-methyl D-aspartate receptor 2A subunit, GUCY1A2
= guanylate cyclase 1, soluble, alpha 2, HRPD = Human Protein Reference Database, IL-1a = interleukin-1a, KCNA1 = potassium
voltage-gated channel member 1, KEGG= Kyoto Encyclopedia of Genes and Genomes, KLK2= kallikrein-related peptidase 2, KNN
= nearest neighbor averaging, LAMA3 = laminin, alpha 3, MF =molecular function, PLG = Plasminogen, PLG = plasminogenl, PPI =
protein–protein interaction, PRKCA = protein kinase C, alpha, PTEN = phosphatase and tensin homolog, RA = rheumatoid arthritis,
SRC = v-src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog, TCR = T cell receptor, TNFs = tumor necrosis factors.
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1. Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disorder that
mainly affects the synovial membrane, cartilage, and bone.[1] It
affects 1% of the population and is related to significant
morbidity and increased mortality.[2] Because RA is incurable, it
causes high economic burdens that severely reduce the quality of
life.[3] The cause of RA is still unknown.[4] Reliable predictive
biomarkers for RA prognosis and therapeutic response are
limited.[4] Therefore, elucidation of molecular mechanisms
underlying RA development would help in conceiving more
effective therapeutic strategies than before for treating the
disease.
RA is characterized by chronic inflammation, synovial

hyperplasia, cartilage and bone destruction, and formation of
pannus.[4,5] It involves a complex interplay among genotype,
environmental triggers, and chance.[4] Numerous studies have
confirmed that many activated cell types such as T and B cells,
monocytes/macrophages, endothelial cells, and synovial fibro-
blasts play a role in the development and progression of RA.[6–8]

Moreover, genome-wide analyses have verified that immune
regulatory factors underlie the disease.[9] Cytokines such as
interleukin (IL)-1a, IL-8, and tumor necrosis factors (TNFs) have
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been directly implicated in a broad range of immune and
inflammatory processes, thereby being responsible for joint
damage and RA progression.[2] Extended analyses of gene
expression profiles have shown that several gene groups such as
activator protein-1, nuclear factor kappa B, and Smad family
members show binding activity at their cognate recognition sites
in the promoters of cytokines, and are, therefore, key players in
RA development and progression.[10–12] Consequently, blocking
TNFs and IL-1a has proved successful in treating RA.[13,14] In
addition, increased levels of sphingosine kinase 1 in the synovium
membrane constitute RA biomarkers.[15] However, identifying
newer molecular targets remains necessary despite such advances
in treating RA to foster the development of new therapeutics with
improved outcomes and accuracy of diagnosis.
Previously, datasets GSE1919 and GSE12021 were used to

decode differential biomarkers of RA and osteoarthritis for
disease-specific therapeutics using statistical analysis.[15] These
datasets were also used to identify a panel of potential molecular
targets for diagnosis and treatment of RA.[16] The microarray
dataset GSE21959 was used to show that gene expression is
considerably altered in RA synovial fibroblasts compared with
healthy synovial fibroblasts after hypoxia induction and to
identify new factors and pathways relevant to the pathogenesis of
chronic arthritis.[5] In comparison with these, we integrated the
above 3 gene expression datasets in the present study and used
comprehensive bioinformatics methods to screen differentially
expressed genes (DEGs) associated with RA. Functional enrich-
ment analysis, protein–protein interaction (PPI) network con-
struction, and active module mining were then performed to
identify key genes involved in the progression of RA.Our findings
will help in the discovery of potential targets for therapeutic
intervention in patients with RA.
2. Methods

2.1. Data resources

Data on the expression profile of GSE1919,[17] GSE12021,[1] and
GSE21959[5] related to RA were acquired from the Gene
Expression Omnibus repository by the National Center of
Biotechnology Information based on the platform of GPL91
Affymetrix Human Genome U95A Array, GPL96 Affymetrix
Human Genome U133A/B Array, and GPL4133 Agilent-014850
Whole Human Genome Microarray 4�44K G4112F (Feature
Number version), respectively. GSE1919 datasets contained
synovial membrane samples derived from 5 patients with RA and
5 normal controls; GSE12021 contained 9 RA samples and 12
normal controls; and GSE21959 contained 18 RA samples and
18 normal controls. Therefore, 67 datasets of synovial fibroblasts
in total (35 RA samples and 32 normal controls) were used for
subsequently analyses. Ethical approval was not necessary in our
study because we downloaded the expression profiles from the
public database and do not perform any experiments in patients
or animals.
2.2. Data preprocessing

We downloaded the series matrix files of the 3 datasets, and the
probe name of each series matrix was transformed into a gene
symbol based on the Affy probe annotation files. If multiple
probes corresponded to the same gene symbol, the mean value
was calculated using the aggregate function[18] in R as the
expression value of that particular gene. If the expression value of
2

the probe was absent, the nearest neighbor averaging (KNN)
of the impute package[20] in R was used to supplement. Finally,
quartile normalization was performed using the preproces-
sCore[21] in R, and the gene expressionmatrix of each sample was
acquired.
All expression estimates were log2 transformed and merged

using cross-platform normalization, which was performed using
the CONOR[22,23] package in R. If different studies comprised
similar or common gene symbols, 2 expression data of the same
gene symbols were normalized for producing a new dataset.
Then, the newly produced data were renormalized with the next
data.
2.3. Identification of DEGs

DEGs in RA samples compared with normal controls were
screened using the t test[24] method in the limma[24] package in R.
Then, the P value was adjusted using the Benjamini and
Hochberg method.[25] The j log2 fold change (FC) j >0.585
and an adjusted P value of <0.05 were set as the threshold.
2.4. Functional enrichment analysis of DEGs

Gene ontology (GO) analysis is increasingly applied for
functional studies of large-scale genomic or transcriptomic
data,[26] which comprises 3 independent ontologies, including
biological process (BP), molecular function (MF), and cellular
component (CC). The Kyoto Encyclopedia of Genes and
Genomes (KEGG) is the major public database containing the
information of biochemistry pathways.[27]

We used the clusterProfiler[28] package in R to annotate and
visualize GO terms (associated with BP, MF, and CC) and KEGG
pathway of upregulated and downregulated genes, respectively.
2.5. Construction of the PPnetwork and screening
of active modules

Human Protein Reference Database (HPRD)[29] is a database
containing curated proteomic information pertaining to human
proteins. The human PPI data on HPRD (Release 9) consists of
39,240 interactions among 9617 genes. We used HPRD (Release
9) to identify PPI pairs of DEGs and construct the PPI network.
Active module hypothesis was proposed by Ideker et al[30] for

clarifying underlying mechanisms governing observed changes
in gene expression, which integrated expression profiling, large-
scale proteomics, and PPI network construction along with using
a rigorous statistical measure for identifying active modules
with a search algorithm. Therefore, active modules were
screened within the PPI network considering the active module
hypothesis.
We also used the jActiveModules plug-in[31] available for the

Cytoscape Network Modeling package[31] to identify active
modules. At each step of the search, all adjacent proteins are
considered for inclusion in the resultant network. Active modules
were identified with a local search of “depth”=2 and “max
depth”=2. Then, the connectivity degree of each node in
modules was estimated to identify the hub nodes.
If many nodes were present in active modules, smaller

submodules needed to be acquired. To produce smaller
submodules, we repeated the active modules search within each
original submodule with a local search of “depth”=1 and “max
depth”=1 to identify singleton nodes with a significant number
of neighbors.



Table 1

The enriched GO terms of differentially expressed genes.

Ontology ID Description P adjust Counts

The enriched GO terms of upregulated genes
BP GO:0006955 Immune response 1.09E-30 74
BP GO:0050896 Response to stimulus 8.16E-30 159
BP GO:0002376 Immune system process 6.51E-29 88
BP GO:0045321 Leukocyte activation 8.68E-24 46
BP GO:0001775 cell activation 1.39E-22 51
CC GO:0044459 Plasma membrane part 1.42E-18 73
CC GO:0005886 Plasma membrane 2.31E-16 109
CC GO:0071944 cell periphery 2.31E-16 110
CC GO:0005576 Extracellular region 9.32E-15 70
CC GO:0005887 Integral to plasma membrane 3.60E-13 49
MF GO:0003674 Molecular function 7.93E-13 195
MF GO:0008009 Chemokine activity 3.05E-09 10
MF GO:0005125 Cytokine activity 3.83E-09 17
MF GO:0042379 Chemokine receptor binding 7.34E-09 10
MF GO:0004872 Receptor activity 7.34E-09 45
The enriched GO terms of downregulated genes
BP GO:0032501 Multicellular organismal process 3.17E-27 174
BP GO:0044699 Single-organism process 5.86E-27 238
BP GO:0044707 Single-multicellular organism process 4.81E-26 168
BP GO:0008150 Biological process 1.01E-20 260
BP GO:0050896 Response to stimulus 5.32E-19 173
CC GO:0044421 Extracellular region part 2.82E-11 52
CC GO:0044459 plasma Membrane part 1.69E-09 67
CC GO:0005576 extracellular region 2.02E-09 71
CC G:0005615 Extracellular space 2.02E-09 40
CC GO:0005886 Plasma membrane 8.15E-09 111
MF GO:0003674 Molecular function 1.34E-17 262
MF GO:0005488 Binding 2.04E-08 218
MF GO:0005515 Protein binding 2.87E-08 158
MF GO:0005102 Receptor binding 3.24E-08 46
MF GO:0070851 Growth factor receptor binding 5.29E-05 10

Ontology represents the category of GO terms; Description represents the name of GO term; Counts represent the number of genes enriched in GO term. BP=biological process, CC= cellular component, GO=
gene ontology, ID= identification number, MF= represents molecular function.
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3. Results

3.1. Data preprocessing and identification of DEGs

Based on the merged information, 57 samples corresponding to
8453 gene expression levels were acquired. After preprocessing,
data were successfully normalized and could be used for further
study.
Using the limma package with j log2 FC j>0.585 and an

adjusted P value of <0.05 set as a threshold, we ultimately
obtained 537 DEGs in RA samples compared with normal
samples, including 241 upregulated and 296 downregulated
genes.
Table 2

The top 5 enriched KEGG pathways of differentially expressed gene

ID Description

The top 5 enriched KEGG pathways of upregulated genes
hsa04514 Cell adhesion molecules
hsa05340 Primary immunodeficiency
hsa04640 Hematopoietic cell lineage
hsa04060 Cytokine-cytokine receptor interaction
hsa05150 Staphylococcus aureus infection

B: The top 5 enriched KEGG pathways of downregulated genes
hsa00350 Tyrosine metabolism
hsa05200 Pathways in cancer
hsa04910 Insulin signaling pathway
hsa04060 Cytokine-cytokine receptor interaction
hsa05146 Amoebiasis

ID= identification number of KEGG pathway. Description represents the name of KEGG pathway; count

3

3.2. Functional enrichment analysis of DEGs

GO terms and KEGG pathways were considerably enriched by
upregulated and downregulated DEGs, respectively. Upregulated
genes were significantly associated with immune response,
response to stimulus, and immune system process (Table 1A).
Downregulated genes were significantly associated with multi-
cellular organism process, single-organism process, single-
multicellular organism process (Table 1B). In addition, upregu-
lated genes were significantly enriched in cell adhesion molecules,
primary immunodeficiency, hematopoietic cell lineage,
cytokine–cytokine receptor interaction, and Staphylococcus
aureus infections (Table 2A). Downregulated genes were mainly
s.

P adjust Counts

7.72E-10 18
4.43E-09 10
4.25E-08 13
3.36E-07 20
3.23E-05 8

6.01E-04 7
3.70E-03 18
6.97E-03 10
9.94E-03 14
9.94E-03 8

s represent the number of genes enriched in KEGG pathway.
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enriched in tyrosine metabolism, pathways in cancer, insulin
signaling pathway, cytokine–cytokine receptor interaction, and
amoebiasis cancer (Table 2B).
3.3. PPnetwork construction and active module screening

Based on the information on HPRD, 24,451 PPI pairs
corresponding to 8453 genes were acquired by mapping into
Figure 1. Five active modules and 19 submodules. The yellow nodes indicate norm
indicate downregulated genes. Color shades of nodes are proportional to the j lo
P value. The edges between nodes indicate interaction between these genes.

4

HPRD-. Then, 5 active modules and 19 submodules were
screened (Fig. 1). In active module (A), the hub genes with a
higher degree were androgen receptor (AR), v-src avian sarcoma
(Schmidt-Ruppin A-2) viral oncogene homolog (SRC), and
CREB-binding protein (CREBBP); in active module (B), they
were SRC, caveolin 1, caveolae protein, 22kDa (CAV1), and
amyloid beta (A4) precursor protein (APP); in active module (C),
they were c-abl oncogene 1, nonreceptor tyrosine kinase (ABL1),
ally expressed genes, red nodes indicate upregulated genes, and green nodes
g2 fold change (FC) j, and node size is inversely proportional to and adjusted
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CREBBP, and SRC; and in active module (D), they were AR,
SRC, and epidermal growth factor receptor (EGFR). The hub
genes in active module (E) were protein kinase C, alpha
(PRKCA), SRC, and EGFR. Our results showed that most of
DEGs present in active modules were downregulated genes rather
than upregulated genes.
The connectivity degrees of many hub nodes of submodules

were not <3, and they were not DEGs. These hub nodes of
submodules were as follows: plasminogen (PLG), phosphatase
and tensin homolog (PTEN), discs large homolog 1 (DLG1),
v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4
(ERBB4), growth factor receptor-bound protein 7 (GRB7),
v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2
(ERBB2), epidermal growth factor (EGF), discs large homolog 3
(DLG3), kallikrein-related peptidase 2 (KLK2), and SRC.
DLG1 and related DEGs such as guanylate cyclase 1 soluble

alpha 2 (GUCY1A2), N-methyl D-aspartate receptor 2A subunit
(GRIN2A), and potassium voltage-gated channel member 1
(KCNA1) were present in 8 submodules. PLG and associated
DEGs such as chemokine (C-X-C motif) ligand 2 (CXCL2),
laminin, alpha 3 (LAMA3), complement component 7 (C7), and
coagulation factor X (F10) were present in 4 submodules.
4. Discussion and conclusions

We used a bioinformatics approach to identify key genes
associated with RA progression. In total, 537 DEGs in RA
samples were identified, including 241 upregulated and 296
downregulated genes. Five active modules and 19 submodules
were also acquired.DLG1 and related DEGs such asGUCY1A2,
GRIN2A, and KCNA1, were present in 8 submodules. PLG and
related DEGs such as CXCL2, LAMA3, C7, and F10 were
present in 4 submodules. Although DLG1 and PLG were not
DEGs, they were strongly associated with DEGs involved in RA
progression.
DLG1 encodes a multidomain scaffolding protein that is

required for T cell receptor (TCR)-induced activation of
regulatory T cell function.[32] A previous study showed that T
cells play an important role in the development of RA.[15] Factors
involved in T cell activation, such as CD28 and T cell activation
RhoGTPase-activating protein, are strongly linked to RA and,
therefore, highlight the role of T cells in RA.[4] DLG1 is involved
in the generation of memory T cells and regulation of T cell
proliferation, migration, and Ag-receptor signaling.[33] More-
over, DLG1 functions as a negative regulator of TCR-induced
proliferative responses, thereby decreasing the proliferation of T
lymphocytes.[34] Thus, our results are consistent with those of
previous studies and suggest that the downregulated DLG1 may
enhance the function of regulatory T cells, thereby exacerbating
RA.
We also found that downregulated DEGs such as GUCY1A2,

GRIN2A, and KCNA directly interacted with DGL1 in several
submodules. GUCY1A2 is involved in EDNRB signaling, which
may be a part of RA development.[35]GRIN2A (also known as
NMDAR2A) helps increase the expression of proinflammatory
molecules such as IL-1b and TNF-a following N-methyl
D-aspartate-induced excitotoxicity in the postnatal brain.[36]

These cytokines have been confirmed to play important roles in
the pathogenesis of RA.[2] Furthermore, the expression of
GUCY1A2 and GRIN2A is downregulated in RA synovial
fibroblasts compared with that in healthy synovial fibroblasts,
specifically in hypoxia.[5]KCNA1 is a member of potassium
voltage-gated channel proteins, which regulate the membrane
5

potential of T cells and thereby control the calcium signaling
response necessary for lymphocyte activation.[37] The function of
T cells is strongly associated with RA[15] and calcium signaling,
which are few of the signaling pathways disrupted in RA.[38]

Therefore, GUCY1A2, GRIN2A, and KCNA1 may also be key
molecules involved in the pathogenesis of RA. Our results also
suggest thatDLG1may be indirectly involved in RA progression
owing to its interaction with the above 3 DEGs.
PLG was also found to be a crucial protein in several

submodules. PLG induces the production of IL-1b and TNF-a
in response to reactive oxygen species,[39] which are also
important molecules in the development of RA. Moreover,
plasmin is formed upon the cleavage of PLG by specific PLG
activators, and further induces the expression of inflammatory
cytokines.[40] Enhanced urokinase plasminogen activator activity
is a key component of both the inflammatory and tissue
remodeling processes occurring in the joints of patients with
RA.[41] In other words, PLG has been shown to have both a
positive and a negative influence with respect to RA, depending
on joint location, in mice.[42] Therefore, downregulated
PLG may be a joint-specific determinant playing a role in the
progression of RA.
CXCL2, LAMA3, C7, and F10 directly interacted with PLG.

CXCL2 is considered a proinflammatory and matrix-destructive
factor in RA.[43] CXCR2, the receptor of CXCL2, inhibits acute
IL-8/CXCL8- or LPS-induced arthritis in rabbits.[44]LAMA3,
which encodes an angiogenic protein, is induced by hypoxia in
macrophages and effectively regulates angiogenesis.[45] Synovial
hyperplasia in RA is accompanied by active angiogenesis and
expansion of blood vessels,[5] highlighting the role of LAMA3 in
RA progression. C7 is a key component of the complement
system, which contributes to the pathogenesis of several
autoimmune and inflammatory conditions, including RA.[46]

C7 deficiency is strongly associated with the occurrence of RA.[47]

F10, one of the blood coagulation factors, is associated with the
activation of the coagulation cascade that widely occurs in RA,
and reduced levels of coagulation factors have been found in the
synovial fluids of patients with RA.[41] These DEGs are involved
in different mechanisms underlying the pathogenesis of RA, and
we speculate that they contribute to RA progression, albeit by
playing different roles. Although current evidence on the direct
association between PLG and DEGs is limited, we believe that
PLG may be involved in the pathogenesis of RA via interacting
with these DEGs based on our present findings.
Nevertheless, there was no experimental validation, such as

quantitative real-time PCR and western blot analysis to
determine the expression levels of these key genes we identified.
Moreover, the significant role of these candidate genes in the
development of RA was not investigated. More studies with high
throughput data and experiment validation are still needed to
verify our observation and speculation.
To summarize, DLG1, GUCY1A2, GRIN2A, KCNA1, PLG,

CXCL2, LAMA3, C7, and F10 may play a key role in the
progression and development of RA. These genes may be
promising as therapeutic targets for treating RA.
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