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Abstract

The goal of our study was to use functional connectivity to map brain function to self-reports of 

negative emotion. In a large dataset of healthy individuals derived from the Human Connectome 

Project (N = 652), first we quantified functional connectivity during a negative face-matching 

task to isolate patterns induced by emotional stimuli. Then, we did the same in a complementary 

task-free resting state condition. To identify the relationship between functional connectivity 

in these two conditions and self-reports of negative emotion, we introduce group regularized 

canonical correlation analysis (GRCCA), a novel algorithm extending canonical correlations 

analysis to model the shared common properties of functional connectivity within established 
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brain networks. To minimize overfitting, we optimized the regularization parameters of GRCCA 

using cross-validation and tested the significance of our results in a held-out portion of the data set 

using permutations.

GRCCA consistently outperformed plain regularized canonical correlation analysis. The only 

canonical correlation that generalized to the held-out test set was based on resting state data 

(r = 0.175, permutation test p = 0.021). This canonical correlation loaded primarily on Anger­

aggression. It showed high loadings in the cingulate, orbitofrontal, superior parietal, auditory and 

visual cortices, as well as in the insula. Subcortically, we observed high loadings in the globus 

pallidus. Regarding brain networks, it loaded primarily on the primary visual, orbito-affective and 

ventral multimodal networks.

Here, we present the first neuroimaging application of GRCCA, a novel algorithm for regularized 

canonical correlation analyses that takes into account grouping of the variables during the 

regularization scheme. Using GRCCA, we demonstrate that functional connections involving 

the visual, orbito-affective and multimodal networks are promising targets for investigating 

functional correlates of subjective anger and aggression. Crucially, our approach and findings also 

highlight the need of cross-validation, regularization and testing on held out data for correlational 

neuroimaging studies to avoid inflated effects.

Keywords

Canonical correlations; Emotion; Functional connectivity; Resting state; Face-matching; Negative 
valence

1. Introduction

The recent Research Domain Criteria (RDoC) initiative is an effort spearheaded by the 

United States National Institutes of Mental Health to advance mental health research 

(Cuthbert and Insel, 2013). One core assumption of RDoC is that units of analysis 

measuring the same underlying construct can be integrated. In the present study, we use the 

Negative Valence Systems as a case study to test this assumption. Negative Valence Systems 

are primarily responsible for responses to aversive situations or context, such as fear, 

anxiety, and loss (Cuthbert and Kozak, 2013). In particular, we search for hidden constructs 

that underlie negative valence as measured both by the “self-report” and “circuit” units of 

analysis. Our choice is motivated by the fact that, in the context of mental health, mood 

disorders are the leading cause of disability and share as a core feature impairments in the 

regulation of Negative Valence Systems, which manifest clinically as persistent self-reported 

negative emotion (Whiteford et al., 2013; Woody and Gibb, 2015). To advance diagnosis and 

treatment of these disorders, there is a case to be made that quantitative measures are needed 

that do not rely exclusively on patient self-reports (Williams, 2016). Therefore, our findings 

shed light into the brain representation of self-reported negative emotion and inform future 

translational studies on mood disorders using the RDoC framework.

Many discoveries on how the functioning of human brain circuits correlates with self-reports 

in humans have been made possible because of advances in functional Magnetic Resonance 
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Imaging (fMRI). In particular, several recent crucial advances have been enabled by the 

collection and release of very large datasets leveraging cutting-edge methods for the 

acquisition and processing of images. One such dataset is the one collected by the Human 

Connectome Project (HCP) (Van Essen et al., 2013). Among the measures comprised in 

this dataset, functional connectivity, the correlation of blood oxygen level dependent signal 

timeseries between two or more brain regions, has proven an invaluable tool to explore the 

relationship between brain activity and constructs such as intelligence, sustained attention, 

impulsivity and behavior (Hearne et al., 2016; Li et al., 2013; Rosenberg et al., 2016; 

Smith et al., 2015). Accumulating evidence suggests that, similarly to these other complex 

phenomena, representations of functional connectivity are needed to map human brain 

function onto the emotional states that accompany it (see (Hamann, 2012; Lindquist et al., 

2012) for comprehensive reviews).

The goal of our study was to evaluate functional connectivity as a target for mapping 

brain function to self-reports of negative emotion. To meet this objective, we incorporated 

several novel design and analytic strategies. Regarding the design of our experiment, first 

we quantified functional connectivity under a task-evoked condition in order to isolate 

any specific connectivity patterns induced by emotional stimuli. We build upon a robust 

foundation of studies attempting to relate brain activity to self-reports of negative emotion 

as participants undergo a task that involves processing of negative stimuli, for example 

faces expressing negative emotions (Mauss and Robinson, 2009; Murphy et al., 2003). 

Functional connectivity between brain areas is likely dynamic and changes depending on 

the current brain state, especially during a task. We hypothesized that the measures from an 

fMRI paradigm and a self-report questionnaire designed to probe the same psychological 

construct should be related and RDoC, along with a substantial body of work, proceeds on 

this assumption. In particular, we quantified functional connectivity during a task involving 

matching of faces expressing fear and anger which has been related to negative emotional 

states and disorders of these states (Prater et al., 2013; Westlund Schreiner et al., 2017). 

Second, we also considered that task-evoked functional connectivity might be a more 

fluctuating state-like measure compared to self-reports of emotional states experienced 

over of a period of days. As such, it might capture more transient features of functional 

connectivity, which do not necessarily relate to negative valence in the days preceding the 

scan or to personality traits. To address this point, we quantified functional connectivity 

in a complementary task-free resting state condition. The rationale for this is that resting 

state captures patterns of functional connectivity that are shared across states (Cole et al., 

2014). We wanted to test if these patterns relate to feelings of negative emotion experienced 

throughout the days before the scan or to trait-like measures of personality related to 

negative emotion.

Regarding our analytic strategies, first of all we used the entire HCP Healthy Young 

Adult data release, thus guaranteeing a well-powered sample acquired and preprocessed 

with cutting-edge methods. We then used canonical correlation analysis (CCA), a well­

established method for exploring correlations between functional connectivity and self­

report measures (Drysdale et al., 2017; Smith et al., 2015; Xia et al., 2018). Compared 

to previous implementations, we made novel modifications to the algorithm which allowed 

us to address key challenges in the investigation of brain functional connectivity derived 

Tozzi et al. Page 3

Neuroimage. Author manuscript; available in PMC 2021 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from fMRI. First of all, we addressed a common issue with analyzing connectivity at the 

whole-brain level, namely the very high number of features compared to the number of 

measurements. To minimize the risk of overfitting, we used a regularized form of CCA 

combined with cross-validation to optimize our regularization parameters (González et 

al., 2008). Furthermore, we developed a novel implementation of CCA which allowed us 

to model shared common properties of functional connectivity within established brain 

networks. Finally, to ensure that the correlations detected were not spurious, we tested 

significance of our results in a held-out portion of the data set by permutation testing.

2. Methods

2.1. Dataset

Our sample is derived from the HCP Healthy Young Adult release, a large public dataset 

of 1200 subjects aged between 22 and 35 years without any psychiatric or neurological 

disorder (Van Essen et al., 2013). The acquisition parameters and minimal preprocessing of 

these data are described in (Glasser et al., 2013) and comprised high spatial (2 mm isotropic) 

and temporal (TR = 0.72 s) resolution multi-band fMRI. Briefly, participants underwent a 

large number of MRI scans, that included T1 and T2 weighted structural imaging, diffusion 

tensor imaging, and nearly 2 h of resting-state and task fMRI. For the present study, we used 

fMRI data from the second day of acquisition: 4:32 min. of Emotion task (2 runs acquired 

with RL and LR phase encoding respectively, 2:16 min. and 176 time-points each) and 30 

min. of resting-state (2 runs acquired with RL and LR phase encoding respectively, 15 min 

and 1200 time-points each).

To select our sample, we accessed the data at https://db.humanconnectome.org. Using the 

online filtering options, we selected only participants who had completed the full task and 

resting state scanning protocol, had no known quality issues and had completed the NIH 

toolbox battery (see below). This returned a total of 652 subjects. For these, we downloaded 

fMRI data denoised for spatially specific artifacts from head motion, subject physiology, 

and MR physics sources using ICA-FIX (Salimi-Khorshidi et al., 2014), in particular single 

run sICA+FIX in the case of the resting state data and multi-run sICA+FIX in the case 

of the Emotion data. These latter data were provided by MFG (Glasser et al., 2018). All 

analyses were conducted in greyordinate space, i.e. they were constrained to the gray matter 

by using files in the CIFTI format, thus taking full advantage of HCP preprocessing and 

minimizing non-neuronal signal and blurring due to cross-subject misalignment or over 

smoothing across tissue boundaries (Glasser et al., 2013).

2.2. fMRI emotion task

This task is described in detail in (Barch et al., 2013) and has been widely used to engage 

the neural circuits underlying negative emotion. Briefly, participants are presented with 

blocks of trials that either ask them to decide which of two angry or fearful faces presented 

on the bottom of the screen match the one at the top, or which of two shapes presented at 

the bottom of the screen match the one at the top. Trials are presented in blocks of 6 trials 

of the same task (face or shape), with the stimulus presented for 2 s and a 1 s interstimulus 
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interval. Each block is preceded by a 3 s task cue (“shape” or “face”), so that each block is 

21 s including the cue. Each of the two runs includes 3 face blocks and 3 shape blocks.

2.3. Negative emotion self-reports

The NIH Toolbox Emotion battery is a self-report developed to measure the full spectrum 

of emotional health (Babakhanyan et al., 2018). Given the focus of our study on negative 

emotion we selected the specific set of six measures defined as assessments of negative 

emotion out the total 17. These are: fear-affect (e.g. feelings of anxiety, worry, fright), 

fear-somatic (e.g. nausea, dizziness, heart racing), anger-affect (e.g. feeling of wanting to 

break things or yelling at someone), anger-hostility (e.g. jealousy or envy towards others), 

anger-aggression (e.g. getting into fights, threatening others), and sadness (e.g. hopelessness, 

depression, guilt). In the NIH Toolbox Emotion battery, the questions assessing fear-affect, 

fear-somatic, anger-affect and sadness are all about experience of those emotions in the 7 

days preceding the scan (“In the past 7 days…”). The questions assessing anger-hostility and 

anger-aggression ask the participant to rate how much a statement related to the emotion 

refers to them in general (“How true of you is this statement?”). The “raw” scores of the 

HCP Healthy Young Adult release for each participant for each of these negative emotion 

measures were used in our study. These scores are normed to a healthy population with 

mean=50 and standard deviation=10.

2.4. Bias field correction and parcellation

These analyses were conducted in Matlab R2018a (9.4.0.949201) for Mac (The MathWorks, 

Inc.) or using connectome workbench 1.3.2 for Mac (https://www.humanconnectome.org/

software/connectomeworkbench).

First, an improved gradient echo and spin echo B1-receive field bias field correction was 

applied to each dense denoised timeseries as described in (Glasser et al., 2016). Briefly, after 

removing transmit field effects and excluding dropout regions, the low spatial frequency 

intensity variations (sigma = 5 mm) within gray matter were used to compute a more 

accurate, smoother receive bias field, which was then scaled to a volume mean of 10,000. 

Then, the improved scaled field was used to replace the bias field correction applied during 

minimal HCP preprocessing by multiplying the data by the original bias field map and 

then dividing it by the new field map. This produces data that are bias corrected in the 

same way as the current version of the HCP Pipelines (e.g. HCP Healthy Young Adult 7T 

data or HCP Lifespan data releases). After this bias field correction, each dense denoised 

bias-corrected timeseries was parcellated using connectome workbench (wb_command 
-cifti-parcellate) to obtain the mean timeseries in each region of the HCP’s multi-modal 

cortical parcellation version 1.0 (Glasser et al., 2016). Since the parcellation did not include 

subcortical structures, these were derived from the Freesurfer segmentation (Fischl et al., 

2002) and added to the CIFTI dense label file using connectome workbench (wb_command 
-cifti-createdense-from-template).

2.5. Connectome construction

For each subject, parcellated timeseries were demeaned and the two timeseries for 

each condition (Emotion task and Rest) were concatenated. Connectivity matrices were 

Tozzi et al. Page 5

Neuroimage. Author manuscript; available in PMC 2021 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.humanconnectome.org/software/connectomeworkbench
https://www.humanconnectome.org/software/connectomeworkbench


constructed by using L2 regularized partial correlations as implemented in FSLNets (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) to account for cross-subject differences in global 

respiratory noise. To determine the optimal regularization parameter λ, we proceeded as 

follows separately for the Emotion task and Rest conditions (Bijsterbosch et al., 2018). First, 

we concatenated the timeseries of all subjects and computed a group connectivity matrix 

Cgroup using partial correlations without regularization. Then, for the fixed regularization 

parameter λ and for each subject s = 1, …, 652 we generated a connectivity matrix 

Cs and computed Pearson correlations between the upper triangle of Cs with that of the 

group connectivity matrix Cgroup, i.e. rs = cor Cupper
s , Cupper

group . We repeated this for all λ 

in the grid λ = 10−3, 10−2, …, 103 and chose as the optimal value of λ the one that 

maximized this correlation on average across subjects, in other words, that maximized 

r = 1
652 ∑s = 1

652 rs. To further fine-tune the value of λ, we then repeated this process varying 

it in the interval surrounding the first optimal λ. At the end of this process, two matrices 

Cs were generated for each subject using the optimal λ: Emotion task matrix CEmotion
S  and 

Rest task matrix CRest
s . The values of λ maximizing the average correlation of individual 

connectivity matrices to the group matrix were respectively λ = 8 for the Emotion task 

condition and λ = 0.7 for the Rest condition (Figs. S1–,S2), which is expected due to 

the much fewer timepoints in the emotion task (352) than the resting state data (2400). 

In the present study, we did not model brain responses to the Emotion task explicitly. 

This was motivated by the following two considerations. First of all, previous studies have 

shown that differences in connectivity between rest and tasks is detectable even when the 

modeled response to task stimuli has been removed. This is because, even though they share 

some functional networks, resting state and task fMRI data are fundamentally different and 

because the effects of task fMRI are not fully modeled by task fMRI designs (Glasser et al., 

2018). Secondly, we wanted to compare resting state and task data directly. Modeling the 

conditions of the task data would have made this comparison difficult, because our measure 

of interest (“functional connectivity ”) would have been computed differently in the two 

conditions.

2.6. Data matrices

From here on, the analysis was conducted in R version 3.6.1. For each participant s = 1, …, 

652, our imaging features were the upper triangles of the connectivity matrices CEmotion
s  and 

CRest
s  described above (71,631 features in total), whereas our questionnaire features were the 

negative emotion raw scores from the NIH Toolbox Emotion (6 features in total). We stored 

fMRI and questionnaire features in X and Y matrices of sizes 652 ×71,631 and 652 ×6, 

respectively. This resulted in two data pairs: (XRest, Y) and (XEmotion, Y). Further analyses 

were done separately for each of them.

2.7. Feature preprocessing

For a pair of data (X, Y) we first regressed the effects of sex from both the questionnaire and 

connectivity sides. In other words, for each feature we computed the mean value across the 

female and male sex categories and for each participant we removed the corresponding mean 
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from the feature value. Since the data was quite homogeneous in terms of the age, we did 

not correct for this variable. We denote the adjusted data (X, Y ).

2.8. Canonical correlations overview

The steps adopted to run canonical correlation analysis for (X, Y ) are summarized in Fig. 1 

and outlined in detail in the following sections.

Since the number of imaging features was significantly larger than the number of 

participants, to avoid overfitting, we applied regularization to the fMRI features. In this 

study we considered two regularization schemes: the standard l2-norm regularization 

(RCCA method (Leurgans et al., 1993 ; Vinod, 1976)) and a novel group regularization 

(GRCCA method (Tuzhilina et al., 2020)) that takes into account the organization of brain 

connectivity into networks. First of all, we randomly divided the data into a train (80%) and 

test (20%) set, i.e. (Xtrain, Y train) and (Xtest, Y test). The decision of an uneven split was 

made because most of the model fitting and tuning of the hyper parameters is conducted on 

the training data, whereas the test data is used only to validate the canonical correlations. 

Thus, we wanted to make sure that the model would be able to use a large number of 

subjects (N = 515) to capture all the relevant features of the data even if only small 

correlations were present. At the same time, our split also allowed us to leave a large 

enough set to test the correlation (N = 137). The regularization parameters λ and μ (see 

below) were chosen by 10-fold cross-validation in the training set (Xtrain, Y train). Since 

there were some close relatives (e.g. siblings and twins) among participants, to reduce 

the potential correlation between train and test data splits, we ran block cross-validation 

including all family members in the same fold. Let us denote the corresponding 10 folds 

by Xtrain
(1) , Y train

(1) , …, Xtrain
(10) , Y train

(10) . Next, for each combination of λ and μ and for fold 

number k = 1, …, 10 we used Xtrain
( − k), Y train

( − k) , i.e. all but k-th fold, to fit the canonical 

correlation models. Thus, we obtained the coefficient vectors αtrain
( − k) and βtrain

( − k) for the first 

canonical pair. Using these coefficients and the left out fold Xtrain
(k) , Y train

(k)  we computed 

the questionnaire and connectivity first canonical variates Xtrain
(k) αtrain

( − k) and Y train
(k) αtrain

( − k), 

then we measured the correlation between them. Thus, for each fold we calculated the 

correlation ρtrain
(k) = cor Xtrain

(k) αtrain
( − k), Y train

(k) αtrain
( − k) . As the optimal λ and μ, we chose the λ

and μ maximizing the average first canonical correlation ρtrain = 1
10 ∑k = 1

10 ρtrain
(k) . Once the 

regularization parameters were chosen, we ran the canonical correlation algorithm with 

those parameters set to the chosen values on the whole training set Xtrain, Y train . We 

obtained the canonical coefficient vectors αtrain and βtrain, then we used these coefficients 

and the independent test set Xtest, Y test  to calculate the test imaging canonical variate 

Xtestαtrain as well as the test questionnaire canonical variate Y testβtrain. Finally, we measured 

test canonical correlation as ρtest = cor Xtestαtrain, Y testβtrain .
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2.9. Correlation validation via permutation test

To check the significance of the obtained correlation ρtest we applied a permutation test as 

follows. First we permuted the rows of Y train thereby breaking the relation between Xtrain

and Y train; we denote the resulting matrix by Y train
perm. We used (Xtrain, Y train

perm) and, as in 

the previous section, we applied GRCCA with the chosen λ and μ to compute αtrain
perm and 

βtrain
perm. Then we permuted the rows of Y test. Denoting the result by Y test

perm we evaluated the 

permuted test correlation as ρtest
perm = cor Xtestαtrain

perm, Y test
permβtrain

perm . We repeated this procedure 

1000 times, thus obtaining the null distribution for the test correlation. We positioned the 

actual test correlation ρtest in this distribution and computed the p-value as the relative 

frequency of the event ρtest < ρtest
perm . We considered as our final results only correlations 

for which this p-value was < 0.05.

2.10. Evaluating canonical pairs beyond the first

For correlations having a p-value of ρtest < 0.05, we also investigated all canonical pairs 

beyond the first (six in total). To check if they were informative, we computed an aggregated 

measure of correlation between all canonical variates. Specifically, if αtrain1 , βtrain
1 , …, 

αtrain
6 , βtrain

6  represent canonical coefficients corresponding to six canonical pairs, then 

V test = Xtestαtrain1 , …, Xtestαtrain
6  and Utest = Y testβtrain

1 , …, Y testβtrain
6  represent matrices 

containing six imaging and six questionnaire canonical variates, respectively. We measured 

the aggregated correlation as the first correlation obtained by CCA conducted for the pair 

V test, Utest . Hereafter we denote this aggregated correlation measute by ρtestCCA. Note that no 

regularization is required for CCA this time, since the data contains only 6 features on both 

sides. This approach is grounded upon two considerations. First, it is a generalization of the 

method we used to measure the performance on the test set based on the correlation between 

first variates. Second, computing the first CCA correlation is equivalent to measuring the 

cosine of the principal angle between canonical subspaces (Zhu and Knyazev, 2013). In 

other words, it measures how close the two canonical subspaces spanned by the six pairs 

of canonical variates are. To test the significance of the aggregated correlation we once 

again obtained the null distribution for ρtestCCA via permutation testing as outlined above and 

computed a p-value. We considered the canonical pairs beyond the first informative if this 

p-value was < 0.05.

2.11. Canonical correlations implementation

To conduct RCCA we used the rcc() function from the CCA R package. Since this function 

is not able to handle matrices with a large number of features (X has 71,631 fMRI features 

in our case), we could not apply it directly to the data. To get around the dimensionality 

issue we applied the “Kernel Trick ”((Tuzhilina et al., 2020) but see ( Hardoon et al., 

2004 ; Mihalik et al., 2020 ) for similar implementations): rather than computing canonical 

coefficients in 71,631 column space we did all the computations in 652 row space. To 

achieve this, we proceeded as follows. First, we decomposed the matrix X of size 652 
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×71,631 into the product of a square matrix R (of size 652 ×652) and a rectangular 

matrix V T  (of size 652 ×71,631). Here V is a matrix with orthogonal columns. There is 

mathematical proof that the RCCA problem for the original data (X, Y ) can be reduced to 

the RCCA problem for the low-dimensional data pair (R, Y ). Specifically, one can show 

that the canonical variates calculated for (X, Y ) are equal to the ones computed for (R, Y ). 
Moreover, the original RCCA coefficient vector α can be easily recovered from αR, i.e. the 

coefficient vector calculated for the pair (R, Y ), via the linear relation α = V αR. Therefore, 

running regularized CCA for the original wide fMRI matrix X is equivalent to applying the 

rcc() function to a small square matrix R. For this approach during the cross-validation (see 

above), we tested 9 different values of the regularization parameter: λ = 10−2, 10−3, …, 106

for the Rest task data and λ = 10−6, 10−5, …, 102 for the Emotion task data.

2.12. RCCA accounting for shared properties between brain regions (group RCCA)

Note that standard RCCA utilizing l2-norm as a regularization term has a property of 

shrinking CCA coefficients to zero with the growth of the penalty factor λ. It treats 

all the features equally thereby ignoring any underlying data structure. We developed a 

novel algorithm by exploiting the presence of a group structure of the fMRI features 

(induced by the brain networks). The procedure, that we call group RCCA (GRCCA), 

is a modification of Regularized Canonical Correlation Analysis that integrates the group 

structure into the regularization scheme ( Tuzhilina et al., 2020 ). Specifically, we divided 

our original 379 regions into 14 networks. To do so, we grouped the original cortical 

regions into 12 established networks: Visual primary, Visual secondary, Somatomotor, 

Cingulo-opercular, Dorsal-attention, Language, Frontoparietal, Auditory, Default, Posterior­

multimodal, Ventral-multimodal, Orbito-affective ( Ji et al., 2019 ). To these, we added a 

Subcortical and a Cerebellar network. This resulted in dividing 71,631 fMRI connectivity 

features in 105 groups (each corresponding to a pair of networks). Further, in the standard 

RCCA problem we replaced the l2-norm constraint, which limits the deviation of all the 

CCA coefficients form zero, by constraints on within and between group variations. The 

first constraint restricted the deviation of the CCA coefficients from the corresponding 

group means thereby stimulating the homogeneity of coefficients inside each group. The 

second constraint limited the deviation of the group means from zero thereby encouraging 

the sparsity on a group level. These two constraints resulted in two hyperparameters: a 

penalty factor λ (controls within group variation) and a penalty factor μ (controls between 

group variation). During the cross-validation (see above), we tested the following grid of the 

regularization parameters: λ = 10−4, 10−3, …, 104 and μ = 10−4, 10−3, …, 104.

2.13. Interpretation and visualization of canonical pairs

The RCCA and GRCCA analyses returned a weight (canonical coefficient) for each edge 

of the fMRI connectivity matrix for each canonical pair. To interpret these weights, we 

provide six visualizations for the canonical pair surviving the permutation testing. The 

first represents the correlation ρtest between the questionnaire and connectivity scores (i.e. 

canonical variates Xtestαtrain and Y testβtrain), with a scatterplot representing the score values 

per participant. The second is the weights βtrain that were given to the questionnaires by this 
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procedure. The third visualization is a 379 ×379 matrix showing the fMRI weights αtrain
given to each edge of the connectivity matrix, ordered by network. The fourth is a 14 ×14 

matrix showing the same weights averaged by network. For the fifth and sixth visualizations, 

we used the Brain Connectivity Toolbox to calculate the sum of the positive and negative 

weights of connections involving each region (a measure known as “strength ”of a network 

node ( Rubinov and Sporns, 2010 )). These are then shown on an inflated brain.

3 Code and data availability

The code used for the generation of the connectivity matrices and visualizations is 

available at: https://github.com/leotozzi88/rcca_HCP_emotion. The code for the canonical 

correlations analysis is available at: https://github.com/ElenaTuzhilina/Connectome. 

All data used is available at https://db.humanconnectome.org and is accessible 

in compliance with the WU-Minn HCP Consortium Open Access Data Use 

Terms (https://www.humanconnectome.org/study/hcpyoung-adult/document/wu-minn-hcp­

consortium-open-access-data-use-terms).

4. Results

4.1. Sample characteristics

The final sample characteristics are presented in Table 1. Results in the sample for the NIH 

Emotion Toolbox battery were in line with those of a healthy population as expected, with 

means ranging from 46.324 to 51.783 (reference population=50) and standard deviations 

from 7.948 to 8.913 (reference population=10).

4.2. Canonical correlations

GRCCA consistently outperformed RCCA (i.e. returned higher correlations in the cross­

validation), therefore we only tested GRCCA results in the held-out test set.

4.2.1. Emotion task—When selecting the regularization parameters as the ones 

returning the highest correlation between self-report and imaging features for the first 

canonical pair, for RCCA, the optimal regularization parameter was λ = 0.001 (mean r 
= 0.095 across cross-validation folds, Fig. S3). Using GRCCA, the best regularization 

parameters were λ = 0.01 and μ = 100 (mean r = 0.136 across cross-validation folds) (Fig. 

S4). The correlation obtained by GRCCA did not generalize to the held-out test data (r = 

0.075, permutation test p = 0.17, Fig. S5).

4.2.2. Rest—When selecting the regularization parameters as the ones returning the 

highest correlation between self-report and imaging features for the first canonical pair, 

for RCCA, the optimal regularization parameter was λ = 100 (mean r = 0.148 across 

cross-validation folds, Fig. 2). Using GRCCA, the best regularization parameters were λ 
= 100 and μ = 104 (mean r = 0.158 across cross-validation folds, Fig. 2). The correlation 

between the first canonical variates returned by GRCCA generalized to the held-out test 

data (r = 0.175, permutation test p = 0.021, Fig. S6). However, our permutation measuring 
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the aggregate correlation between canonical subspaces was not significant, so we did not 

consider as results canonical correlations beyond the first (r = 0.371, p = 0.325, Fig. S7).

This canonical variate loaded primarily on anger-aggression (−0.101) (Table 2). The brain 

regions with the highest node positive strength were the anterior cingulate, orbitofrontal 

cortex, superior parietal cortex, auditory cortex and left globus pallidus. The brain regions 

with the highest negative strength were the visual cortex, anterior cingulate, posterior 

cingulate, orbitofrontal cortex and insula (Fig. 3). The brain networks with the highest 

strength was the primary visual network and the brain networks with the highest average 

negative strength were the orbito-affective and ventral multimodal networks (Table 3, Fig. 

3).

5. Discussion

In the present work, we identified a linear relationship between self-reports and function of 

brain circuits relevant to the RDoC Negative Valence System in a large sample of healthy 

individuals. Our goal was to identify biomarkers mapping emotion state to quantifiable 

brain function measures. We make the case that this is necessary to identify precise targets 

to manipulate in subsequent studies of emotion circuits and for future clinical studies in 

populations suffering from mood disorders (Finn et al., 2017).

In this study, we also present the first neuroimaging application of GRCCA, a novel 

algorithm for regularized canonical correlation analyses that takes into account grouping 

of the variables during the regularization scheme. In our specific case, this allowed us 

to group functional connections between brain regions into known functional networks. 

Also, the use of the “kernel trick” makes GRCCA able to handle a much larger number 

of features compared to previous CCA implementations. In our study, this allowed us to 

extend our analyses to the entire functional connectome. Importantly, GRCCA consistently 

outperformed RCCA, i.e. always identified higher test correlations in the cross-validation 

procedure. This indicates that GRCCA is a promising new tool for linking functional 

connectivity measures with data from other units of analysis.

From a methodological point of view, another crucial consideration is that adopting a 

cross-validated and regularized implementation of the CCA algorithm mitigated the inflation 

of results due to overfitting. Indeed, at low values of our regularization parameter the 

correlation between self-report and brain circuit data was extremely high (r > 0.90) in the 

training set but consistently ~0 in the validation set. Even with an adequate regularization, 

the correlations we detected were weak (r < 0.20), suggesting that we were able to 

detect them only because of our well-powered large sample. Furthermore, only one of 

these correlations generalized to a held-out test set. As previously shown by others, our 

results highlight the fundamental need of cross-validation, regularization and testing on 

held-out data for correlational neuroimaging studies to avoid the erroneous reporting of 

unrealistically high effects (Dinga et al., 2019). Indeed, the size of our correlations might 

be in the range of what should be expected from such analyses in the field of Psychology, 

at least in healthy populations (Schäfer and Schwarz, 2019). More in detail, the small effect 

size of our results could be due to several factors. First of all, it is possible that functional 
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connectivity mostly contains information about the current functional brain state and not 

about past states. This is in contrast with the measures of the NIH Emotion toolbox, in 

which some questionnaires refer to experiences extending up to several days before the 

scan and other to stable personality traits. It could also be that the relationship between 

functional connectivity and emotional states is complex or indirect and that its quantification 

requires more sophisticated modeling techniques compared to what is achieved with an 

exploratory linear method like GRCCA. Finally, our sample mean and standard deviation 

on the NIH Emotion toolbox was perfectly in line with the negative emotion values of a 

healthy reference population. A sample containing clinical participants (e.g., suffering from 

mood disorders) might have a larger variability of self-reports of negative valence as well 

as more extreme values. Therefore, future studies could use GRCCA to link functional 

connectivity and self-reported negative emotion in such populations. We speculate that in 

that case, stronger effects could be detected.

Using GRCCA, we identified only one canonical pair relating emotional states to brain 

function at Rest that generalized to the held-out test set. This canonical pair provides novel 

insights into the brain circuitry underlying negative emotion. Interestingly, it had strong 

negative loading especially on Anger-aggression, which was one of the two scales of the 

NIH Emotion toolbox assessing negative emotion over a much longer period of time (“in 

general”), compared to over the past 7 days. This might suggest that what is being captured 

in resting state functional connectivity is more similar to a “trait” characteristic which 

relates to emotional phenomena lasting for a longer time before the scan, which is in line 

with our rationale for including Rest data in our analyses. The final canonical pair had 

high loadings in the connections involving the cingulate cortex, the orbitofrontal cortex 

and insula. Among subcortical regions, the globus pallidus was also highly loaded. These 

regions are all known to be involved in emotional regulation and our result might reflect this 

aspect of their function (Frank et al., 2014). When considering brain networks more broadly, 

the canonical pair had positive loadings on the primary visual network as well as negative 

loadings in the orbito-affective and the ventral multimodal networks. The high loadings 

in the visual network were surprising and suggest that connectivity of this network is a 

potentially understudied target for future research into the functional correlates of negative 

emotion. Concerning the orbito-affective and ventral multimodal networks, they were only 

recently identified (Ji et al., 2019). The orbito-affective network encompasses cortical and 

subcortical regions associated with reward processing and is modulated differentially by 

rewarding stimuli (Ji et al., 2019). This suggests that it might have a role in the processing 

of pos- itive emotion, which might explain its negative loading in our analysis focused on 

finding correlates of negative emotion. The ventral multimodal network, on the other hand, 

consists of the ventral surface of the temporal lobe and extends to the right ventral striatum 

and hippocampus. The function of this network is unclear, but it has been hypothesized to 

represent higher-order semantic categories (Ji et al., 2019). We suspect that, in our results, 

the high negative loading of this network might be rather related to the known function of 

these regions in the processing of emotion (Frank et al., 2014). In particular, it might suggest 

that dysregulation of this network is related to excessive negative emotion.

Concerning the Emotion task, we found no canonical pairs in this condition that survived 

our permutation testing on the held-out test set. One possible explanation of these null 
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findings might lie in the fact that functional connectivity measures are more reliable the 

longer the duration of the scan. Good reliability of a measure is needed to test whether it is 

related to other ones that vary substantially across individuals (Anderson et al., 2011; Birn et 

al., 2013; Elliott et al., 2019; Noble et al., 2019; Termenon et al., 2016; Tozzi et al., 2020). 

In the HCP data we used for the current analysis, the Emotion task was comparatively much 

shorter than the Rest scan (4:32 versus 30 min.). Thus, it is possible that longer scans are 

needed to obtain reliable functional connectivity estimates that can be linked to individual 

characteristics.

Our study was not without limitations. First of all, we were unable to validate our GRCCA 

results in a completely independent sample, since we could not find a public dataset 

containing the same self-report. Nevertheless, we used regularization and cross-validation 

to mitigate the effects of overfitting and tested our final results in a held-out portion of 

the dataset. Also, our study dataset is much larger than typically reported in the literature. 

Future neuroimaging studies using the NIH Emotion battery should consider making their 

data public to enable replication of our results. Another limitation was that we computed 

functional connectivity during our task in the same way we did it for resting state data. 

We adopted this strategy because it is commonly used and because it allowed us to easily 

compare the same measure between the two conditions. However, a very recent study has 

claimed that task functional connectivity computed in this way may produce false positives 

compared to computational models that allow for a flexible task-evoked BOLD response 

shape (Cole et al., 2019). Thus, it is possible that computing functional connectivity during 

specific conditions or comparing functional connectivity between different conditions might 

have returned results for the Emotion task. Doing so constitutes a promising avenue for 

future research which could also be facilitated by our novel GRCCA algorithm. We want 

to acknowledge the small effect size of the correlation we detected with our exploratory 

approach in this sample. Caution is warranted in the interpretation of such small effects 

and, in any case, they suggest that future studies wishing to investigate correlations 

between functional connectivity and self-reports of negative emotion might need very large 

samples. Finally, we also find that the complex multivariate patterns returned by canonical 

correlations make a direct neurobiological interpretation of our findings challenging. 

Nevertheless, we hope our results will inform future studies even just by showing that 

functional connectivity measures related to self-reported negative valence are distributed in 

the brain, involving sometimes even understudied or newly discovered networks.

In sum, we show that task-free resting state functional connectivity might be a promising 

target to identify correlates of self-reported negative emotion. We do so by using a novel 

algorithm for canonical correlation analyses that accounts for the grouping of functional 

connectivity measures into known brain networks. Functional connections involving the 

visual, auditory, cingulate, the orbitofrontal cortices and insula as well as the globus pallidus 

relate to self-reports of negative emotion in the days preceding the scan. Furthermore, the 

visual, orbito-affective and multimodal networks are promising targets for future research 

investigating negative valence across units of analysis in the resting state. Crucially, we 

highlight the need of cross-validation, regularization and testing on held-out data for 

correlational neuroimaging studies to avoid inflated effects.
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Fig. 1. 
Summary of the canonical correlation analysis. We divided the data into train and test 

sets. Then, we chose regularization parameters by 10-fold cross-validation on the training 

set as the ones maximizing the first canonical correlation across folds. Then, we validated 

the canonical correlation weights obtained from the training set in the test set using a 

permutation test. Finally, we investigated canonical pairs beyond the first by calculating an 

aggregated correlation between canonical subspaces and also validating it using permutation 

testing. See methods for details. HCP=Human Connectome Project.
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Fig. 2. 
RCCA and GRCCA cross-validation for Rest data to select hyperparameters maximizing 

the first canonical correlation. Top: mean correlation and standard error confidence intervals 

(y-axis) for the first canonical component for 9 different values of λ = 10−6, 10−5, …, 

102 (x-axis) across the train (left) and test (right) splits generated by the cross-validation 

procedure using RCCA. Bottom: mean correlation and standard error confidence intervals 

(y-axis) for the first canonical component for 9 different values of λ = 10−4, 10−3, …, 

104 (x-axis) and 9 different values of μ = 10−4, 10−3, …, 104 (line colors) across the 

train (left) and test (right) splits generated by the cross-validation procedure using GRCCA. 
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GRCCA=group regularized canonical correlation analysis, RCCA=regularized canonical 

correlation analysis.
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Fig. 3. 
Visualization of Rest canonical pair 1. A: correlation between the scores derived for the 

brain and questionnaire features. B: weights given to the questionnaires. C: matrix of the 

weights given to each edge of the connectivity matrix, ordered by network. D: the same 

weights averaged by network. E: sum of the positive weights of connections involving 

each region (node strength). F: sum of the negative weights of connections involving each 

region (node strength). VIS1=visual primary, VIS2=visual secondary, SMM=somatomotor, 

COP=cingulo-opercular, DAN=dorsal attention, LAN=lateral attention, FPN=fronto­
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parietal, AUD=auditory, DMN=default mode, PMM=posterior multimodal, VMM=ventral 

multimodal, OAN=orbito-affective, SC=subcortical, CER=cerebellum. The 14 functional 

network boundaries are overlaid in black.
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Table 1

Sample characteristics.

N 652

Sex F = 359, M = 293

Age 28.802 ± 3.663

Anger-affect 47.743 ± 8.197

Anger-hostility 49.885 ± 8.501

Anger-aggression 51.711 ± 8.913

Fear-affect 50.082 ± 8.015

Fear-somatic 51.783 ± 8.250

Sadness 46.324 ± 7.948

Mean and standard deviation are given for each continuous measure.
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Table 2

Questionnaire weights for the Rest canonical variate generalizing to the held-out test data.

Questionnaire Weight

Anger-affect −0.029

Anger-hostility 0.002

Anger-aggression −0.101

Fear-affect 0.020

Fear-somatic 0.056

Sadness −0.018

Loadings of the questionnaires of the NIH Emotion toolbox returned by GRCCA for the only component that survived permutation testing in the 
held-out test set. GRCCA=group regularized canonical correlation analysis.
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Table 3

Network weights for the Rest canonical variate generalizing to the held-out test data.

Positive network strength Negative network strength

Visual primary 5.55E-06 1.86E-06

Visual secondary 1.83E-06 3.72E-07

Somatomotor 1.60E-06 8.46E-07

Cingulo-opercular 1.64E-06 9.81E-07

Dorsal attention 1.52E-06 1.16E-06

Lateral attention 3.03E-06 2.03E-06

Fronto-parietal 2.01E-06 7.56E-07

Auditory 2.23E-06 2.30E-06

Default mode 4.45E-07 6.62E-07

Posterior multimodal 1.94E-06 1.77E-06

Ventral multimodal 2.32E-06 4.06E-06

Orbito-affective 1.20E-06 4.31E-06

Subcortical 2.95E-06 5.25E-07

Cerebellum 3.69E-06 2.60E-06

Loadings of the functional brain connections returned by GRCCA for the only component that survived permutation testing in the held-out test 
set. For brain data, we computed the average weights of connections within and between each network and summed the weights of the resulting 
connections involving each network (strength). GRCCA=group regularized canonical correlation analysis.
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