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ABSTRACT: Recent studies have shown that the concentrations of proteins expressed
from orthologous genes are often conserved across organisms and to a greater extent
than the abundances of the corresponding mRNAs. However, such studies have not
distinguished between evolutionary (e.g., sequence divergence) and environmental
(e.g., growth condition) effects on the regulation of steady-state protein and mRNA
abundances. Here, we systematically investigated the transcriptome and proteome of
two closely related Pseudomonas aeruginosa strains, PAO1 and PA14, under identical
experimental conditions, thus controlling for environmental effects. For 703 genes
observed by both shotgun proteomics and microarray experiments, we found that the
protein-to-mRNA ratios are highly correlated between orthologous genes in the two
strains to an extent comparable to protein and mRNA abundances. In spite of this high
molecular similarity between PAO1 and PA14, we found that several metabolic,
virulence, and antibiotic resistance genes are differentially expressed between the two
strains, mostly at the protein but not at the mRNA level. Our data demonstrate that the magnitude and direction of the effect of
protein abundance regulation occurring after the setting of mRNA levels is conserved between bacterial strains and is important
for explaining the discordance between mRNA and protein abundances.
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■ INTRODUCTION

Recent systematic studies have shown that mRNA and protein
abundances within an organism are less correlated than
expected both in eukaryotes1−5 and prokaryotes.2,5−8 Surpris-
ingly, the abundances of orthologous proteins in Caenorhabditis
elegans and Drosophila melanogaster were shown to be highly
conserved and correlated better with each other (Rs = 0.79)
than with the corresponding mRNA concentrations within each
organism (Rs = 0.44 in C. elegans and Rs = 0.36 in D.
melanogaster).3 A later analysis of seven different organisms
(two prokaryotes and five eukaryotes) confirmed that
orthologous protein abundances were generally more corre-
lated between organisms than the abundances of mRNA and
protein within organisms.2 On the basis of these comparisons,
we hypothesized that each protein may exhibit an evolutionarily
conserved preference for certain steady-state abundances but
that the precise mechanisms employed to set these levels (i.e.,
the relative contributions played by transcriptional, post-
transcriptional, translational, and/or degradative processes)
may differ between organisms.9 Thus, the degree to which
mRNA-level and post-mRNA-level processes contribute to the
setting of a given protein’s steady-state abundance may differ

between organisms provided that the final target levels of the
protein are properly set.
Although it is technically difficult to measure the

contributions of transcriptional and post-transcriptional pro-
cesses to establishing mRNA and protein abundances inside
cells,4 by measuring steady-state levels under defined conditions
it is possible to identify differences in protein and mRNA
abundances. Such differences indicate potential cases of post-
transcriptional regulation. (Note that we will generally use the
term post-transcriptional to indicate the combined effect of all
forms of protein abundance regulation acting after the setting of
mRNA levels, including translational and degradative mecha-
nisms.) In particular, protein-to-mRNA ratios form a simple
summary statistic that is useful both for detecting specific genes
likely to be regulated post-transcriptionally and for measuring
the evolutionary conservation of all post-transcriptional
regulatory processes.
Several previous studies have measured protein and mRNA

abundances in bacteria.2,6−8,10−12 However, these have never
been compared across multiple bacterial species or strains.
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Protein and mRNA abundances in Desulfovibrio vulgaris were
analyzed under multiple growth conditions;6,7 however,
because of low mass spectrometry resolution, the number of
proteins consistently observed under multiple conditions
allowed only for the investigation of global trends in post-
transcriptional regulation. Similarly, protein abundances from
Mycoplasma pneumoniae were measured under different growth
conditions8 and integrated with previously published tran-
scriptome data.10 The protein and mRNA abundances were not
correlated within M. pneumoniae, and the authors concluded
that post-transcriptional regulation plays a large role in this
bacterium. However, it is difficult to compare these results to
those of other species because of the small number of M.
pneumoniae genes. More advanced techniques, such as single-
cell imaging combined with in situ hybridization11 and
transcriptome profiling with short-read sequencing (RNA−
seq),12 have been used to measure protein and mRNA
abundances in bacteria. Such studies have confirmed that
mRNA abundances are insufficient to predict protein
abundances and that some key regulatory genes, including
virulence factors, are post-transcriptionally regulated. However,
published studies have used different growth conditions for
each bacterium, so it is difficult to determine whether the
divergences between protein and mRNA abundances are
conserved for orthologous genes across organisms.
To investigate the divergence of protein and mRNA

expression when controlling for sequence divergence, we
measured the protein and mRNA concentrations of 703
genes from two strains of the bacterium Pseudomonas
aeruginosa, strain PAO113 and strain UCBPP-PA1414 (hereafter
referred to as PAO1 and PA14). Although these two strains
have highly similar genomes (96.7% of total PAO1 genes and
90.7% of total PA14 genes are orthologous as one-to-one
relations), previous studies have reported that they are
physiologically quite different, including virulence in various
model organisms.15,16 Both strains were grown under identical
conditions, and mRNA and protein abundances were measured
using the identical microarray and LC−MS/MS platforms.
Because the majority of genes are highly conserved at the
nucleotide sequence level between these strains, any measure-
ment bias derived from divergence between orthologous genes
is therefore minimized. We further controlled for such bias by
limiting our analyses to microarray probes with perfect matches
to the corresponding genomes.
We confirmed previous observations that protein and mRNA

abundances between the two strains are more correlated than
the protein and mRNA abundances within each strain.2 We
further showed that the protein-to-mRNA ratios between
PAO1 and PA14 are well-correlated, suggesting that mecha-
nisms regulating protein abundances downstream of tran-
scription are conserved. Despite this high correlation, there
were important differences between the two strains, and we
showed that in these cases protein and mRNA measurements
can be used to identify post-transcriptional regulation.

■ MATERIALS AND METHODS

Strains and Growth Conditions

P. aeruginosa PAO113 (a subline from Barbara Iglewski) and
UCBPP-PA1414 were grown in 25 mL of synthetic cystic
fibrosis sputum medium (SCFM) in 250 mL flasks, which
mimics the nutritional environment of the cystic fibrosis lung,17

at 37 °C with shaking at 250 rpm. Cells were harvested at an

OD600 from 0.4 to 0.5. We performed two biological replicates
for each experiment. Cells for transcriptome and proteome
analyses were not collected simultaneously, but they were
grown under identical conditions. We also performed growth
curve assays by diluting overnight cultures grown in SCFM to
OD600 0.01 in 25 mL of SCFM (using 250 mL flasks). Cells
were grown at 37 °C with shaking at 250 rpm. The OD600 was
measured every 30 min to generate a growth curve, from which
the doubling time (30−40 min for both strains) was
determined (data not shown).

DNA Microarrays

The detailed microarray protocol has been described else-
where.2,18 Briefly, cultures were mixed 1:1 with RNAlater
(Ambion), an RNA-stabilizing agent. RNA was isolated using
the RNeasy mini kit (Qiagen), and cDNA was prepared for
hybridization to Affymetrix GeneChip microarrays (array
identifier Pae_G1a). GeneChips were washed, stained, and
scanned using an Affymetrix fluidics station at the University of
Iowa DNA core facility. These data are available at the NCBI
GEO database (accession number GSM546278−GSM546281)
as part of a previous study.18

Transcriptome Analyses

We preprocessed microarray CEL files with the RMA method
using the af fy package (version 1.32.1)19 in R (version 2.14.1)
with default options. To assign microarray probesets to genes,
we downloaded probe sequences from the Affymetrix Web site
(http://www.affymatrix.com) and mapped them to both the
PAO1 genome (GenBank accession number NC_002516.2)20

and the PA14 genome (GenBank accession number
NC_008463.1)21 using Exonerate (version 2.20).22 Probes
that mapped uniquely were then remapped to P. aeruginosa
PAO1 and PA14 cDNA sequences (downloaded from
PseudoCAP,23 version 2009-Nov-23). We assigned probe sets
to genes if 12−14 probes in a probeset were mapped to a single
gene. Differential expression analysis between the two strains
was conducted using an empirical Bayesian method imple-
mented in the limma package (version 3.10.3).24 Genes with
greater than 2-fold changes and less than 0.05 false discovery
rate (FDR) cutoffs were considered differentially expressed.

LC−MS/MS Proteomics Experiments

The detailed proteomics protocol was described in a previous
study.2 Briefly, cells were lysed three times with a French press,
and cellular lysate was collected from the supernatant after
centrifugation for 20 min at 10 000 rpm. Lysis buffer consisted
of 25 mM Tris-HCl (pH 7.5), 5 mM DTT, 1.0 mM EDTA, and
1× CPIOPS (Calbiochem protease inhibitor cocktail). Fifty
microliters of diluted cell lysate (2 mg/mL; diluted with 50 mM
Tris-HCl buffer) was incubated at 55 °C for 45 min with 50 μL
of trifluoroethanol (TFE) and 15 mM dithiothreitol (DTT)
and was then incubated with 55 mM iodoacetamide (IAM) in
the dark for 30 min. After diluting the sample to 1 mL with
buffer (50 mM TrisHCl, pH 8.0), 1:50 w/w trypsin was added
for a 4.5 h digestion, which was then halted by adding 20 μL of
formic acid, resulting in 2% v/v. The sample was lyophilized,
resuspended with buffer C (95% H2O, 5% acetonitrile, and
0.01% formic acid), and contaminants removed with C18 tips
(Thermo Fisher). The eluted sample was again lyophilized,
resuspended with 120 μL of buffer C, and filtered through a
Microcon-10 filter (for 45 min at 14 000g at 4 °C). Each sample
was injected five times into an LTQ-Orbitrap Classic mass
spectrometer (Thermo Electron; mass resolution 60 000; top12
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ms2 selection strategy), and data were collected in a 0−90%
acetonitrile gradient over 5 h with a Agilent Zorbax C18
column. The raw files from the MS/MS experiments are
available at http://www.marcottelab.org/index.php/PSEAE_
ref.2013, and the data were also deposited to the
ProteomeXchange under identifier PXD000684.

Proteomics Analyses

RAW files were searched independently using the P. aeruginosa
PAO1 and PA14 protein sequence database (downloaded from
the PseudoCAP database, version 2009-Nov-23).23 The
database for each strain contained the same number of
randomly shuffled protein sequences as the decoy database.
We used Bioworks/SEQUEST (Thermo Electron; version
3.3.1 SP1),25 X!Tandem with k-score (version 2009.10.01.1
LabKey and ISB, included in TPP 4.3.1 package),26,27 InsPecT
(version 20100331),28 and MS-GFDB (version 06/16/2011)29

for the database search. We used the same search parameters as
described previously30 except that MS-GFDB was newly added
for the current study (with the settings −t 300 ppm −c13 1 −
nnet 0 −n 2). Then, we combined these results with
MSblender30 and considered peptide−spectrum matches with
an estimated FDR less than 0.01. Subsequently, we calculated
APEX scores5,31 with weighted spectral counts per protein
(using a FDR < 0.01 estimated by MSblender). Because
MSblender only provides peptide-level probabilities, we set
each protein probability as 1.0 using the original APEX formula

=
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×
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To estimate Oi values for each protein, we analyzed both
SEQUEST and X!Tandem results of each biological replicate
with PeptideProphet26 and ProteinProphet,32 and this output
was then used with the APEX GUI program.33 APEX Oi values
were trained on proteins with ProteinProphet probabilities
greater than 0.99 using a FDR < 0.01. We used 25 000

(arbitrary unit of protein concentration) as the APEX
normalization constant. We confirmed that the Oi values
calculated with SEQUEST results and those from the X!
Tandem results were well-correlated, and we used the mean of
these values as the representative Oi values for individual
proteins. Oi values for both strains and all proteomics analysis
data are available at http://www.marcottelab.org/index.php/
PSEAE_ref.2013.
Differentially expressed proteins were identified using

QSPEC (version 2; 5000 burn-ins and 20 000 iterations; a 2-
fold change and FDR < 0.05 were required to determine
differentially expressed proteins)34 on normalized APEX scores.
Genes were omitted from the differential expression analysis if
the sum of two strains’ APEX scores was less than 1.0. For
MS1-intensity-based quantification, we analyzed same data with
MaxQuant35 (version 1.4.1.2) using the default option.
Orthology and 5′ Sequence Analysis

To define orthologous genes between PAO1 and PA14, we
used InParanoid (version 4.1)36 with protein sequences of each
strain downloaded from PseudoCAP (version 2009-Nov-23).
To analyze the 5′ sequences of cDNAs containing the Shine−
Dalgarno motif, we extracted 50 bp DNA fragments around the
translational start site of each gene (from −25 to +25 bp) and
calculated the Gibbs free energy of hybridization to the 3′ end
of 16S rRNA (33 bp for PAO1 and 31 bp for PA14; PAO1
differs in having an extra AA at the end). This analysis used the
modified melt.pl wrapper script in UNAfold (version 3.8)37 and
the associated hybrid-min program.
Other Statistical Analyses

Translationally repressed genes (those for which no protein
was observed in the shotgun proteomics analysis in spite of
reasonably high mRNA abundance) were identified on the basis
of calculating two mRNA abundance distributions for genes
with or without accompanying protein observations. We
identified the mRNA abundance value for which a protein
had a ≥80% chance of being observed by proteomics. To
increase the stringency further, we sorted all genes with mRNA
signals greater than the 80% protein observation threshold, and

Figure 1. mRNA and protein concentrations are highly correlated between P. aeruginosa strains. (A) Correlation between mRNA abundances from
P. aeruginosa PAO1 and PA14 strains. (B) Correlation between protein abundances from PAO1 and PA14. (C) Correlation between protein and
mRNA abundances in PAO1. (D) Correlation between protein and mRNA abundances in PA14. Genes were considered to be differentially
expressed (DE) if they exhibited a greater than 2-fold expression change and an FDR < 0.05 for both protein and mRNA. Genes without protein
observations in either PAO1 or PA14 and genes with high variation between biological replicates are omitted (see Supporting Information Figures
S1 and S2 for details). A total of 703 genes are presented (3 DE mRNA genes, 72 DE protein genes, and 3 DE both genes; see the text for details).
DE mRNA: differentially expressed genes at the mRNA level but not at the protein level between two strains. DE protein: differentially expressed
genes at the protein level but not at the mRNA level. DE both: differentially expressed genes at both the mRNA and protein level. SpR: Spearman
rank correlation.
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we removed the genes with the lowest 20% of all mRNA
abundance (PAO1 cutoff is 691.0 and PA14 cutoff is 758.0). To
identify genes with high or low protein-to-mRNA ratios
(Supporting Information Table S4), we calculated protein-to-
mRNA ratios of all 703 gene pairs identified in both strains
using the mean of the two replicates and then selected the top
50 and bottom 50 genes of the list. For KEGG pathway
enrichment analyses, we considered proteins observed in at
least one strain or mRNAs observed in both PAO1 and PA14 as
a background for testing pathway enrichment. p values of
enrichment were estimated by measuring random chances that
equal to or greater than the number of reported genes in each
pathway were selected among 10 000 trials.
Chloramphenicol Disk Diffusion Assay

PAO1 and PA14 were diluted to OD600 ∼0.01 in 25 mL of
SCFM in 250 mL flasks. Cells were grown at 37 °C with
shaking at 250 rpm until they reached the exponential phase
(OD600 0.4−0.6), at which point they were spread on half of an
SCFM agar plate using a sterile cotton swab. Sterile discs
containing 0, 1.5, and 2.5 mg/mL chloramphenicol were placed
on the plates, which were then incubated overnight at 37 °C.
Three biological replicates were performed.

■ RESULTS

Strong Correlation and Evolutionary Conservation of
Protein and mRNA Abundances

To investigate the relationship between protein and mRNA
abundance in two strains of the same species, we first analyzed
the correlation between protein and mRNA abundances in P.
aeruginosa strains PAO1 and PA14. We were able to detect
5345 mRNAs and 1652 proteins in both strains when
considering only one-to-one orthologues. Although all
detectable mRNAs and proteins were used to determine
differential expression, to focus on the highest accuracy
measurements, we analyzed the 703 gene pairs with consistent
protein abundances in both strains for all correlation analyses
(summarized in Figure 6; all values before filtering are available
in Supporting Information Table S7). As shown in Figure 1,
both the protein and mRNA abundances were highly correlated
between PAO1 and PA14 (Rs = 0.95 for mRNA and Rs = 0.89
for protein), which is better than the correlation observed
between protein and mRNA abundance within each strain (Rs
= 0.64 for PAO1 and Rs = 0.65 for PA14). In contrast to
previous studies showing that the correlation in protein
abundance is higher than that of mRNA abundance,2,3,38 we
observed a better correlation between mRNA abundances than
for protein abundances. This may reflect the high degree of
relatedness between these strains. Alternatively, previous
studies measured mRNA abundance in heterogeneous cell
types and in organisms grown under different conditions,2,3 so
it is possible that mechanisms setting transcript abundance are
more sensitive than mechanisms setting protein abundance.
Next, we investigated the differentially expressed genes

between PAO1 and PA14. Among the 5377 gene pairs with
probesets on the Affymetrix microarray, 150 genes were
significantly differentially expressed at the mRNA level
(Supporting Information Table S1). Similarly, among the
1730 gene pairs with associated protein abundances, 279 genes
were significantly differentially expressed at the protein level
(Supporting Information Table S2). Among the 703 genes that
we analyzed for correlation between the two strains, 75 gene
pairs with differential protein expression and 6 gene pairs with

differential mRNA expression (3 gene pairs with differential
expression of both protein and mRNA) were identified.
Many of the gene pairs that were significantly differentially

expressed between the two strains at the protein level (red
circles in Figure 1B) did not show differences at the mRNA
level (red circles in Figure 1A), suggesting that these genes are
post-transcriptionally regulated. These differentially expressed
proteins between the two strains did not exhibit systematic
trends in the correlation between protein and mRNA within
each strain (red circles in Figure 1C,D), so neither the protein
nor the mRNA abundances themselves are the major factors of
inconsistency between them. Compared to the genes differ-
entially expressed at the protein level, only a few genes that
were differentially expressed at the mRNA level were included
in this analysis because most of those (96 out of 150) identified
as differentially expressed at the mRNA level between PAO1
and PA14 were not observed in the shotgun proteomics
analysis (the sum of the APEX scores for all four biological
samples was less than 1.0), likely because of their low
abundance.

Protein-to-mRNA Ratios Are Evolutionarily Conserved

The higher correlation in both protein and mRNA abundances
between the two strains, compared to the mRNA and protein
abundances within each strain, led us to speculate that the
protein-to-mRNA ratios should also be highly correlated
between the strains. As shown in Figure 2, the protein-to-
mRNA ratios between the strains were indeed highly correlated
(Rs = 0.84) and were considerably higher than the correlation

Figure 2. Protein-to-mRNA ratios are well-conserved between P.
aeruginosa strains. Correlation of protein-to-mRNA ratios between
PAO1 and PA14. Protein-to-mRNA ratios were calculated as the ratio
of the log2-transformed APEX score to the log2-transformed
microarray signal (ratio is not log transformed). Although the two
strains showed strong correlation in their protein-to-mRNA ratios
(Spearman rank correlation 0.84, p value < 10−9), most genes with
statistically different expression at the protein level also showed a
statistically significant difference between the protein-to-mRNA ratios
from the two strains (red circles). Only genes for which we detected
proteins in both PAO1 and PA14 are presented. DE mRNA:
differentially expressed genes at the mRNA level but not at the
protein level between two strains. DE protein: differentially expressed
genes at the protein level but not at the mRNA level. DE both:
differentially expressed genes at both the mRNA and protein level.
SpR: Spearman rank correlation.
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of mRNA to protein within each strain. We also observed that
most of the differentially expressed genes at the protein level
had different protein-to-mRNA ratios (red circles in Figure
2A), supporting the notion that the differences in protein
abundance between the two closely related strains were
attributable to post-transcriptional regulation.

Differential Expression between the Strains Explains
Phenotypic Differences

Although many studies have used both PAO1 and PA14 as
reference strains, to our knowledge there has not been a
systematic comparison of their molecular characteristics at the
transcriptome and proteome levels. Because the genetic
differences between PAO1 and PA14 are minor, we expected
that phenotypic differences between the two strains might be
predominantly explained by underlying differences in mRNA
and protein abundances. Among the 114 conserved proteins
that had significantly different protein abundances between
PAO1 and PA14, 14 genes also showed significantly different
mRNA expression levels (Table 1).
Differentially expressed genes at both the protein and mRNA

levels included well-known virulence and antibiotic resistance
genes, such as algR and the pqs operon, and the mexEF−oprN
operon. It has been shown that overexpression of mexEF−oprN
increases resistance to chloramphenicol.39 We therefore
hypothesized that PAO1, which shows higher expression of
mexEF−oprN, may exhibit higher resistance to chloramphenicol
compared to PA14. To test this hypothesis, we used a disk
diffusion assay to measure growth inhibition by chloramphe-
nicol. As expected, the zones of inhibition were larger for PA14
with increasing chloramphenicol concentrations, whereas
PAO1 growth was minimally inhibited by chloramphenicol
(Figure 3). Additionally, genes involved in the metabolism of
several amino acids were differentially expressed between
PAO1 and PA14 (Table 2), likely highlighting different
metabolic characteristics of the two strains.

Intrinsic Factors to Control Post-Transcriptional Regulation

We identified 114 differentially expressed proteins between
PAO1 and PA14 (Supporting Information Table S2). Fifty six
of these proteins (49%) also had concordant mRNA levels to

proteins, although only 14 were significant according to our
statistical cutoffs. Higher mRNA levels most likely explain the
differences in protein levels, suggesting that the remaining 58
genes have a different post-transcriptional regulation mecha-
nism. In addition to differences in the gene repertoires between
the two strains, these genes may prove to be a useful resource
for choosing reference strains for P. aeruginosa experiments.
To determine whether differential protein-to-mRNA ratios

for the remaining 58 genes can be explained by ribosomal
binding energy, we analyzed the Shine−Dalgarno motif under
the assumption that high-affinity ribosome binding may
correspond to increased translation efficiency40 (Supporting
Information Table S5). To normalize for the effect of
differential mRNA abundance, we compared protein-to-
mRNA ratios instead of protein abundance. Differences in
protein-to-mRNA ratios for 14 gene pairs (12%) could be
accounted for by differences in ribosome binding energy.
We could not identify the cause of the remaining 39% of

gene pairs with differential protein abundances (Supporting
Information Table S6). In light of the high sequence similarity
of orthologous genes between PAO1 and PA14, we suspect that
intrinsic sequence features, such as sequence length, are
unlikely, in general, to explain these differences. Also, our
group reported that various sequence signatures and mRNA
concentrations can only explain 66% of protein abundances in a
human cell line;1 thus, these sequences may be the target of
extrinsic post-transcriptional regulation such as small non-
coding RNAs or RNA-binding proteins.41

Evidence for Translational Repression

Finally, the systematic measurement of protein and RNA
abundances allowed us to select specific candidate genes for
translational regulation. In particular, if protein abundance is
solely proportional to mRNA abundance and the protein
detection is mainly governed by abundance, then genes with
high mRNA signal but undetected protein should be candidates
for translational repression. To search for such cases, we
identified those genes that were not observed in the shotgun
proteomics experiment but had reasonably high mRNA
expression levels. By comparing mRNA levels of genes for

Table 1. Fourteen Genes with Significantly Different mRNA and Protein Abundances between PAO1 and PA14a

PAO1 identifier
PAO1 protein
abundanceb

PA14 protein
abundanceb

PAO1 mRNA
abundancec

PA14 mRNA
abundancec annotation

PA0997|pqsB 0.0 38.9 36.0 1934.0 homologous to beta-keto-acyl-acyl-carrier protein synthase
PA0998|pqsC 0.0 36.6 27.5 1003.0 homologous to beta-keto-acyl-acyl-carrier protein synthase
PA2235|pslE 4.2 0.0 844.5 32.0 hypothetical protein
PA2493|mexE 43.3 0.3 5211.0 307.0 resistance-nodulation-cell division (RND) multidrug efflux

membrane fusion protein MexE precursor
PA2494|mexF 35.3 0.0 4251.5 246.0 resistance-nodulation-cell division (RND) multidrug efflux

transporter MexF
PA2495|oprN 38.7 0.0 3620.0 186.0 multidrug efflux outer membrane protein OprN precursor
PA2667 15.0 42.0 627.0 2043.0 conserved hypothetical protein
PA2813 4.7 0.0 392.5 141.0 probable glutathione S-transferase
PA4502 0.0 7.8 117.5 833.0 probable binding protein component of ABC transporter
PA4771|lldD 10.5 29.6 709.5 1772.5 L-lactate dehydrogenase
PA4772 0.7 10.8 933.5 2008.0 probable ferredoxin
PA4778 0.0 9.7 266.5 1392.5 probable transcriptional regulator
PA5261|algR 6.6 1.1 207.0 100.0 alginate biosynthesis regulatory protein AlgR
PA5289 5.0 0.0 655.0 190.5 hypothetical protein

aA comprehensive list of differentially expressed genes is available in Supporting Information Tables S1 and S2. A >2-fold-change and FDR<0.05
were applied to detect significant differences both in mRNA and protein. bThe protein abundance value represents the average APEX score of two
biological replicates. cThe mRNA abundance value represents the average normalized microarray signals of two biological replicates.
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which we detected protein to those of which we did not, we
identified an mRNA abundance threshold corresponding to an
80% chance of protein detection (Figure 4). To enrich for true
cases of translational repression further, we additionally filtered

out the 20% of genes with the lowest mRNA abundances
(Supporting Information Table S4). Of the 181 genes identified
as translationally repressed in this analysis, 97 genes showed
significant repression at the protein level in both PAO1 and
PA14.
Using KEGG pathway enrichment analysis, we identified

ribosomal proteins (PA3745, PA4432, and PA5049) with
significantly high protein-to-mRNA ratios. We also found that
genes involved in terpenoid backbone biosynthesis (PA3627
and PA4557), nucleotide excision repair (PA1529 and
PA4234), and one carbon (folate) metabolism (PA0944 and
PA1843) showed low protein-to-mRNA ratios. Genes involved
in oxidative phosphorylation (PA1582|sdhD, PA2643|nuoH,
PA2645|nuoJ, PA2646|nuoK, PA2648|nuiM, and PA4430) had
reasonably high mRNA levels, but we did not detect protein for
them, suggesting that these genes may be translationally
repressed.
Modeling Post-Transcriptional Regulation

If most gene regulation occurred at the level of transcription
and RNA degradation, then we might expect protein abundance
to be directly proportional to mRNA abundance, as a constant
level of protein is translated from mRNA. However, recent
studies show that variation in mRNA concentrations can only
explain a fraction (one-third to one-half) of the resulting
variation in final protein concentrations.1,4,9 On the basis of the
observed conservation of protein-to-mRNA ratios across the
two closely related P. aeruginosa strains, we argue that these
ratios can predict post-transcriptional regulation. To model this,
first we assumed a linear relationship between log-transformed
protein and mRNA concentrations within each organism
(Figures 1 and 3). With the additional assumption of steady
state for both protein and mRNA abundances (degradation and
synthesis are not considered separately, and they are assumed
to be constant across the cell population over time), their linear
relationship can be described as

α ε= +P MspeciesX,geneY speciesX speciesX,geneY

Figure 3. . Differential expression of the mexEF−oprN operon explains
differential chloramphanicol resistance in P. aeruginosa PAO1 and
PA14 strains. (A) Protein expression levels of MexEF−OprN in PAO1
and PA14. Two biological replicates are plotted for each strain, as
shown by the same color bars. In PA14, we could not detect MexF or
OprN, and the protein abundance score for MexE was low (∼0.2). (B)
mRNA levels of mexEF−oprN in PAO1 and PA14. Two biological
replicates are plotted for each strain, as shown by the same color bars.
(C) Chloramphenicol disk diffusion assay. Exponentially growing
PAO1 and PA14 were swabbed on an agar plate and exposed to
increasing levels of chloramphenicol. Three biological replicates were
performed, and a representative is shown.

Table 2. KEGG Pathways Enriched in Differentially
Expressed Proteins between PAO1 and PA14a

KEGG pathway name p value genes

mismatch repair 0.015 PA1529, PA1532, PA1816
nucleotide excision repair 0.001 PA1529, PA3002, PA4234
DNA replication 0.000 PA1529, PA1532, PA1816,

PA4931
nicotinate and nicotinamide
metabolism

0.004 PA0143, PA3625, PA4920

selenocompound metabolism 0.035 PA0849, PA1642
fatty acid biosynthesis 0.014 PA1609, PA1610, PA2965,

PA3645
phenylalanine, tyrosine, and
tryptophan biosynthesis

0.040 PA0650, PA0870, PA0872

phenylalanine metabolism 0.004 PA0865, PA0870,PA0872,
PA5304

pyrimidine metabolism 0.020 PA0849, PA1532, PA1816,
PA3625, PA3654

aA hypergeometric test was used to evaluate significance of
enrichment with 10 000-fold bootstrapping. Two pathways marked
in bold (nucleotide excision repair and pyrimidine metabolism) were
enriched in genes showing different protein abundances but not
differences in mRNA abundances or Shine−Dalgarno-binding free
energies.
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α ε= + ′
P

M
speciesX,geneY

speciesX,geneY
speciesX

where P, M, and ε represent the protein abundance, the mRNA
abundance, and the random error term, respectively. Here,
αspeciesX is the global translational efficiency in species X,
representing how many proteins can be produced from a given
mRNA amount. It should be noted that αspeciesX does not
account for dynamic features in translation, such as protein and
mRNA degradation and time delay in translation. If gene-
specific post-transcriptional regulation is negligible, then global

translation efficiency should be dominant, resulting in a

constant protein-to-mRNA ratio for all genes in a given species

(αspeciesX). However, as shown in Figure 2, the protein-to-

mRNA ratios of PAO1 and PA14 were not a constant, and

those of orthologous genes in two strains were highly correlated

to each other. On the basis of these observations, we revised the

equation as follows

α β ε= + +P M( )speciesX,geneY speciesX speciesX,geneY speciesX,geneY

Figure 4. Candidates for translation repression can be selected from histograms of mRNA concentrations with and without corresponding protein
observations: (A) PAO1 and (B) PA14. The gray line represents the frequencies of genes with a microarray signal (log2-transformed) for which
proteins were not observed in shotgun proteomics. The blue line represents the frequencies of genes with a microarray signal for which we also
measured the corresponding protein. Some genes with high microarray signals are still not observed at the protein level (gray line to the right of the
red mark) and may be translationally repressed or targeted for degradation. To identify candidates for such regulation, we considered mRNAs for
which protein was not observed with abundances above the red line (corresponding to an 80% chance of detecting protein). To increase the
stringency further, we sorted all genes with microarray signals greater than the cutoff and discarded the bottom 20% of the list. In total, 181 genes
were identified as putatively translationally repressed, and 97 showed in both PAO1 and PA14 (Supporting Information Table S4). Because it is
possible that low detectability in shotgun proteomics can produce this bias, we corrected for mass spectrometry detectability using the APEX
method.

Figure 5. Protein abundance is well-predicted from mRNA abundance and conserved protein-to-mRNA ratio. (A) PAO1 predicted protein
abundance was calculated with PAO1 mRNA abundance multiplied by PA14 protein-to-mRNA ratio. (B) Similarly, PA14 predicted protein
abundance was calculated with PA14 mRNA abundance multiplied by PAO1 protein-to-mRNA ratio. Compared to Figure 1, it is clear that gene-
specific protein-to-mRNA ratios help to predict protein abundance from mRNA abundance more accurately. SpR: Spearman rank correlation.
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speciesX,geneY

speciesX,geneY
speciesX speciesX,geneY

Here, βspeciesX,geneY is the gene Y-specific post-transcriptional
regulation factor in species X, representing the adjustment of
translation for individual genes to their mRNA levels. We
concluded that gene-specific post-transcriptional regulation
factors, βspeciesX,geneY, were conserved between PAO1 and
PA14. Indeed, as shown in Figure 5, we can predict protein
abundance more accurately when we incorporate these gene-
specific post-transcriptional regulation factors with mRNA
abundance. It should be noted that these post-transcriptional
regulation factors will vary depending on environmental
conditions and related post-transcriptional regulators such as
noncoding RNA and RNA-binding proteins. Although our
model does not distinguish translation and degradation
separately, the specific parameter αspeciesX and gene-specific
factor βspeciesX,geneY incorporate these processes implicitly.

■ DISCUSSION

In this study, we measured the correlation between mRNA and
protein abundances of 703 orthologous gene pairs in two P.
aeruginosa reference strains, PAO1 and PA14 (summarized in
Figure 6). (Fifteen such genes with significantly different
protein abundance between PAO1 and PA14 without
accompanying differences in mRNA abundance or 5′ sequence
are given in Table 3.) Similar to previous studies, we observed
that mRNA and protein abundances of orthologous genes are
less well correlated within each strain (Rs = 0.64−0.65) than
the protein and mRNA abundances between the two strains (Rs
= 0.89 and 0.95, respectively). Because we examined mRNA
and protein levels in two P. aeruginosa strains grown under
identical conditions, we were able to focus the analysis on
evolutionary differences (e.g., sequence divergence) while
controlling for the influence of different environments.
In contrast to previous studies,2,3,38 we observed that for the

two P. aeruginosa strains mRNA abundances are more
conserved than protein abundances (0.95 and 0.89 in
comparison to roughly −0.01 and 0.57 from other studies2).
One possible explanation for this is that transcriptional
regulation is more sensitive to environmental conditions than
post-transcriptional regulation. A high correlation of mRNA
abundances would be observed only when the data are
collected under very similar conditions, as was done in this
study. Alternatively, in previous studies, differences in micro-
array platforms and sequence hybridization may be larger than
expected, accounting for the observed lower correlation of
mRNA concentrations. Of course, the higher correlation in
mRNA abundances that we observed compared to protein
abundances may also be explained by lower variation between
biological replicates in the mRNA measurements as compared
to the protein measurements. However, after filtering out
inconsistently observed genes between biological replicates (see
Supporting Information Figures S1 and S2 for details), we
found a very high correlation (Spearman rank correlation >
0.95) between replicates for both mRNA and protein
abundances, so it is unlikely that the experimental variance
between mRNA and protein abundances significantly affected
our results. Thus, the apparent post-transcriptional buffering of
divergence of mRNA concentrations across organisms does not
seem to hold true when accounting for any differences in
environmental conditions and focusing simply on two very

closely related strains: both transcriptional and post-transcrip-
tional regulation appears to diverge between the two P.
aeruginosa strains and has additive effects on the final protein
concentrations.

Figure 6. Overview of the proteomic measurements in this study. (A)
Out of 5345 genes with one-to-one orthology between PAO1 and
PA14, we measured proteome and transcriptome abundance of 703
genes with highly stringent criteria of reproducibility between
biological replicates. (B) We observed that protein (Spearman rank
correlation 0.89) and mRNA (Spearman rank correlation 0.95)
abundances are highly conserved, much more than those abundances
within each strain. (C) Out of 114 genes showing significantly
different protein levels between PAO1 and PA14, about half of them
(56 genes) showed different mRNA abundances and 43 genes showed
different 5′ sequences (assuming that different 5′ sequence may affect
translation repression efficiency). However, fewer than half of 5′
sequence differences were relevant to differences in the Shine−
Dalgarno sequence. Fifteen differentially expressed proteins with
identical 5′ sequences and similar mRNA abundances may be
regulated by strand-specific post-transcriptional mechanisms (Table
3).
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It is also possible that a small group of highly abundant
genes, such as housekeeping genes, may dominate the
interspecies correlation patterns we observed in this study.
Unlike studies between more distant organisms, such as fly and
worm,3 where the proportion of housekeeping genes may be
higher among the conserved genes, here we analyzed two
bacterial strains of the same species and do not expect
housekeeping genes to dominate the set of orthologues. Also, as
shown in Figure 1, the correlation patterns are quite consistent
over a wide range of abundance both in protein and mRNA.
Thus, the correlation is unlikely to derive primarily from highly
abundant housekeeping genes. We also identified genes with
significantly high or low protein-to-mRNA ratios (Supporting
Information Table S3) and genes with high mRNA abundances
that we did not detect in our proteomics experiment
(Supporting Information Table S4). Low protein-to-mRNA
ratios or translational repression may be alternatively explained
by low detectability. Shotgun proteomics can introduce certain
biases because of inefficient peptide ionization and unavail-
ability of informative tryptic peptides, which could potentially
account for some of these proteins. One possible scenario is
that post-translational protein modifications could be missed
when searching the mass spectrometry data: proteins might
appear to be at lower concentration when, in reality, they are
post-translationally modified, which hinders their identification.
However, most of the proteins we observed in this study were
identified by two or more peptides (653 PAO1 proteins and
664 PA14 proteins, respectively, out of 703 one-to-one protein
pairs used in the correlation analysis), making it unlikely that
low protein-to-mRNA ratios were caused by systematic bias
because of unidentified modified peptides. Another possibility
to explain translational repression is a systematic bias of mass
spectrometry against certain types of proteins, such as
membrane proteins. Although we identified more proteins
localized in the cytoplasm than those localized in other cellular
compartments, we found no significant bias in protein-to-
mRNA ratios according to localization (Supporting Informa-
tion Figure 3), confirming that the translational repression we
observed here was not due to technical bias.

To validate our findings in the correlation analysis further, we
reanalyzed all proteomics data using an alternative label-free
quantification method based on MS1 intensities and confirmed
the same trends for protein-to-mRNA ratios to be more
conserved across species than for protein abundances to be
correlated with mRNA abundances within species (Supporting
Information Figure 5 and Supporting Information Table 8).
Recently developed techniques improving detectability and
precision of both the proteome and transcriptome, such as
selected reaction monitoring (SRM) and RNA−seq, would be
helpful to minimize the potential for systematic bias further, as
has been already shown in several studies of single
organisms.12,42 Also, techniques discriminating newly synthe-
sized mRNAs and proteins by labeling4 should allow the
contributions of different post-transcriptional regulatory
mechanisms to the observed divergence of mRNA and protein
abundances to be determined.
Interestingly, several virulence genes in P. aeruginosa were

differentially expressed at the protein level under our growth
conditions. The mexEF−oprN operon was more highly
expressed in PAO1 at both the mRNA and protein levels.
We confirmed that PAO1 is more resistant to chloramphenicol,
a substrate of mexEF−oprN efflux pump, than PA14. Although
MexT is a known regulator of the mexEF−oprN operon,39,43

both its mRNA and protein expression was low under our
growth conditions. Thus, the high expression of this operon in
PAO1 may be independent of mexT expression.44

P. aeruginosa produces 4-quinolones, a structurally diverse
group of small molecules that act as cell−cell signals and
antibiotics. The products required for 4-quinolone biosynthesis
and regulation are encoded by the pqs operons (pqsA−E, pqsH,
and pqsL). Notably, PA14 expressed all of them at higher levels
than PAO1 (Supporting Information Figure S4), confirming
that they are differentially regulated between PAO1 and PA14
in SCFM. By testing for overrepresented KEGG pathways
among the differentially expressed proteins (p value < 0.05
estimated by resampling), we also observed significant
differences in several key metabolic pathways including amino
acid metabolism, which can impact 4-quinolone levels because
of the shared metabolic precursors between these pathways.

Table 3. Fifteen Genes with Significantly Different Protein Abundance between PAO1 and PA14 but without Accompanying
Differences in mRNA Abundance or 5′ Sequence

PAO1 identifier
PAO1 protein
abundancea

PA14 protein
abundancea

PAO1 mRNA
abundanceb

PA14 mRNA
abundanceb products

PA0022 13.8 3.9 106.5 113.0 conserved hypothetical protein
PA0331|ilvA1 7.3 2.4 535.0 605.5 threonine dehydratase, biosynthetic
PA0508 6.7 0.0 39.0 45.0 probable acyl-CoA dehydrogenase
PA4315|mvaT 32.6 70.7 5368.0 5937.5 transcriptional regulator MvaT, P16 subunit
PA4420 2.6 7.2 614.0 662.0 conserved hypothetical protein
PA4438 31.1 12.6 731.5 780.0 conserved hypothetical protein
PA4461 18.0 7.8 2341.0 2603.0 probable ATP-binding component of ABC

transporter
PA4557|lytB 2.2 5.8 382.0 420.0 LytB protein
PA4837 0.0 3.9 63.0 65.0 probable outer membrane protein precursor
PA5013|ilvE 47.7 16.9 1504.5 1760.0 branched-chain amino acid transferase
PA5018|msrA 5.1 17.7 367.0 406.0 peptide methionine sulfoxide reductase
PA5201 28.5 7.3 1453.0 1523.5 conserved hypothetical protein
PA5286 9.4 3.6 818.0 1366.5 conserved hypothetical protein
PA5343 8.3 3.0 193.5 246.5 hypothetical protein
PA5535 0.0 17.1 42.0 42.5 conserved hypothetical protein

aThe protein abundance value represents the average APEX score of two biological replicates. bThe mRNA abundance value represents the average
normalized microarray signals of two biological replicates.
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Given the low mRNA abundances for genes in this pathway in
PAO1, translational repression appears to be unlikely to explain
these differences; rather, PA14 appears to have upregulated this
pathway relative to PAO1 at the transcript level. Our approach
to measure protein and mRNA abundances between closely
related organisms complements previous studies on protein and
mRNA concentrations in a single organism under different
conditions.6−8,10,45,46 Although these studies report similarly
discordant tendencies of protein and mRNA abundances and
the importance of post-transcriptional regulation, the detailed
mechanisms of post-transcriptional regulation are still unclear.
Mechanisms of translational suppression can include altering
the mRNA structure of translation initiation sites47 and the
presence of cis-encoded antisense RNAs.48 Recently, several
studies have reported the genome-wide effect of trans-acting
post-transcriptional regulation in bacteria, such as small
RNAs41,49−51 and RNA-binding proteins,52,53 which can impact
RNA synthesis, stability, sequestration, and degradation. In the
future, it will be interesting to investigate the contribution of
these regulatory mechanisms to the observed discordance
between protein and mRNA levels in various organisms.

■ ASSOCIATED CONTENT
*S Supporting Information

mRNA abundance correlates highly between biological
replicates; protein abundance correlates highly between bio-
logical replicates; abundance distributions of proteins localized
in different cellular compartments; expression of pqs (4-
quinolone) genes; alternate protein quantification methods
show similar trends; genes with significant differential mRNA
expression; genes with significant differential protein expres-
sion; top50/bottom50 genes when sorted by protein-to-mRNA
ratio; candidate genes for translational repression or targeted
degradation; explanation of differential protein expression by
translation efficiency; differential protein expression that cannot
be explained by mRNA difference and translation efficiency;
raw data for mRNA and protein expression measurements prior
to filtering; and protein abundance based on MS1-intensities.
This material is available free of charge via the Internet at
http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author

*E-mail marcotte@icmb.utexas.edu; Tel.: +1-512-471-5435;
Fax: +1-512-232-3472.
Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by grants from the National Institutes
of Health, National Science Foundation, Cancer Prevention
Research Institute of Texas, U.S. Army Research (58343-MA),
ARO award (W911NF-12-1-0390), and the Welch Foundation
(F1515) to E.M.M. and from the NIH and Cystic Fibrosis
Foundation to M.W. C.V. acknowledges funding by the NYU
Whitehead Fellowship and the NYU University Research
Challenge Fund. M.W. is a Burroughs Wellcome Investigator in
the Pathogenesis of Infectious Disease.

■ REFERENCES
(1) Vogel, C.; Abreu, R.; de, S.; Ko, D.; Le, S.-Y.; Shapiro, B. A.;
Burns, S. C.; Sandhu, D.; Boutz, D. R.; Marcotte, E. M.; Penalva, L. O.;

et al. Sequence signatures and mRNA concentration can explain two-
thirds of protein abundance variation in a human cell line. Mol. Syst.
Biol. 2010, 6, 400-1−400-9.
(2) Laurent, J. M.; Vogel, C.; Kwon, T.; Craig, S. A.; Boutz, D. R.;
Huse, H. K.; Nozue, K.; Walia, H.; Whiteley, M.; Ronald, P. C.; et al.
Protein abundances are more conserved than mRNA abundances
across diverse taxa. Proteomics 2010, 10, 4209−4212.
(3) Schrimpf, S. P.; Weiss, M.; Reiter, L.; Ahrens, C. H.; Jovanovic,
M.; Malmström, J.; Brunner, E.; Mohanty, S.; Lercher, M. J.; Hunziker,
P. E.; et al. Comparative functional analysis of the Caenorhabditis
elegans and Drosophila melanogaster proteomes. PLoS Biol. 2009, 7,
e1000048-1−e1000048-12.
(4) Schwanhaüsser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.;
Wolf, J.; Chen, W.; Selbach, M. Global quantification of mammalian
gene expression control. Nature 2011, 473, 337−342.
(5) Lu, P.; Vogel, C.; Wang, R.; Yao, X.; Marcotte, E. M. Absolute
protein expression profiling estimates the relative contributions of
transcriptional and translational regulation. Nat. Biotechnol. 2007, 25,
117−124.
(6) Nie, L.; Wu, G.; Zhang, W. Correlation between mRNA and
protein abundance in Desulfovibrio vulgaris: A multiple regression to
identify sources of variations. Biochem. Biophys. Res. Commun. 2006,
339, 603−610.
(7) Nie, L.; Wu, G.; Zhang, W. Correlation of mRNA expression and
protein abundance affected by multiple sequence features related to
translational efficiency in Desulfovibrio vulgaris: A quantitative analysis.
Genetics 2006, 174, 2229−2243.
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