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Abstract

The accurate identification of genetic variants contributing to therapeutic drug response or

adverse effects is the first step in implementation of precision drug therapy. Targeted

sequencing has recently become a common methodology for large-scale studies of genetic

variation thanks to its favorable balance between low cost, high throughput, and deep cover-

age. Here, we present ClinPharmSeq, a targeted sequencing panel of 59 genes with associ-

ations to pharmacogenetic (PGx) phenotypes, as a platform to explore the relationship

between drug response and genetic variation, both common and rare. For validation, we

sequenced DNA from 64 ethnically diverse Coriell samples with ClinPharmSeq to call star

alleles (haplotype patterns) in 27 genes using the bioinformatics tool PyPGx. These refer-

ence samples were extensively characterized by multiple laboratories using PGx testing

assays and, more recently, whole genome sequencing. We found that ClinPharmSeq can

consistently generate deep-coverage data (mean = 274x) with high uniformity (30x or above

= 94.8%). Our genotype analysis identified a total of 185 unique star alleles from sequencing

data, and showed that diplotype calls from ClinPharmSeq are highly concordant with that

from previous publications (97.6%) and whole genome sequencing (97.9%). Notably, all 19

star alleles with complex structural variation including gene deletions, duplications, and

hybrids were recalled with 100% accuracy. Altogether, these results demonstrate that the

ClinPharmSeq platform offers a feasible path for broad implementation of PGx testing and

optimization of individual drug treatments.

Introduction

Genetic variation is a major factor influencing the wide interindividual variability in pharma-

cological responses, contributing significantly to differences in systemic drug exposure, safety,

and efficacy [1]. Not accounting for this genetic variation can therefore lead to severe adverse

reactions or a loss of efficacy, due to inappropriate drug choice and/or dosing. For instance,

the enzymatic product of the CYP2C9 gene is involved in metabolism of various therapeutic

drugs including anticonvulsants (e.g. phenytoin), anticoagulants (e.g. warfarin), and antidia-

betic agents (e.g. tolbutamide) [2, 3]. Multiple null alleles of CYP2C9 have been identified that
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greatly diminish the metabolism rate of aforementioned drugs by disrupting enzyme synthesis

or function (i.e. hydroxylation). Individuals carrying two null alleles are called CYP2C9 poor

metabolizers and are at risk of uncontrollable bleeding if prescribed the average dose of warfa-

rin [4]. It has been estimated that more than 90% of the United States (US) population has at

least one clinically actionable pharmacogenetic (PGx) variant that affects their response to

medication [5].

These pharmacological responses may be explained or even predicted using PGx tests that

identify variant alleles of genes known to affect drug absorption, distribution, metabolism, and

excretion (ADME) or the target of drug action. As of October 21, 2021, there are 442 gene/

drug pairs (e.g. CYP2D6/codeine) described by the Clinical Pharmacogenetics Implementation

Consortium (CPIC) with accompanying levels of evidence for changing drug choice and dos-

ing decisions [6]. The assigned levels (A, B, C, and D) are subject to change, and only level A

and B gene/drug pairs have sufficient evidence for at least one prescribing action to be recom-

mended, and only level A gene/drug pairs have the preponderance of evidence that is highly or

moderately in favour of changing prescribing. The US Food and Drug Administration (FDA)

provides additional guidance by requiring applicable PGx test information be included in the

drug labeling.

Although PGx field is often considered a low-hanging fruit for precision medicine, broad

implementation of PGx testing has faced several obstacles, and only a few PGx tests are cur-

rently routinely used in the clinic [7]. One major barrier has been the sheer complexity of

many pharmacogenes, necessitating a large number of genetic variants to be tested in order to

provide precise predictions of enzymatic activity [8]. For example, according to the CYP2D6
gene page of the Pharmacogene Variation Consortium (PharmVar) (accessed on October 31,

2021) [9], there are currently a total of 149 haplotype patterns (star alleles) defined by single-

nucleotide variants (SNVs), small insertion-deletions (indels), and/or large structural variants

(SVs). These alleles encode CYP2D6 enzymes with normal, decreased, increased, or no func-

tion, which are informative for determining final PGx phenotypes ranging from ultrarapid to

poor metabolizer [10]. The frequency of star alleles and phenotypes can vary considerably

across different populations [11]. Importantly, many of the CYP2D6 alleles include SVs such

as gene deletions, duplications, and hybrids, which are notoriously difficult to detect due to the

high sequence homology between CYP2D6 and its pseudogene CYP2D7 [12]. Thus, several

orthogonal genotyping methods including TaqMan assays, long-range polymerase chain reac-

tion (PCR), quantitative multiplex PCR, High Resolution Melt analysis, and Sanger sequencing

are required to accurately call all SVs in CYP2D6 [13].

As next-generation sequencing (NGS) costs continue to decline, and the routine identifica-

tion of rare variants becomes an imperative, sequencing-based association analysis is develop-

ing as a widely applied tool in human genetic research through whole exome sequencing and

whole genome sequencing (WGS) as well as the application of targeted sequencing panels.

PGx research is not an exception to this towering trend, and an increasing number of studies

have already demonstrated the powerful utility of NGS data coupled with relevant bioinfor-

matics tools for accurate PGx genotyping [14–19]. In particular, the targeted sequencing

approach has recently gained much attention from the PGx community for its scalability and

cost effectiveness–for example, providing an opportunity to characterize individual genetic

variation in CYP2A6 and CYP2B6 for an underrepresented population [20] and serving as a

big data platform for artificial intelligence-based prediction of CYP2D6 haplotype function

[21]. However, most existing panels often only focus on the detection of SNVs and indels,

highlighting the need for probe design that can support comprehensive SV testing as well.

The Genetic Testing Reference Materials Coordination Program (GeT-RM) has been estab-

lished by the Centers for Disease Control and Prevention to systematically catalogue genomic
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DNA reference materials to help the genetic testing community acquire characterized refer-

ence materials. These include DNA from Coriell cell line samples which have been genotyped

using several commercial and laboratory-developed PGx testing assays [22–24]. Additionally,

GeT-RM has made WGS data for 70 of the reference samples publicly available; these samples

are ideal for PGx testing because they represent a genetically diverse set of samples from 11 dis-

tinct populations (e.g. African ancestry, Yoruba, Han Chinese, Japanese, Utah/Mormon, Finn-

ish) in which we would likely encounter a wide range of PGx variants, including complex SVs.

Here, we present an overview of the design, quality control, and testing of ClinPharmSeq, a

new targeted sequencing panel of 59 genes with associations to clinical drug response pheno-

types. We describe our main design strategies to balance between low cost, high throughput, and

deep coverage and to overcome some of the challenges related to accurate detection of complex

PGx polymorphism including SVs. For quality control, we report the results of depth of coverage

analyses to ensure that the panel can reliably generate high and uniform sequence coverage

across all samples. Finally, we have tested ClinPharmSeq by performing extensive comparison

analyses with the WGS data from GeT-RM as well as previously published genotype data.

Materials and methods

ClinPharmSeq design

The design strategies used to construct the first version of ClinPharmSeq (v1.0) are illustrated

in Fig 1. We developed the panel using the SureSelect Custom DNA Target Enrichment Probes

from Agilent Technologies, Inc. (Santa Clara, CA, USA) with its overall probe size being only

0.8 mega base pairs (Mb). One major consideration when building ClinPharmSeq was selec-

tion of PGx genes, as one of the design criteria was to create a panel that could be used for

broad implementation of PGx testing while being cost competitive compared to other geno-

typing platforms such as SNP arrays. We searched candidate genes through various databases

and resources including, but not limited to, CPIC, FDA, PharmVar, GeT-RM, the Pharmaco-

genomics Knowledge Base (PharmGKB) [25], the PGRNseq panel [26], the Stargazer program

[17, 18], and the Database of Genomic Variants (DGV) [27].

As shown in Table 1, we selected a total of 59 PGx genes based on 1) their significant role in

metabolism of, or response to, one or several drugs according to CPIC and FDA, 2) the avail-

ability of allelic variation catalogue with PharmVar, PharmGKB, and DGV, 3) the presence of

genotyping reference materials via GeT-RM, and 4) their overlap with other existing tools

such as PGRNseq and Stargazer. For example, as of October 21, 2021, the selected genes cover

60.0% (265/442) of all the CPIC gene-drug pairs, 88.6% (70/79) of the pairs with level A, and

100% (172/172) of the pairs with FDA label. Additionally, 36 of the 59 genes belong to one of

the seven diverse enzyme families: Cytochrome B5 reductase (CYB5), Cytochrome P450

(CYP), Glutathione S-transferase (GST), Human leukocyte antigen (HLA), Arylamine N-acet-

yltransferase (NAT), solute carrier (SLC), and UDP Glucuronosyltransferase (UGT). These

families represent various enzymatic functions including ADME and drug-induced disease.

Among the targeted genes, several are known to have complex patterns of nucleotide poly-

morphism (e.g.HLA-A) and/or SVs (e.g. CYP2D6). To comprehensively assess the wide vari-

ety of allelic variation in these genes, probes were arranged so that the entire gene locus is

captured including the 3 kilo base pairs (kb) upstream/downstream regions. In addition, for

genes that are known to have SVs with their pseudogene (e.g. CYP2D6/CYP2D7 hybrids),

probes were extended to cover the pseudogenes as well. This kind of ‘custom’ design was used

for 15 out of the 59 genes (Table 1). For the rest, probes were placed mostly for the exons (i.e.

the ‘exon’ design) plus the 50 bp padding sequence in intron/exon boundaries to identify splice

variants and the 3 kb upstream/downstream regions to capture regulatory elements such as
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promoter. Of note, three of the selected genes (EGFR, RYR1, and VDR) are a good control

locus for read depth normalization during copy number analysis, which can be useful for SV

detection, because they are large in length (188.3, 153.9, and 63.5 kb, respectively) and reported

to exhibit low rates of whole gene deletion and/or duplication [17].

The use of the ‘exon’ and ‘custom’ designs also helped reduce the panel’s overall size tre-

mendously, which is essential for promoting greater multiplexing and lowering costs. For

example, one of the genes targeted by ClinPharmSeq is DPYD and its length alone is compara-

ble to the panel itself (0.8 Mb). However, with the ‘exon’ design the gene’s probe size is reduced

to just 14.1 kb (~98% reduction), which is a logical choice given that all 458 alleles except one

(HapB3) in PharmVar’s DPYD gene page (accessed on October 31, 2021) are defined with sin-

gle coding variant–HapB3 is defined with one intronic variant and one synonymous variant.

Another good example is CYP2B6 where the ‘custom’ design shrinks the gene’s probe size

from 107.1 to 46.4 kb while ensuring that SVs are still accurately detected (see below for the

detection of CYP2B6�29 which is a CYP2B7/CYP2B6 hybrid) (S1 Fig).

ClinPharmSeq sequencing

To test the genotyping ability and investigate the potential limitations of ClinPharmSeq, we

sequenced a total of 64 Coriell DNA samples of diverse ancestry (S1 Table). Libraries were pre-

pared for sequencing using the SureSelectXT Library Prep Kit from Agilent Technologies, Inc.

per the manufacturer’s recommendations with minor modification. Sequencing was

Fig 1. Major design strategies used to construct ClinPharmSeq.

https://doi.org/10.1371/journal.pone.0272129.g001
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Table 1. Summary of 59 pharmacogenes targeted by ClinPharmSeq and their mean sequencing coverage for Set 1 and Set 2.

No. Gene Chrom. Function Probea Set 1 Set 2 Designb CPICc CPIC-Ad FDAe

1 BCHE chr3 Other 7.7 345.4 311.7 Exon 2 0 1

2 CACNA1S chr1 Target 16 177.3 151.6 Exon 7 7 5

3 CFTR chr7 Target 16.7 352 314.8 Exon 2 1 1

4 CYB5R1 chr1 Metabolism 8.8 332.2 286.1 Exon 1 0 1

5 CYB5R2 chr11 Metabolism 11.1 272.9 232.7 Exon 1 0 1

6 CYB5R3 chr22 Metabolism 9.8 155.4 131.5 Exon 1 0 1

7 CYB5R4 chr6 Metabolism 13.1 315.8 283 Exon 1 0 1

8 CYP1A2 chr15 Metabolism 6.1 238.9 201.4 Exon 0 0 0

9 CYP2A6 chr19 Metabolism 49.3 352.5 301.2 Custom 0 0 0

10 CYP2B6 chr19 Metabolism 46.4 324 281.1 Custom 4 1 1

11 CYP2C8 chr10 Metabolism 7.9 389.3 344 Exon 3 0 0

12 CYP2C9 chr10 Metabolism 7.4 415 366.9 Exon 24 11 12

13 CYP2C19 chr10 Metabolism 9.1 403.3 355 Exon 21 8 16

14 CYP2D6 chr22 Metabolism 36.6 259.8 231.5 Custom 73 16 59

15 CYP2E1 chr10 Metabolism 29.7 318.2 266.5 Custom 0 0 0

16 CYP2J2 chr1 Metabolism 8 348.2 301.7 Exon 0 0 0

17 CYP3A4 chr7 Metabolism 8.6 355.1 313.9 Exon 1 0 0

18 CYP3A5 chr7 Metabolism 11 377.3 335.5 Exon 4 1 0

19 CYP4F2 chr19 Metabolism 6.8 266 229.2 Exon 3 1 0

20 DPYD chr1 Excretion 14.1 328.1 293.2 Exon 3 2 2

21 EGFR chr7 Target 19.4 326.5 285.3 Exon 0 0 0

22 F5 chr1 Other 16.5 383.6 336.8 Exon 2 0 1

23 G6PD chrX Drug-induced disease 8.4 116.5 111.1 Exon 34 3 23

24 GBA chr1 Other 9 249 220.3 Exon 1 1 1

25 GSTM1 chr1 Metabolism 11 146.8 108.5 Custom 2 0 0

26 GSTP1 chr11 Metabolism 5.2 199.3 171.2 Exon 4 0 0

27 GSTT1 chr22 Metabolism 11.6 134.8 89.9 Custom 0 0 0

28 HLA-A chr6 Toxicity 9.3 294.6 262 Custom 3 1 1

29 HLA-B chr6 Toxicity 9.4 318.4 271.7 Custom 13 6 7

30 HLA-C chr6 Toxicity 9.4 334.6 284.5 Custom 2 0 0

31 HLA-DPB1 chr6 Toxicity 16.4 332.2 286.3 Custom 1 0 0

32 HLA-DQA1 chr6 Toxicity 12 309.5 251 Custom 1 0 1

33 HLA-DRB1 chr6 Toxicity 19.1 333.6 293.6 Custom 2 0 1

34 HPRT1 chrX Other 6.7 229.3 223.5 Exon 1 0 1

35 IFNL3 chr19 Other 5.1 240.1 208.6 Exon 2 2 1

36 LDLR chr19 Target 11.9 235.8 200.4 Exon 1 0 1

37 NAGS chr17 Other 6.4 164.5 140.8 Exon 2 0 1

38 NAT1 chr8 Metabolism/excretion 8 355.5 311 Exon 0 0 0

39 NAT2 chr8 Metabolism/excretion 5.5 390.4 347.8 Exon 7 1 5

40 NUDT15 chr13 Metabolism 6.2 362.3 320.4 Exon 3 3 3

41 OTC chrX Other 6.4 271.2 263.2 Exon 1 0 1

42 POLG chr15 Other 11.9 242.4 206.4 Exon 2 2 2

43 POR chr7 Drug-induced disease 12.4 157.5 136.7 Exon 0 0 0

44 PROC chr2 Other 6.8 229.1 196.7 Exon 1 0 1

45 PROS1 chr3 Other 10.1 323.1 287.9 Exon 1 0 1

46 RYR1 chr19 Drug-induced disease 32.9 152.5 130.2 Exon 7 7 5

47 SERPINC1 chr1 Other 6.5 337.7 299.8 Exon 1 0 1

(Continued)
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performed with the NextSeq 500 System from Illumina, Inc. (San Diego, CA, USA) using 150

base pairs (bp) paired-end reads. Raw sequencing data were produced in the Binary Base Call

(BCL) file format, which were then converted to individual FASTQ files by demultiplexing

with the bcl2fastq program (v2.19.0). We aligned sequence reads in the FASTQ files to the

Human Genome version 19 (hg19) reference genome using the ‘ngs-fq2bam’ command from

the fuc package (v0.26.0, https://github.com/sbslee/fuc). The command generates a pipeline

for automatically converting FASTQ files to ‘analysis-ready’ Binary Alignment Map (BAM)

files by combining various commands from the BWA [28], SAMtools [29], and Genome Anal-

ysis Toolkit (GATK) [30] programs. Finally, we used the ‘bedcov’ command from SAMtools

(v1.13) to calculate average coverage across the target space.

Variant call comparison

To measure the variant calling performance of ClinPharmSeq, we compared its calls with that

of WGS data from GeT-RM. The WGS data were downloaded via the European Nucleotide

Archive (study accession: PRJEB19931) in the BAM file format, which contained 150 bp

paired-end reads aligned to hg19 with the ISAAC program [31]. We identified SNVs and

indels from BAM files to create a multi-sample Variant Call Format (VCF) file using the ‘ngs-

hc’ command from fuc; the command combines a series of GATK tools including Haplotype-

Caller with predetermined parameters into an automated pipeline for convenience and repro-

ducibility. A Browser Extensible Data (BED) file describing the probed sites of ClinPharmSeq

was given to the command to only output variants in the regions of interest. We then used the

Python API of the pyvcf submodule from fuc to 1) merge two VCF files from the ClinPharm-

Seq and WGS data with the ‘pyvcf.merge’ method, 2) remove any multiallelic sites from the

Table 1. (Continued)

No. Gene Chrom. Function Probea Set 1 Set 2 Designb CPICc CPIC-Ad FDAe

48 SLC15A2 chr3 Excretion 12.8 383 338.1 Exon 0 0 0

49 SLC22A2 chr6 Excretion 51.5 325.6 286.4 Custom 0 0 0

50 SLCO1B1 chr12 Absorption 8.8 328.4 300.4 Exon 5 1 3

51 SLCO2B1 chr11 Absorption 15 268.5 231.5 Exon 0 0 0

52 TPMT chr6 Metabolism 7.8 268 235.3 Exon 3 3 3

53 UGT1A1 chr2 Excretion 12.8 371.8 323.3 Exon 7 2 6

54 UGT1A4 chr2 Excretion 7.7 350.5 302.6 Exon 1 0 0

55 UGT2B7 chr4 Excretion 6.8 327 297.7 Exon 0 0 0

56 UGT2B15 chr4 Excretion 30.6 331.7 299.3 Custom 1 0 0

57 UGT2B17 chr4 Excretion 30.3 177.2 161.5 Custom 0 0 0

58 VDR chr12 Absorption 10.6 288 247 Exon 2 0 0

59 VKORC1 chr16 Target 4.9 246.8 208 Exon 1 1 1

Abbreviations: No., number; Chrom., chromosome; CPIC, Clinical Pharmacogenetics Implementation Consortium; FDA, Food and Drug Administration.

Samples were sequenced in two separate runs (N = 32 for Set 1 and N = 32 for Set 2).
aTotal length of targeted regions in kilo base pairs.
bPanel design strategy used to probe each gene. The ‘exon’ design includes probes for targeting exons and upstream/downstream regions of a gene. The ‘custom’ design

was used to capture genes with structural variation and/or complex polymorphism.
cTotal number of CPIC gene-drug pairs, as of October 21, 2021.
dTotal number of CPIC gene-drug pairs with level A, as of October 21, 2021.
eTotal number of CPIC gene-drug pairs with FDA label, as of October 21, 2021.

https://doi.org/10.1371/journal.pone.0272129.t001
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merged VCF file with the ‘pyvcf.VcfFrame.filter_multialt’ method, and 3) perform the com-

parison with the ‘pyvcf.VcfFrame.calculate_concordance’ method.

Star allele identification

We assessed star alleles in 27 PGx genes using NGS data with the PyPGx package (v0.7.0,

https://github.com/sbslee/pypgx) which implements a modified version of the Stargazer geno-

typing pipeline [17, 18]. Briefly, the PyPGx pipeline works by first haplotype phasing SNVs

and indels present in the target gene using the Beagle program [32] with the 1000 Genomes

Project haplotype reference panel [33]. Phased variants are then matched to star alleles in the

gene’s haplotype translation table. Next, per-base read depth in the target gene is converted to

copy number by intra-sample normalization using a control gene. In the case of targeted

sequencing data (e.g. ClinPharmSeq), the inter-sample normalization is additionally per-

formed to consider the heterogeneity in total coverage across the samples. For this normaliza-

tion step, users can choose to use summary statistics across all samples or known samples

without SV in the target gene–the latter is recommended if the gene is known have an

extremely high rate of gene deletion polymorphism, such as GSTT1. From copy number data,

SVs are detected using a support vector machine-based multiclass classifier using the one-vs-

rest strategy. SV results are incorporated to inform the final star allele assignment. Output data

of PyPGx include individual diplotype calls and plots of copy number and allele fraction pro-

file to visually inspect SV calls.

We ran the ‘run-ngs-pipeline’ command from PyPGx for each target gene with three input

files: 1) a multi-sample VCF file, 2) a depth of coverage file, and 3) a control statistics file. The

latter two were created from BAM files using the ‘prepare-depth-of-coverage’ and ‘compute-

control-statistics’ commands from PyPGx, respectively. The analyses shown in the results sec-

tion were all performed using the VDR gene as the control locus. For the ClinPharmSeq data

we used known samples without SV for the genes GSTM1, GSTT1, and UGT2B17 during the

inter-sample normalization step of copy number analysis.

Comparison of star allele diplotypes

We compared diplotype calls from PyPGx to previously published data. Of the 27 PGx genes

assessed, CYP2D6 was compared with diplotype data from [23] where samples were exten-

sively characterized using multiple standard methods, including allele-specific PCR, long-

range PCR, SNP arrays, TaqMan real-time PCR assays, droplet digital PCR, Sanger sequenc-

ing, and long-read sequencing. For the four genes CYP2C8, NAT1, SLC15A2, and VKORC1 we

obtained diplotype data from [22] in which samples were genotyped using several commercial

and laboratory-developed PGx testing assays (e.g., allele-specific PCR, molecular inversion

probes, hybridization-based arrays, and TaqMan assays). For the remaining 22 genes, we uti-

lized diplotype data from [18] where the identical WGS data from GeT-RM were analyzed

using Stargazer. Of note, [18] reported that one of the samples, NA18540, has trisomy for mul-

tiple chromosomes, including chromosomes 4 and 7, affecting genotype calling in five genes

(CYP3A4, CYP3A5, UGT2B7, UGT2B15, and UGT2B17); therefore, for each gene the dupli-

cated allele was ignored because it is a cell line artifact rather than a result of natural PGx varia-

tion (e.g. a UGT2B15�2/�2/�4 call was treated as �2/�4).

For the purpose of this comparison, several allelic inconsistencies were also ignored because

they were specific to the genotype calling algorithm (S4 Table). For example, the three alleles

CYP2C8 �15, �16, and �17 were observed only from the WGS and ClinPharmSeq data, and not

from the previous diplotypes, but these were not counted as discrepancy because they were

recently added to PharmVar and did not exist at the time of testing by [22].
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Phenotype prediction

We predicted PGx phenotypes for nine genes that have a genotype-phenotype table from

CPIC: CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A5, DPYD, SLCO1B1, TPMT, and

UGT1A1. Specifically, we used the ‘pypgx.predict_phenotype’ method from PyPGx to translate

individual diplotype calls to predicted phenotypes. The SLCO1B1 gene produced transporter

function phenotype ranging from poor to increased function, while the rest produced metabo-

lizer status phenotype ranging from poor to ultrarapid metabolizer. Additionally, the genes

CYP2C9, CYP2D6, and DPYD utilized a standard unit of enzyme activity known as an activity

score for final phenotype prediction [10]. For example, the fully functional reference

CYP2D6�1 allele is assigned a value of 1, decreased-function alleles such as CYP2D6�9 and �17
receive a value of 0.5, and nonfunctional alleles including CYP2D6�4 and �5 have a value of 0.

The sum of values assigned to both alleles constitutes the activity score of a diplotype. Conse-

quently, subjects with CYP2D6�1/�1, �1/�4, and �4/�5 diplotypes have an activity score of 2

(normal metabolizer), 1 (intermediate metabolizer), and 0 (poor metabolizer), respectively.

The other six genes used simple diplotype-to-phenotype mapping system (e.g. a CYP2B6�6/�8
diplotype is mapped to poor metabolizer).

Results

General platform performance

We sequenced 64 Coriell DNA samples of diverse ancestry with ClinPharmSeq to assess its

utility as a PGx genotyping platform. The samples were evenly split into two sets, Set 1 and Set

2, to be sequenced with a 32-plex capture strategy, which led to average coverages of 292x and

255x across the target space, respectively (mean = 274x). ClinPharmSeq also consistently

achieved high uniformity in depth of coverage with 95.2% and 94.4% (mean = 94.8%) of the

covered bases showing a depth of 30x or above (S1 Fig), suggesting that it can reliably generate

deep sequencing data while maintaining the high throughput required for studies of large sam-

ple sizes. At the single-gene level, ClinPharmSeq generated deep coverage data for every cap-

tured gene regardless of whether the ‘custom’ or ‘exon’ design was used (Table 1). Of note, the

genes GSTM1, G6PD, and GSTT1 produced the lowest average coverages of 128x, 114x, and

112x, respectively. However, this was expected because G6PD is located on the X chromosome

and because both GSTT1 and GSTM1 are known to have an extremely high rate of gene dele-

tion polymorphism in the population (see below for the detection of whole gene deletions in

GSTT1 and GSTM1).

Variant calling concordance with WGS data

Although ClinPharmSeq generated high-coverage data, many of the targeted genes could still

be prone to erroneous variant calls. This is because those genes could potentially have ineffi-

cient, or even inappropriate, capture performance and misalignment of sequence reads due to

sequence homology with other gene family members and/or the presence of SVs. Therefore,

we set out to test the accuracy of ClinPharmSeq on variant identification by comparing its

genotype calls with that of WGS data from GeT-RM. For this comparison we only considered

biallelic sites that are located within the regions targeted by ClinPharmSeq.

A total of 12,415 variants were compared and the mean per-sample concordance was

96.0%. As shown in Fig 2, we obtained high concordance rates even when we divided the vari-

ants into SNVs and indels and when we considered false positives and false negatives sepa-

rately, indicating that most ClinPharmSeq-derived genotypes are accurate. However, one of

the samples, NA18973, showed a notably low accuracy of 76.7% and was later also found to
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have a completely different PGx variation pattern including SVs (see below). Further inspec-

tion revealed that, due to a clerical error, this sample was never sequenced with ClinPharm-

Seq–but instead NA18972 was which is not part of the 70 GeT-RM samples–and thus it was

excluded from all comparative analyses. After exclusion of this sample the mean per-sample

concordance was increased to 96.3%.

Comparison of star allele calling with WGS and previous publications

To evaluate the performance of ClinPharmSeq on star allele calling, we used the PyPGx pro-

gram to identify PGx diplotypes in 27 genes for the 63 ClinPharmSeq samples (N = 1,701

diplotypes) and the 70 WGS samples (N = 1,890 diplotypes) (S2 Table). From the two sets of

diplotype calls we found a total of 185 unique star alleles (Table 2). The diplotype sets were

compared to each other as well as to previous data from three prior publications (S2 Table). As

mentioned above, ClinPharmSeq data from the sample NA18973 was excluded because it was

an incorrect sample and showed a completely different variant landscape including SVs in

CYP2D6 (S4 Fig). Additionally, 14 alleles were excluded from the comparisons because they

were not reported from the previous publications (Table 2).

ClinPharmSeq showed diplotype concordances of 97.6% (1,660/1,701) and 97.9% (1,665/

1,701) with the previous publications and WGS, respectively, while the latter two had a concor-

dance rate of 99.7% (1,885/1,890) to each other (Fig 3). All the 36 inconsistencies between

ClinPharmSeq and WGS were encapsulated in the 41 inconsistencies between ClinPharmSeq

and the previous publications (S3 Table). Among those inconsistencies, almost half (N = 19)

were caused by ClinPharmSeq entirely missing the CYP1A2�1L allele because one of its vari-

ants (15-75038220-G-A) is in a region that is not targeted by the current version of Clin-

PharmSeq. Additionally, a total of 12 inconsistencies were caused by incorrect haplotype

phasing by PyPGx where, for example, the UGT2B15�4 variants (4-69536084-A-C and 4-

69512847-T-G) were incorrectly phased in trans for four samples. Six of the inconsistencies

were caused by failed variant calling in which, for instance, the UGT1A1�28 variant (2-

234668879-C-CAT) was called as heterozygous instead of homozygous for three samples.

From the ClinPharmSeq and WGS data we identified a total of 19 SV-carrying star alleles

in nine targeted genes (Table 2). The alleles consisted of gene deletions (e.g. GSTT1�0),

Fig 2. Variant call concordance between WGS and ClinPharmSeq.

https://doi.org/10.1371/journal.pone.0272129.g002
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duplications (e.g. CYP2A6�1x2), multiplications (e.g. CYP2E1�7x3), and hybrids (e.g.

CYP2D6�36+�10); these were collectively found in 10.4% (177/1,701) and 10.2% (192/1,890) of

the diplotypes examined, respectively. As expected, a large proportion of the diplotypes from

the genes CYP2A6, GSTM1, GSTT1, and UGT2B17 had whole gene deletions, both heterozy-

gous and homozygous (e.g. UGT2B17�1/�2 and �2/�2). For example, we found the gene dele-

tion alleles GSTM1�0 and GSTT1�0 in 76.2 (48/63) and 77.8% (49/63) of the samples with

ClinPharmSeq and 75.7 (53/70) and 77.1% (54/70) of the samples with WGS, respectively.

Importantly, ClinPharmSeq and WGS showed a perfect concordance on all the SV alleles,

indicating that ClinPharmSeq can reliably detect SVs despite it being a targeted capture panel

(S2 Table). Three representative examples of SV detection (CYP2B6�29, CYP2A6�1x2, and

CYP2D6�36x2+�10) by PyPGx using the ClinPharmSeq and WGS data are illustrated in Fig 4.

Of note, ClinPharmSeq correctly identified the CYP2B6�29 allele, a CYP2B7/CYP2B6 hybrid,

even though the probes only covered less than half of the region.

We discovered that four of the diplotypes from previous publications differed with the calls

from both ClinPharmSeq and WGS because of SV detection and/or interpretation. In the first

Table 2. Star alleles assessed by PyPGx’s analysis of whole genome sequencing and ClinPharmSeq data.

No. Gene Reference Alleles Reported in This Study Alleles Previously Not

Reported

1 CYP1A2 �1A �1A, �1F, �1L None
2 CYP2A6 �1 �1, �1x2 (dup), �2, �4 (del), �7, �9, �15, �17, �18, �20, �21, �22, �23, �24, �25 None
3 CYP2B6 �1 �1, �2, �4, �5, �6, �9, �15, �17, �18, �20, �22, �23, �29 (hyb) None
4 CYP2C8 �1 �1, �2, �3, �4, �15, �16, �17 �15, �16, �17
5 CYP2C9 �1 �1, �2, �3, �5, �6, �8, �9, �11, �61 �61
6 CYP2C19 �1 �1, �2, �3, �4, �6, �8, �13, �15, �17, �35, �39 �39
7 CYP2D6 �1 �1, �2, �2x2 (dup), �4, �4x2 (dup), �5 (del), �6, �9, �10, �14, �15, �17, �21, �29, �35, �36+�10 (hyb), �36x2+�10

(hyb), �40, �41, �45, �46, �68+�4 (hyb), �71, �106
�106

8 CYP2E1 �1 �1, �5, �7, �7x2 (dup), �7x3 (dup), �S1 (dup) None
9 CYP3A4 �1 �1, �2, �3, �15, �16, �22 None
10 CYP3A5 �1 �1, �3, �6, �7 None
11 CYP4F2 �1 �1, �2, �3 None
12 DPYD Reference Reference, c.85T>C (�9A), c.496A>G, c.557A>G, c.1218G>A, c.1349C>T, c.1601G>A (�4), c.1627A>G

(�5), c.1682G>T, c.1896T>C, c.2194G>A (�6), c.2846A>T
c.1349C>T, c.1682G>T,

c.2846A>T
13 GSTM1 �A �A, �B, �Ax2 (dup), �0 (del) None
14 GSTP1 �A �A, �B, �C None
15 GSTT1 �A �A, �0 (del) None
16 NAT1 �4 �4, �11, �14, �17 None
17 NAT2 �4 �4, �5, �6, �7, �12, �13, �14, �24 �24
18 SLC15A2 �1 �1, �2 None
19 SLC22A2 �1 �1, �2, �3, �4, �6, �7, �S1 (del), �S2 (del) None
20 SLCO1B1 �1A �1A, �1B, �5, �14, �15, �17, �20, �21, �24, �27, �30, �31, �32, �S1, �S2 �20, �32
21 SLCO2B1 �1 �1, �S1, �S464F None
22 TPMT �1 �1, �3C, �8, �16 None
23 UGT1A1 �1 �1, �6, �28, �36, �80, �80+�28, �80+�37 �80+�27, �80+�37
24 UGT2B7 �1 �1, �2, �3 None
25 UGT2B15 �1 �1, �2, �4, �5, �S1 (del) None
26 UGT2B17 �1 �1, �2 (del) None
27 VKORC1 Reference Reference, rs9923231 None

Structural variant-defined alleles are indicated by ‘del’ (deletion), ‘dup’ (duplication), and ‘hyb’ (hybrid).

https://doi.org/10.1371/journal.pone.0272129.t002
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case, [23] genotyped the sample NA18540 for CYP2D6 as (�36+)10/�41 with three gene copies

in total, but NGS data suggested the presence of an extra gene copy with �36x2+�10/�41, indi-

cated by the cluster of copy numbers at 4 and allelic depth ratio of 1:3 (Fig 5A and 5B). The sec-

ond case also involved CYP2D6 where the sample NA18565 was previously genotyped as �10/
�36x2 while NGS data produced �10/�36+�10. The third inconsistency was the sample

NA19908 with CYP2E1 in which [18] presented �7x2/�7x2 but NGS data showed evidence of
�7/�7x3 instead, indicated by allelic depth ratio of 1:3 instead of 2:2 (Fig 5C and 5D). The last

difference relating to SV was the sample HG00436 with CYP2A6 whereby [18] reported �4/�1
+�S6 and NGS data produced an ‘Indeterminate’ call (Fig 5E and 5F). The former would mean

the sample has a combination of one known SV (�4) and one novel SV (�1+�S6), but it could

also be just one novel SV, which would be a more parsimonious explanation. These results sug-

gest that ClinPharmSeq could be potentially used to validate previous calls and/or provide new

insights for resolving complex SV events.

PGx phenotype prediction comparison

In order to estimate the effect of diplotype inconsistency on final phenotype prediction, we

assessed phenotype calls from PyPGx for nine targeted genes which have a CPIC genotype-

phenotype table. The three pairwise comparisons yielded phenotype concordances of 98.1%

(556/567) for ClinPharmSeq and the previous publications, 99.5% (564/567) for ClinPharmSeq

and WGS, and 98.7% (622/630) for WGS and the previous publications (S3 Fig). The majority

of inconsistencies (N = 8) stemmed from PyPGx newly calling a star allele with an unknown/

uncertain function and changing the overall phenotype to ‘Indeterminate’ (S6 Table). For

example, [23] genotyped the sample NA18519 as CYP2D6 �1/�29 which corresponds to a nor-

mal metabolizer, but PyPGx produced a �29/�106 diplotype which corresponds to an indeter-

minate phenotype because the enzymatic function of the �106 allele has not been determined

yet. Overall, we saw a unique distribution of PGx phenotypes for each gene (Fig 6), with

CYP3A5 having the largest proportion of the poor metabolizer phenotype and SLCO1B1 hav-

ing the largest proportion of the indeterminate phenotype.

Fig 3. Concordance of diplotype calls for 27 pharmacogenes between WGS, ClinPharmSeq, and previous studies.

https://doi.org/10.1371/journal.pone.0272129.g003
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Discussion

In this study, we developed ClinPharmSeq–a novel, SV-aware targeted sequencing panel of 59

clinically important pharmacogenes. To the best of our knowledge, this is one of the first SV-

aware targeted panels to enable systematic identification of star alleles in multiple genes. To

evaluate the performance of ClinPharmSeq, we utilized public WGS data from genotyping ref-

erence samples (N = 70) from GeT-RM as well as their previously published diplotype calls

generated with multiple standard methods (e.g. allele-specific PCR, molecular inversion

probes, hybridization-based arrays, and TaqMan assays). ClinPharmSeq consistently produced

deep and uniform sequence coverage, and showed high accuracy in variant calling (i.e. SNVs

and indels) compared to WGS. At the star allele level, for all 27 pharmacogenes tested,

Fig 4. Examples of SVs detected with WGS and ClinPharmSeq. WGS data are shown in the left panels (A, C, and E) while ClinPharmSeq data are shown in the right

panels (B, C, and D). Each panel contains a copy number profile and an allele fraction profile created by PyPGx. (A-B) CYP2B7/CYP2B6 hybrid in African sample

NA19178 with a CYP2B6�6/�29 diplotype. (C-D) Gene duplication in African sample NA18861 with a CYP2A6�1x2/�25 diplotype. (E-F) Complex CYP2D6/CYP2D7
hybrid in East Asian sample NA18526 with a CYP2D6�1/�36x2+�10 diplotype.

https://doi.org/10.1371/journal.pone.0272129.g004
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diplotype calls from ClinPharmSeq exhibited almost perfect concordance with that from WGS

and the previous studies, which led to similar phenotype predictions as well. Altogether, these

results demonstrate that ClinPharmSeq can accurately assess star alleles in the targeted genes

and could be potentially used for clinical implementation of NGS-based PGx testing.

Our hybrid approach of the ‘exon’ and ‘custom’ designs greatly reduced the overall probe

size of the panel (less than 1 Mb) while maintaining high sensitivity for detection of complex

SVs. For example, from the ClinPharmSeq and WGS data we identified a total of 19 star alleles

defined with SVs including gene deletions, duplications, and hybrids. When we visually

Fig 5. Examples of diplotype discrepancy caused by difference in SV interpretation between this study and previous publications. WGS data are shown in the left

panels (A, C, and E) while ClinPharmSeq data are shown in the right panels (B, C, and D). Each panel contains a copy number profile and an allele fraction profile created

by PyPGx. (A-B) East Asian sample NA18540 was previously identified to have three CYP2D6 gene copies in total with a CYP2D6(�36+)10/�41 diplotype, but this study

identified four gene copies with a CYP2D6�36x2+�10/�41 diplotype. (C-D) African sample NA19908 was previously suggested to have a CYP2E1�7x2/�7x2 diplotype (i.e.

allele fraction ratio of 2:2), while this study found evidence of a CYP2E1�7/�7x3 diplotype (i.e. allele fraction ratio of 1:3). (E-F) East Asian sample HG00436 was

previously genotyped to have a combination of one known SV (CYP2A6�4) and one novel SV (CYP2A6�1+�S6), while in this study PyPGx produced an ‘Indeterminate’

diplotype call because it could also be just one novel SV, which would be a more parsimonious explanation.

https://doi.org/10.1371/journal.pone.0272129.g005
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inspected copy number and allele fraction plots from PyPGx, we noticed that the distribution

of data points was much sharper with ClinPharmSeq than WGS, probably due to the deep cov-

erage of ClinPharmSeq reducing the general variance of PyPGx estimates. Furthermore, we

also found that our ClinPharmSeq data could be used to potentially change at least three previ-

ously published SV-carrying diplotype calls from already heavily characterized reference sam-

ples (e.g. CYP2E1�7x2/�7x2 to �7/�7x3).

In addition to SVs, the novel design of ClinPharmSeq also helped identify various types of

small nucleotide variation than just biallelic coding variants. For example, we identified several

PGx variants located in a regulatory element, such as CYP2A6�9 (19-41356379-A-C) which is

a TATA box variant known to cause promoter defect and reduced gene expression [34]. Clin-

PharmSeq also proved to be useful for detecting complex multliallelic indels such as

UGT1A1�28 (2-234668879-C-CAT), �36 (2-234668879-CAT-C), and �37 (2-

234668879-C-CATAT), all of which are characterized by a varying number of TA repeats in

the TATA sequence of the promoter [35]. Lastly, for the targeted genes with the ‘exon’ design

addition of 50 bp padding sequence in intron/exon boundaries led to detection of splice vari-

ants, such as CYP3A5�6 (7-99262835-C-T) which is known to cause alternative splicing and

protein truncation result [36].

For the 70 reference samples we found 14 new star alleles in eight genes (CYP2C8, CYP2C9,

CYP2C19, CYP2D6, DPYD, NAT2, SLCO1B1, and UGT1A1) that were not reported by previ-

ous publications. These alleles were recently defined by PharmVar or CPIC and therefore did

not exist at the time of testing by the respective studies, highlighting how rapidly the list of

known haplotypes is growing for PGx genes and also how important the routine identification

of rare variants is. Although enzymatic activity for many of these alleles remains to be func-

tionally characterized, some do have annotated function such as CYP2C9�61 which is a

decreased function allele.

During the development of ClinPharmSeq, a number of limitations have emerged that will

be improved in the next version (v2.0). First, ClinPharmSeq has missed the CYP1A2�1L allele

entirely because one of its variants (15-75038220-G-A) is in a region that is not targeted by the

panel (i.e. located more than 3 kb upstream). Although the enzyme encoded by the star allele

has unknown function according to the CYP1A2 gene page of PharmVar (accessed on October

Fig 6. Distribution of predicted phenotypes for nine pharmacogenes with a CPIC genotype-phenotype table.

WGS data (N = 70) is shown as a representative example.

https://doi.org/10.1371/journal.pone.0272129.g006
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31, 2021), we are still planning to expand the probes to capture the variant because it has been

associated with decreased gene inducibility [37] and because it is commonly found in the pop-

ulations of Latino/Admixed American, East Asian, and African/African American with allele

frequencies of 0.32, 0.28, and 0.27, respectively, according to gnomAD [38]. Second, it has

come to our attention that CPIC has recently established new guidelines for nine additional

gene-drug pairs with level A involving the IFNL4 andMT-RNR1 genes; therefore, we will

include these genes in the future. The third limitation is our use of DNA from cell lines with a

relatively small sample size (N = 64). Even though this limitation is ameliorated by the fact that

our sample set is of vastly diverse ancestry (i.e. 11 populations), for the next version we are

planning to test ClinPharmSeq against DNA from real patients with a much larger sample size.

Primarily aimed at broad implementation of PGx testing and studies of large sample sizes,

ClinPharmSeq strikes an advantageous balance between sequencing expense, multiplexing

capability, and depth of coverage. For instance, the small probe size of ClinPharmSeq puts the

panel into the design group of Tier 2 with 0.5–2.999 Mb, which is the second most economic

option among the SureSelect NGS target enrichment panels (Tiers 1–5 and Tier L). Therefore,

compared to other known methods to survey the comparable PGx space such as WGS and

whole exome sequencing, ClinPharmSeq can bring significant data-generation savings.

Although the exact cost will depend on various factors including read length and sequencers

used, we expect more than 50% reduction in cost compared to both WGS and whole exome

sequencing at standard throughputs required for typical germline analysis. In addition to the

data-generation savings, the data storage and analysis costs (e.g. computational memory

required for analysis) are also much less and more efficient compared to whole genome or

whole exome sequencing. At standard throughputs, WGS and whole exome sequencing usu-

ally require about 100 and 10 Gb of storage per sample, respectively, while ClinPharmSeq only

requires about 1 Gb per sample. SNP arrays, although comparably priced, do not assay the

entire gene space that the ClinPharmSeq probes do and are thus inferior to the sequence data

produced by ClinPharmSeq. Additionally, there are currently no bioinformatics tools (e.g.

PyPGx) that can reliably detect SVs in PGx genes from whole exome sequencing or SNP array

data. Finally, the deep coverage inherent to targeted sequencing data enables the discovery of

rare variation of potential clinical impact.

In summary, by leveraging NGS data we confirmed the genotype results reported by pre-

vious publications and also expanded the current PGx variation catalogs for the 70 impor-

tant reference samples. Therefore, our ClinPharmSeq characterization can be added to this

public reference resource for other PGx genotyping projects. As adverse drug reaction

events are a significant cause of morbidity in the US, a platform that can accurately detect

and genotype variants, both common and rare, that affect drug response has the potential to

both deepen our understanding of these events as well as reduce their incidence. This study

shows that targeted sequencing data coupled with a bioinformatics tool can provide not

only accurate but also a comprehensive platform for PGx testing compared with multiple

standard approaches. By allowing automated, accurate, and comprehensive genotyping of

pharmacogenes, the combination between targeted sequencing and genotyping tools offers

a feasible path for broad implementation of PGx testing and the optimization of individual

drug treatment responses.
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S2 Fig. Assessment of uniformity in sequencing coverage for ClinPharmSeq. The left panel

shows that, for the most part, ClinPharmSeq coverage is normally distributed, centered at

around 270x. The right panel shows that more than 80% of targeted bases have coverage

�100x. These results suggest that ClinPharmSeq can generate deep-coverage data with rela-

tively high uniformity in a reproducible manner.

(TIF)

S3 Fig. Concordance of predicted phenotypes for nine pharmacogenes between WGS, Clin-

PharmSeq, and previous studies.

(TIF)

S4 Fig. Incorrectly sequenced sample NA18973. WGS and ClinPharmSeq data are shown in

the top and bottom panels, respectively. Each panel contains a copy number profile and an

allele fraction profile created by PyPGx.

(TIF)
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