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Introduction: Tubulointerstitial damage in diabetes and chronic kidney disease (CKD) is poorly captured

by estimated glomerular filtration rate (eGFR) and albuminuria. Urine biomarkers of kidney health may

better elucidate disease progression in persons with diabetes and CKD.

Methods: Per case-cohort design, we randomly selected a subcohort of 560 study participants of the

REasons for Geographic And Racial Differences in Stroke (REGARDS) study from 1092 adults with diabetes

and baseline eGFR <60 ml/min per 1.73 m2 and registered a total of 161 end-stage kidney disease (ESKD)

cases (n ¼ 93 from the subcohort; n ¼ 68 from outside the subcohort) during 4.3 � 2.7 years mean follow-

up. We measured urine biomarkers of kidney tubule injury (kidney injury molecule—1 [KIM-1]), inflam-

mation and fibrosis (monocyte chemoattractant protein—1 [MCP-1]), repair (chitinase-3–like protein 1

[YKL-40]), and tubule function, including reabsorption (alpha-1-microglobulin [a1m]) and synthetic ca-

pacity (epidermal growth factor [EGF] and uromodulin [UMOD]). Weighted Cox regression models esti-

mated ESKD risk adjusting for demographics, ESKD risk factors, and baseline eGFR and urine albumin.

Least absolute shrinkage and selection operator (LASSO) regression identified a subset of biomarkers

most strongly associated with ESKD.

Results: At baseline, subcohort participants had mean age of 70 � 9 years, mean eGFR of 40 �13

ml/min per 1.73 m2, and median urine albumin-to-creatinine ratio of 33 (interquartile range 10–213)

mg/g. Adjusting for baseline eGFR and albuminuria, each 2-fold higher urine KIM-1 (hazard ratio ¼
1.43 [95% CI: 1.17–1.75]), a1m (hazard ratio ¼ 1.47 [1.19–1.82]), and MCP-1 (hazard ratio ¼ 1.27

[1.06–1.53]) were independently associated with ESKD. LASSO retained KIM-1 and a1m for associ-

ations with ESKD.
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Kidney
Conclusion: Among adults with diabetes and eGFR <60 ml/min per 1.73 m2, higher urine KIM-1, a1m, and

MCP-1 are independently associated with incident ESKD, providing insight into kidney disease progres-

sion in persons with diabetes and CKD.
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D
iabetes is the leading cause of ESKD in the United
States and a major contributor to the global

burden of CKD.1,2 However, the risk of progressing
from CKD to ESKD is heterogeneous among individuals
with diabetes, and biological pathways leading to CKD
progression remain uncertain.3

Although substantial research has focused on the
glomerular sequelae of diabetes, pathologic alterations
in the kidney tubules and interstitium have also been
widely recognized.4,5 Importantly, histologic features
of interstitial fibrosis, tubular atrophy, and inflamma-
tion on kidney biopsy are strongly associated with
progression to ESKD in diabetes and may predict pro-
gression better than glomerular histology.6,7 Unfortu-
nately, kidney biopsy is invasive and carries important
risks, but clinicians and researchers currently lack
alternative tests specific to tubulointerstitial health.
Clinical diagnosis and risk stratification of kidney dis-
ease rely on eGFR and urine albumin-to-creatinine ratio
(UACR), both of which primarily reflect glomerular
function and integrity.8 These measures fail to fully
capture kidney tubule health and, compared with
biomarkers specific to tubule injury and inflammation,
appear less sensitive for early and evolving tubu-
lointerstitial disease.9,10 Investigational biomarkers of
tubulointerstitial injury, fibrosis, and tubule function
are currently under development, but their roles as
indicators of progression to ESKD in diabetes are un-
clear. As compared with blood biomarkers, urine-based
biomarkers of kidney tubule health are of particular
interest as they may more directly reflect tubule health
without confounding by systemic processes.11 In
addition, urine is readily collected in both clinical and
research settings, conferring substantial practical
advantages.

In this study, we investigated 6 urine biomarkers
specific to kidney tubule health, which are as follows:
KIM-1, MCP-1, YKL-40, EGF, a1m, and UMOD.
Together, these biomarkers capture multiple di-
mensions of kidney tubule health, including tubule
injury (KIM-1), tubulointerstitial inflammation and
fibrosis (MCP-1), tubule epithelial cell repair (YKL-40),
tubule function including proximal tubule
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reabsorptive capacity (a1m), and tubule synthetic
function (UMOD and EGF). Our goal was to determine
whether these urine biomarkers inform risk of pro-
gression to ESKD independently of eGFR, UACR, and
clinical risk factors among participants with diabetes
and eGFR <60 ml/min per 1.73 m2.

METHODS

Population and Study Design

The REGARDS study enrolled Black and White adults
aged$45 years between January 2003 and October 2007
from across the continental United States.12,13 In total,
30,239 participants were recruited; all participated in a
telephone interview followed by an in-home visit where
they provided demographics and medical history, a
physical examination, and blood and spot urine speci-
mens.12,13 All participants provided informed consent,
and the study was approved by the institutional review
boards of all participating institutions. This ancillary
study was in addition approved by the institutional
review boards of Veterans Affairs San Diego and Uni-
versity of California, San Francisco.

We used a case-cohort design to study the relation-
ship of biomarkers with risk of ESKD.14 First, we
restricted the parent REGARDS study sample to the 1092
participants with diabetes and eGFR <60 ml/min per
1.73 m2 and without prevalent ESKD at the baseline
visit. Among these 1092 participants, a case-cohort
sample was selected with follow-up through June 2014
by randomly selecting a subcohort of 600 participants
with baseline diabetes and eGFR<60ml/min per 1.73m2

and capturing all ESKD cases by linkage to the United
States Renal Data System.15 In total, 174 participants
meeting baseline criteria of diabetes and eGFR <60 ml/
min per 1.73 m2 developed incident ESKD, 99 of whom
were members of the random subcohort.

Biomarkers of Kidney Tubule Health

Urine biomarkers for this study were selected by an
expert panel of CKD Biomarkers Consortium members
in the preinvestigation stage based on prior work.
Urine was collected at baseline and centrifuged, and
the supernatant was aliquoted with unique barcodes.16

Aliquots were kept in continuous laboratory storage
at �80 �C until biomarker measurements were made.
1515
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Personnel conducting biomarker measurements were
blinded to clinical outcomes. Urine KIM-1, MCP-1,
YKL-40, and EGF were measured on the Luminex
platform with a laboratory-developed multiplex assay
(Luminex Corporation, Austin, TX). UMOD was
measured on the MSD R-PLEX (Meso Scale Diagnostics,
LLC, Rockville, MD). Urine a1m was measured on a
Siemens BNII nephelometer (Siemens, Inc., Munich,
Germany). All measurements except a1m were made in
duplicate, and mean values were used in the analyses.
If intra-assay coefficient of variation exceeded 15%, the
assay was repeated. All UMOD assays were performed
with a single lot, which is notable because lot-to-lot
variation of UMOD measurements on the MSD R-
PLEX can be up to 50%.
Figure 1. Sampling of REGARDS cohort per case-cohort design.
Among 30,239 REGARDS participants, a total of 1092 had eGFR <60
ml/min per 1.73 m2 and diabetes at baseline, and a subcohort of 560
individuals with available baseline urine samples was randomly
selected from those participants. There were 161 cases of incident
ESKD, 93 of whom had also been selected into the subcohort and 68
cases arising outside the subcohort. eGFR, estimated glomerular
filtration rate; ESKD, end-stage kidney disease; REGARDS, REasons
for Geographic And Racial Differences in Stroke.
Covariates

Serum creatinine concentration was used to calculate
eGFR according to the CKD Epidemiology Collaboration
equation.17 Serum creatinine concentration was cali-
brated to isotope dilution using mass spectrometry.
Urine albumin concentration was measured with the
BNII ProSpec (Siemens, Inc., Munich, Germany). Urine
creatinine concentration was measured by the Jaffe
method on the Modular P chemistry analyzer (Roche/
Hitachi, Basel, Switzerland). We adjusted for urine al-
bumin and urine creatinine concentrations separately
in multivariable models, whereas albuminuria was
expressed as UACR in descriptive statistics.18

Sociodemographics and aspects of medical history
were self-reported at the baseline interview. Prevalent
cardiovascular disease was defined as self-reported
stroke, myocardial infarction, coronary artery bypass
graft, angioplasty, arterial stenting, or as evidence of
past myocardial infarction on electrocardiography.
Blood pressure was defined as the average of 2 mea-
sures taken on seated participants after a 5-minute rest.
Use of medications for hypertension was obtained by
self-report. Body mass index was determined using
measured height and weight.
Statistical Analysis

We tabulated descriptive statistics using baseline data
and then calculated correlations between the urine
biomarkers (KIM-1, MCP-1, YKL-40, EGF, a1m,
UMOD), urine albumin, urine creatinine, and eGFR.
Risk of ESKD was modeled using a time-to-event
analysis with multivariable Cox regressions modified
to account for the case-cohort design.19,20 We used
Prentice’s original pseudolikelihood method, weighted
such that risk sets at event times consist of subcohort
members at risk whereas the cases outside the sub-
cohort enter the risk sets only at their event times.14
1516
Biomarkers were modeled continuously after log2
transformation and as quartiles. The main models
focused on the log2-transformed biomarkers, whereas
biomarker quartiles were used primarily to evaluate the
functional form of associations. Values of a1m that
were below the lower limit of detection were set to 5.47
mg/l. No other biomarker had values below the lower
limit of detection. Quartiles of each biomarker were
defined based on baseline concentrations in the sub-
cohort sample. There were 3 staged models applied:
model 1 adjusted only for urine creatinine concentra-
tion to account for differences in urine tonicity at the
time of urine collection; model 2 additionally adjusted
for age, sex, race, systolic blood pressure, antihyper-
tensive medication use, body mass index, and preva-
lent cardiovascular disease; model 3 additionally
adjusted for baseline eGFR and urine albumin.

Next, we performed LASSO regression to identify
the biomarkers that retained independent associations
with progression to ESKD when all biomarkers were
simultaneously included in the model. This method
penalizes the absolute size of regression coefficients and
allows some parameter estimates to shrink to zero to
produce a smaller set of the most predictive biomarkers
while mitigating the risk of overfitting. To estimate
penalized parameters, we used LASSO penalty with
leave-one-out cross-validation.

All analyses were conducted using SPSS version 26.0
(IBM Corp., Armonk, NY) and R version 4.0.2 (R
Kidney International Reports (2022) 7, 1514–1523



Table 1. Baseline characteristics of the REGARDS subcohort and
additional ESKD cases
Characteristics Subcohort (n [ 560) Additional cases (n [ 68)

Age, yr 70 (9) 66 (8)

Men 263 (47%) 29 (43%)

Black race 299 (53%) 50 (70%)

Education

Less than high school 123 (22%) 15 (22%)

High school graduate 152 (27%) 17 (25%)

Some college 143 (26%) 18 (27%)

College graduate and above 142 (25%) 18 (27%)

Insured 542 (97%) 61 (90%)

Body mass index 31.9 (6.6) 32.9 (7.6)

Hypertension 491 (88%) 65 (96%)

SBP, mm Hg 133 (19) 135 (17)

DBP, mm Hg 71 (11) 75 (11)

Heart failure 232 (41%) 35 (52%)

Coronary artery disease 225 (40%) 28 (41%)

Stroke 88 (16%) 12 (18%)

Antihypertensive use 469 (84%) 64 (94%)

ACEi/ARB use 415 (74%) 50 (74%)

Diuretic use 377 (67%) 45 (66%)

eGFR, ml/min per 1.73 m2 40 (13) 29 (11)

UACR, mg/g 33 [10–213] 424 [59–1607]

<30 270 (48%) 13 (18%)

30–300 164 (29%) 17 (25%)

$300 126 (23%) 38 (56%)

Urine biomarkers

KIM-1, pg/ml 1769 [1014–3476] 2103 [1138–4033]

EGF, pg/ml 1018 [768–1359] 727 [528–953]

YKL-40, pg/ml 330 [152–1074] 525 [129–2865]

MCP-1, pg/ml 215 [130–386] 285 [145–470]

a1m, mg/l 17 [8–32] 26 [15–55]

UMOD, mg/ml 3.9 [2.0–6.9] 6.2 [3.1–11.3]

a1m, alpha-1-microglobulin; ACEi, angiotensin-converting enzyme inhibitor; ARB,
angiotensin receptor blocker; DBP, diastolic blood pressure; EGF, epidermal growth
factor; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; KIM-
1, kidney injury molecule-1; MCP-1, monocyte chemoattractant protein-1; Q, quartile;
REGARDS, REasons for Geographic And Racial Differences in Stroke; SBP, systolic
blood pressure; UACR, urine albumin-to-creatinine ratio; UMOD, uromodulin; YKL-40,
chitinase-3-like protein 1.
Data presented as mean (SD), number (%), or median [Q1–Q3].

JG Amatruda et al.: Urine Biomarkers for ESKD Risk in Diabetes and CKD CLINICAL RESEARCH
Foundation for Statistical Computing, Vienna, Austria).
P < 0.05 was considered statistically significant.
RESULTS

After excluding individuals with inadequate urine
samples, the random subcohort was reduced to 560
persons (93%) and the total number of incident ESKD
cases was reduced to 161 (93%), with 93 cases arising
from the subcohort and 68 additional cases arising from
outside the subcohort (Figure 1). Baseline characteris-
tics of the subcohort and additional cases are presented
in Table 1. In comparison to subcohort participants
overall, ESKD cases arising from outside the subcohort
were younger, more often self-identified as Black race,
and had higher prevalence of hypertension, lower
mean eGFR, and higher median UACR. These in-
dividuals also had higher average concentrations of
Kidney International Reports (2022) 7, 1514–1523
kidney tubule health biomarkers except for EGF, for
which average baseline concentrations were lower.

Correlations of the urine biomarkers with each other
and with urine albumin, urine creatinine, UACR, and
eGFR in the random subcohort are shown in Table 2.
Urine biomarkers were at most moderately correlated
with each other and with eGFR and UACR, with cor-
relation coefficients ranging from 0.1 to 0.5. In general,
the urine tubule health biomarkers were positively
correlated with each other and with UACR but nega-
tively correlated with eGFR. However, EGF and UMOD
demonstrated the opposite pattern of correlations.
Urine EGF also had the strongest correlations with
UACR and eGFR among the investigated biomarkers
(�0.49 and 0.59, respectively).

Association of Urine Biomarkers With Incident

ESKD

Adjusting only for urine creatinine concentration,
there were statistically significant associations between
all the kidney tubule health biomarkers with the risk of
ESKD (Table 3) when modeled as continuous measures.
Higher urine concentrations of each biomarker were
associated with risk of ESKD except for EGF and
UMOD, in which the direction was opposite. Risk of
ESKD rose 11-fold comparing the highest to the lowest
quartile of a1m in the analysis adjusted for urine
creatinine concentration alone. In contrast, risk of
ESKD was approximately 10-fold lower for the highest
quartiles of EGF and UMOD compared with the lowest.
KIM-1, YKL-40, and MCP-1 demonstrated 4- to 5-fold
increments in risk across quartiles in this model.

Adjustment for demographics and traditional CKD
risk factors only minimally influenced the associations,
all of which remained statistically significant in
continuous analyses (Table 3). Additional adjustment
for eGFR and urine albumin concentration substan-
tially attenuated the associations for all biomarkers
studied; however, higher a1m, KIM-1, and MCP-1 each
remained significantly associated with risk of ESKD in
continuous models. In these maximally adjusted
models, each 2-fold higher concentration of a1m was
associated with a 47% higher risk of ESKD, KIM-1 with
a 43% higher risk of ESKD, and MCP-1 with a 27%
higher risk of ESKD. For comparison, each 2-fold
higher concentration of urine albumin was associated
with a 34% higher risk of ESKD in this model.

In analyses evaluating biomarkers by quartile, as-
sociations appeared monotonic except for YKL-40, in
which the lower 3 quartiles had similar risk but the
highest quartile had substantially higher risk of ESKD
(Figure 2). Notably, the third and fourth quartiles of
EGF were associated with a similarly reduced risk of
ESKD compared with the first quartile (Table 3). The
1517



Table 2. Correlations between investigational urine biomarkers and traditional measures of kidney health in the subcohort
KIM-1 EGF YKL-40 MCP-1 UMOD a1m Urine albumin Urine creatinine UACR eGFR

KIM-1 1 0.151a 0.302a 0.649a 0.010 0.512a 0.441a 0.566a 0.280a �0.032

EGF 1 �0.149a 0.078 0.394a �0.243a �0.314a �0.506a �0.448a 0.587a

YKL-40 1 0.336a �0.370a 0.453a 0.439a 0.038 0.423a �0.287a

MCP-1 1 �0.026 0.447a 0.389a 0.492a 0.249a �0.090b

UMOD 1 �0.275a �0.303a 0.345a �0.393a 0.397a

a1m 1 0.664a 0.246a 0.588a �0.420a

Urine albumin 1 0.090b 0.962a �0.369a

Urine creatinine 1 �0.185a 0.184a

UACR 1 �0.413a

eGFR 1

a1m, alpha-1-microglobulin; EGF, epidermal growth factor; eGFR, estimated glomerular filtration rate; KIM-1, kidney injury molecule-1; MCP-1, monocyte chemoattractant protein-1;
UACR, urine albumin-to-creatinine ratio; UMOD, uromodulin; YKL-40, chitinase-3-like protein 1.
aCorrelation is significant at the 0.01 level (2-tailed).
bCorrelation is significant at the 0.05 level (2-tailed).
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highest quartile of urine albumin concentration was
associated with a 9-fold increment in ESKD risk in the
fully adjusted model—a stronger association than any
of those observed among the highest quartiles of the
investigational biomarkers.

Finally, the LASSO regression model including all 6
tubule health biomarkers retained a1m and KIM-1,
demonstrating associations of 36% and 31% higher
risk per 2-fold higher urine a1m and KIM-1 concen-
tration, respectively (Table 4).
DISCUSSION

Among community-living adults with diabetes and
eGFR <60 ml/min per 1.72 m2, urine biomarkers of
tubule health were associated with risk of incident
ESKD independent of clinical risk factors, eGFR, albu-
minuria, and the other tubule biomarkers. Although
higher levels of urine a1m, KIM-1, and MCP-1 main-
tained associations with ESKD independent of other
risk factors, LASSO regression identified a1m and KIM-
1 as the 2 biomarkers most strongly associated with
ESKD risk, independent of the other risk factors and
one another. These findings indicate that one
biomarker reflecting tubule reabsorptive dysfunction
(a1m) and another reflecting tubule injury (KIM-1)
provide complementary information on risk of ESKD
along with glomerular function and injury in persons
with diabetes and CKD. Notably, the associations of
urine a1m and KIM-1 with incident ESKD were com-
parable to and independent of that of urine albumin
concentration in adjusted continuous analyses. As
albuminuria primarily indicates glomerular dysfunc-
tion, rather than tubulointerstitial disease, the combi-
nation of urine albumin with biomarkers specific to the
kidney tubules could improve assessment of overall
kidney health and potentially further add to the
prognostic value offered by albuminuria. Moreover,
1518
these findings provide insight into the pathobiology of
CKD in diabetes, supporting the importance of tubu-
lointerstitial injury and dysfunction in kidney disease
progression.

a1m is produced by hepatocytes, secreted into cir-
culation, freely filtered across the glomerulus, and
nearly completely reabsorbed by healthy proximal
tubules.21 Exposure to drugs that cause proximal tu-
bule dysfunction is associated with markedly higher
urine a1m concentrations.22 Thus, higher urine a1m
concentrations signify reduced proximal tubular reab-
sorptive capacity.21 We previously demonstrated that
higher urine a1m concentrations are associated with
kidney function decline in persons with HIV and in
kidney transplant recipients.23,24 In the present study,
we demonstrate similar findings among persons with
prevalent CKD and diabetes.

Elevated urine KIM-1 concentration indicates prox-
imal tubule cell injury.25 Because proximal tubule
injury could be expected to cause dysfunction with
decreased reabsorptive capacity, elevations in urine
concentrations of both a1m and KIM-1 are consistent
with a general phenotype of proximal tubule damage.
However, only urine KIM-1 is presently qualified by
the United States Food and Drug Administration as an
early indicator of nephrotoxicity for use in preclinical
drug development in animal models and humans.26,27

In a prior study of REGARDS participants with
eGFR <60 ml/min per 1.73 m2 and UACR $30 mg/g,
irrespective of diabetes status, higher urine KIM-1 level
was independently associated with subsequent ESKD
and death.28 The present analysis adds to this finding,
demonstrating that KIM-1 provides additional infor-
mation on risk of ESKD independent of a1m and the
other 4 biomarkers. Furthermore, recent evidence
suggests that in the diabetic kidney, KIM-1 may not
only serve as a marker of injury but also contribute to
its pathology by promoting proximal tubule cell
Kidney International Reports (2022) 7, 1514–1523



Table 3. Association of urine biomarkers with incident ESKD in REGARDS participants with eGFR <60 ml/min per 1.73 m2 and diabetes at
baseline

KIM-1 Per 2-fold higher
Quartile 1:

<1016 pg/ml
Quartile 2:

1016--1775 pg/ml
Quartile 3:

1776--3464 pg/ml
Quartile 4:

>3465 pg/ml

Events/N 161/628 30/154 38/154 41/160 52/160

Model 1a 1.61 (1.38–1.86) 1.00 (ref) 1.99 (1.17–3.39) 2.31 (1.35–3.95) 4.70 (2.67–8.25)

Model 2b 1.77 (1.49–2.09) 1.00 (ref) 1.82 (1.04–3.19) 2.14 (1.20–3.83) 5.80 (3.16–10.66)

Model 3c 1.43 (1.17–1.75) 1.00 (ref) 1.41 (0.78–2.53) 1.35 (0.72–2.52) 3.06 (1.55–6.04)

MCP-1 Per 2-fold higher
Quartile 1:
<130 pg/ml

Quartile 2:
130--216 pg/ml

Quartile 3:
217--385 pg/ml

Quartile 4:
>385 pg/ml

Events/N 161/628 30/152 40/159 34/156 57/161

Model 1a 1.60 (1.37–1.88) 1.00 (ref) 1.84 (1.08–3.12) 2.02 (1.15–3.52) 4.80 (2.77–8.29)

Model 2b 1.50 (1.27–1.76) 1.00 (ref) 1.70 (0.98–2.97) 1.90 (1.07–3.40) 4.18 (2.35–7.46)

Model 3c 1.27 (1.06–1.53) 1.00 (ref) 1.77 (0.99–3.16) 1.86 (1.01–3.40) 2.23 (1.13–4.38)

YKL-40 Per 2-fold higher
Quartile 1:
<169 pg/ml

Quartile 2:
169--416 pg/ml

Quartile 3:
417--958 pg/ml

Quartile 4:
>958 pg/ml

Events/N 161/628 33/158 19/149 37/157 72/164

Model 1a 1.33 (1.24–1.43) 1.00 (ref) 0.72 (0.39–1.31) 1.32 (0.79–2.20) 4.16 (2.59–6.69)

Model 2b 1.27 (1.18–1.38) 1.00 (ref) 0.73 (0.39–1.36) 1.17 (0.68–1.99) 3.45 (2.07–5.75)

Model 3c 1.08 (0.99–1.19) 1.00 (ref) 0.80 (0.42–1.53) 1.07 (0.61–1.91) 1.84 (1.02–3.32)

EGF Per 2-fold higher
Quartile 1:
<767 pg/ml

Quartile 2:
767--1017 pg/ml

Quartile 3:
1018--1358 pg/ml

Quartile 4:
>1358 pg/ml

Events/N 161/628 89/178 38/156 22/149 12/145

Model 1a 0.36 (0.28–0.46) 1.00 (ref) 0.34 (0.22–0.52) 0.17 (0.10–0.29) 0.09 (0.05–0.18)

Model 2b 0.40 (0.30–0.52) 1.00 (ref) 0.39 (0.24–0.64) 0.16 (0.09–0.28) 0.12 (0.06–0.25)

Model 3c 0.80 (0.57–1.12) 1.00 (ref) 0.64 (0.38–1.08) 0.35 (0.18–0.66) 0.34 (0.15–0.76)

a1m Per 2-fold higher
Quartile 1:
<8.25 mg/l

Quartile 2:
8.25--16.60 mg/l

Quartile 3:
16.61--32.10 mg/l

Quartile 4:
>32.10 mg/l

Events/N 161/628 15/148 26/155 40/158 80/167

Model 1a 2.12 (1.83–2.47) 1.00 (ref) 2.18 (1.11–4.29) 4.43 (2.32–8.44) 11.10 (6.03–20.44)

Model 2b 2.06 (1.74–2.45) 1.00 (ref) 2.10 (1.04–4.22) 4.09 (2.07–8.80) 9.51 (4.90–18.48)

Model 3c 1.47 (1.19–1.82) 1.00 (ref) 1.72 (0.83–3.58) 2.68 (1.34–5.37) 3.34 (1.59–7.03)

UMOD Per 2-fold higher
Quartile 1:
<3.1 mg/ml

Quartile 2:
3.1--6.2 mg/ml

Quartile 3:
6.21--11.3 mg/ml

Quartile 4:
>11.3 mg/ml

Events/N 161/628 67/163 47/165 37/157 10/143

Model 1a 0.71 (0.65–0.78) 1.00 (ref) 0.59 (0.39–0.88) 0.43 (0.29–0.66) 0.13 (0.06–0.27)

Model 2b 0.74 (0.65–0.84) 1.00 (ref) 0.62 (0.25–1.54) 0.46 (0.18–1.15) 0.16 (0.02–1.32)

Model 3c 1.00 (0.83–1.20) 1.00 (ref) 1.17 (0.69–1.98) 1.27 (0.50–3.23) 0.52 (0.19–1.44)

Urine albumin Per 2-fold higher
Quartile 1:
<12 mg/l

Quartile 2:
12--33 mg/l

Quartile 3:
34--203.5 mg/l

Quartile 4:
>203 mg/l

Events/N 161/628 13/154 12/141 29/152 107/181

Model 1a 1.49 (1.40–1.58) 1.00 (ref) 1.38 (0.62–3.07) 3.58 (1.83–7.00) 16.44 (9.13–29.61)

Model 2b 1.47 (1.30–1.67) 1.00 (ref) 1.60 (0.70–3.66) 3.80 (1.88–7.70) 14.84 (7.74–28.43)

Model 3c 1.34 (1.23–1.47) 1.00 (ref) 1.47 (0.62–3.47) 2.72 (1.29–5.76) 9.07 (4.40–18.67)

a1m, alpha-1-microglobulin; EGF, epidermal growth factor; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; KIM-1, kidney injury molecule-1; MCP-1, monocyte
chemoattractant protein-1; N, number at risk; ref, reference; REGARDS, REasons for Geographic And Racial Differences in Stroke; UMOD, uromodulin; YKL-40, chitinase-3-like protein 1.
aAdjusted for urine creatinine concentration.
bAdditionally adjusted for age, sex, race systolic blood pressure, body mass index, antihypertensive medication use, cardiovascular disease.
cAdditionally adjusted for baseline eGFR and urine albumin concentration.
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damage via facilitating fatty acid uptake.29 Intracellular
accumulation of these fatty acids results in oxidative
stress and mitochondrial damage, initiating a cascade of
proinflammatory and profibrotic responses.29 Sodium-
glucose contransporter-2 inhibitors, which are recom-
mended as first-line agents in diabetes and CKD to
reduce risk of eGFR decline and ESKD, have been hy-
pothesized to protect kidney tubules by blocking
deleterious metabolic pathways.30,31,32 Notably,
Kidney International Reports (2022) 7, 1514–1523
sodium-glucose co-transporter 2 inhibitor use has been
associated with reductions in urine KIM-1 concentra-
tion in patients with diabetes, suggesting improved
tubule health.33,34 Overall, these data support the
overarching hypotheses that tubulointerstitial disease
can be measured noninvasively and that these mea-
surements inform the risk of progression to ESKD in
high-risk individuals with diabetes and CKD, inde-
pendently of those used in current clinical practice.
1519
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Moreover, these findings highlight that measures of
tubule function and injury provide complementary and
independent insight into ESKD risk.

Several prior studies have evaluated novel
biomarker approaches to characterize pathophysiology
of kidney disease in persons with diabetes and risk
factors for progression to ESKD. Though albuminuria
has classically been considered the sine qua non of
diabetic kidney disease, there is increasing recognition
that many persons with diabetes and CKD do not have
persistent or extreme elevations in urine albumin, even
in cases of biopsy-diagnosed diabetic kidney disease.35–38

These findings underscore the importance of identi-
fying additional biomarkers, especially those that can
reveal the accrual of tubulointerstitial damage. Using
blood rather than urine, prior studies demonstrated
that higher plasma concentrations reflecting both
inflammation and tubule injury—particularly tumor
necrosis factor receptor-1, tumor necrosis factor
Table 4. Associations of urine biomarkers with incident ESKD
determined by LASSO regression

Per 2-fold
higher level

Model 1a Model 2b Model 3c

HR (95% CI) HR (95% CI) HR (95% CI)

KIM-1 1.14 (0.95–1.36) 1.28 (1.05–1.56) 1.31 (1.06–1.62)

a1m 2.02 (1.71–2.39) 1.84 (1.51–2.24) 1.36 (1.08–1.70)

a1m, alpha-1-microglobulin; CI, confidence interval; ESKD, end-stage kidney disease;
HR, hazard ratio; KIM-1, kidney injury molecule-1; LASSO, Least Absolute Shrinkage and
Selection Operator.
aAdjusted for urine creatinine concentration.
bAdditionally adjusted for age, sex, race, systolic blood pressure, body mass index,
antihypertensive medication use, and cardiovascular disease.
cAdditionally adjusted for baseline estimated glomerular filtration rate and urine albumin
concentration.
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receptor-2, and plasma KIM-1—were independently
associated with progression of kidney disease in dia-
betes.39,40 Our CKD Biomarkers Consortium collabora-
tors have built on these prior studies, finding that
plasma KIM-1, YKL-40, tumor necrosis factor receptor-1,
and tumor necrosis factor receptor-2 were indepen-
dently associated with incident ESKD among REGARDS
participants with diabetes and CKD.41 The present study
complements this work by reinforcing the importance of
tubulointerstitial disease in persons with diabetes and
CKD, but it has the important distinction of measuring
novel biomarkers in urine rather than plasma. Plasma
biomarkers necessitate venipuncture, may be influenced
by systemic processes, and many are highly correlated
with GFR. In contrast, urine is easily and painlessly
collected, bolstering the utility of urine assays for both
clinical and research applications. Furthermore, given
their proximity to the kidney tubulointerstitium, urine
biomarker concentrations are likely to correlate closely
with disease activity and progression with less bias
owing to GFR.11,42

These findings could potentially empower better
monitoring of investigational agents in diabetes. An
important question for future research will be whether
higher urine a1M and KIM-1 concentrations could
identify personswhowould derive themost benefit from
specific therapies aimed at the tubulointerstitium.
Furthermore, these studies should investigate whether
acute changes in these biomarkers after drug initiation
inform the likelihood and magnitude of long-term
treatment response. Other antifibrotic and
Kidney International Reports (2022) 7, 1514–1523
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antiinflammatory drugs are being investigated in CKD,
and these biomarkersmay have similar utility for patient
selection and clinical monitoring.43–45

Our study has several strengths. The REGARDS
cohort is large and provided a robust subcohort of
persons with diabetes and CKD yielding >160 cases of
incident ESKD during follow-up. The detailed mea-
surements of demographics and comorbidities allowed
extensive statistical adjustment for known ESKD risk
factors. The highly efficient case-cohort design facili-
tated simultaneous evaluation of multiple urine bio-
markers in an economical manner without sacrificing
the ability to perform valid time-to-event analyses.
This study also has important limitations, notably, that
the observational design remains susceptible to con-
founding despite multivariable adjustment. The assays
used to measure these biomarkers have not yet been
standardized, which precludes the comparison of
biomarker concentrations across studies for normative
interpretation in clinical settings. Urine biomarkers
were measured at a single time point; whether longi-
tudinal changes in biomarkers are informative above
and beyond their baseline concentrations remains un-
certain. With a single measurement, higher concen-
trations of these urine biomarkers could theoretically
have represented transient acute kidney injury epi-
sodes that were unrelated to risk of kidney disease
progression; however, given that participants were
asymptomatic volunteers in the ambulatory setting, it
is unlikely that we captured substantial rates of inci-
dental acute kidney injury. Whether these biomarkers
could be uniquely informative in persons without
albuminuria is of great interest, but we were unable to
evaluate this question owing to the low rate of ESKD
events in study participants with UACR <30 mg/g. It is
also unknown whether or not the concentrations of
these biomarkers may change in response to therapies
that target tubulointerstitial inflammation and fibrosis.
Studies aimed at answering these questions should be
prioritized given the advent of promising new medi-
cations with the potential to prevent ESKD in persons
with diabetes.

In conclusion, among community-dwelling persons
with diabetes and eGFR <60 ml/min per 1.73 m2,
higher urine a1m and KIM-1 concentrations were
each strongly associated with incident ESKD, inde-
pendent of clinical risk factors, eGFR, albuminuria,
and one another. These findings support the hy-
pothesis that tubule injury and dysfunction are
important pathways of CKD progression in diabetes.
That both a1m and KIM-1 provided information on
risk of ESKD independent of one another demon-
strates that quantification of both tubule injury and
dysfunction may be complementary for discerning
Kidney International Reports (2022) 7, 1514–1523
ESKD risk in individuals with diabetes and CKD,
highlighting key pathways of kidney disease pro-
gression.46,47 Future research should establish whether
these biomarkers provide opportunities for therapeu-
tic monitoring of drugs targeting kidney inflammation
and fibrosis.
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