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1  | INTRODUC TION

High‐throughput technologies are enabling rapid data genera‐
tion in the fields of genomics, proteomics, and phenomics. These 

technological achievements are coupled with substantial reduc‐
tions in cost as well as an increase in instrument accessibility. 
Genomics, in particular, exceeded predictions, and the cost of gen‐
erating data is now less than the cost to store it (Stephens et al., 
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Abstract
Sequencing technologies and bioinformatic approaches are now available to resolve 
the challenges associated with complex and heterozygous genomes. Increased ac‐
cess to less expensive and more effective instrumentation will contribute to a wealth 
of high‐quality plant genomes in the next few years. In the meantime, more than 370 
tree species are associated with public projects in primary repositories that are inter‐
rogating expression profiles, identifying variants, or analyzing targeted capture with‐
out a high‐quality reference genome. Genomic data from these projects generates 
sequences that represent intermediate assemblies for transcriptomes and genomes. 
These data contribute to forest tree biology, but the associated sequence remains 
trapped in supplemental files that are poorly integrated in plant community data‐
bases and comparative genomic platforms. Successful implementation of life science 
cyberinfrastructure is improving data standards, ontologies, analytic workflows, and 
integrated database platforms for both model and non‐model plant species. Unique 
to forest trees with large populations that are long‐lived, outcrossing, and genetically 
diverse, the phenotypic and environmental metrics associated with georeferenced 
populations are just as important as the genomic data sampled for each individual. To 
address questions related to forest health and productivity, cyberinfrastructure must 
keep pace with the magnitude of genomic and phenomic sampling of larger popula‐
tions. This review examines the current landscape of cyberinfrastructure, with an 
emphasis on best practices and resources to align community data with the Findable, 
Accessible, Interoperable, and Reusable (FAIR) guidelines.
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2015). High‐throughput genomic technologies encompass a myriad 
of short‐ and long‐read approaches that are competing to improve 
on read length, error rate, and cost per base. They enable biologists 
to increase the scale of their investigations, leading to larger pop‐
ulations, deeper coverage, more time points, and more replicates 
(Porter & Hajibabaei, 2018). This scaling is evident across all organ‐
ismal systems and studies, encompassing metabarcoding, metag‐
enomics, targeted capture, reduced representation sequencing, 
transcriptomics, epigenomics, and whole‐genome sequencing.

While we continue to celebrate decreasing sequencing costs, 
the associated expense of storing and analyzing large datasets is 
often outside the immediate calculus. The tremendous knowledge 
imparted by a reference genome is coupled with deep sequence data 
and information‐rich files associated with assembling and aligning 
billions of bases. The Sequence Read Archive (SRA), hosted by the 
National Center for Biotechnology (NCBI), provides a live accounting 
of the raw sequence data submitted. SRA currently reports over 26 
petabases of sequence and represents only a fraction of the data 
generated worldwide (February 2019; Sayers et al., 2019). The pro‐
cess of generating a reference often requires thousands of hours of 
compute time on a High‐Performance Computing (HPC) cluster to 
bring those sequence reads from assembly to annotation, as docu‐
mented for the first pine mega‐genome (Wegrzyn et al., 2014; Zimin 
et al., 2014). These intensive single project requirements produce 
significant institutional challenges related to data storage, transfer, 
and analysis. Computational research in the field of big data, which 
includes genomics, is focused on more efficient compression algo‐
rithms, binary file formats, and improved data transfer protocols to 
meet current demands (Muir et al., 2016).

Despite the increases in sequence‐based resources, fewer than 
4,500 eukaryotic genomes are available in the NCBI Genome data‐
base. When examining the resources for vascular plants, just under 
200 unique genomes are complete and 52 represent tree species 
(Figure 1). While full genomes are increasingly available, a signif‐
icant amount of sequence data for forest trees remains associated 
with experiments that are not designed around a reference genome 
(Figure 2b). In contrast to the 52 species associated with over 6,100 
NCBI BioProject studies, over 970 sequencing experiments represent 
373 trees without a reference genome. The vast majority of this data 
is derived from genome sampling (i.e., GBS, RAD‐Seq) or transcrip‐
tomic approaches (Figure 2a). This leaves most forest tree species 
categorized as non‐model. The ability to achieve high‐quality refer‐
ence genomes in forest trees is hindered by characteristics shared by 
other plant groups, including high heterozygosity, ploidy, gene dupli‐
cations, and repetitive sequences (Hirsch & Robin Buell, 2013).

Recent advancements in optical mapping approaches, chromo‐
some conformation capture, and long‐read sequencing allows plant 
biologists to generate increasingly contiguous assemblies (Jain, 
Olsen, Paten, & Akeson, 2016; Kersey, 2019). In forest trees, recent 
high‐quality assemblies include Eucalyptus grandis (Myburg et al., 
2014), Quercus robur (Plomion et al., 2016, 2018), and Liriodendron 
chinense (Chen, Kao, Li, Huang, & Li, 2018). These inexpensive and 
beneficial sequencing methods are also attractive for the large 
and repetitive conifer genome assemblies that remain fragmented 
(Prunier, Verta, & MacKay, 2016). Reducing the challenges associ‐
ated with sequencing and assembling a genome opens the door to 
the generation of pangenomes (Golicz, Batley, & Edwards, 2016). 
This approach extends the analysis beyond the scope of allelic 

F I G U R E  1   Growth in number of published reference plant genomes in comparison with those of tree species sequenced since 2002. 
By 2018, there were 148 plant reference genomes (shown in brown) with only 52 tree species (green). The first forest tree species was 
sequenced in 2006 (Populus trichocarpa). The highlighted genus names denote the year the first reference was generated for a species in that 
genus
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variation within genes and toward structural variants across pop‐
ulations. Pangenomes are now available for maize (Hirsch et al., 
2014), Oryza (Zhao et al., 2018), Brassica (Golicz et al., 2016), and 
Brachypodium (Gordon et al., 2017), and in trees, several hybridizing 
Populus species (Pinosio et al., 2016). While most research efforts 
are focused on diving deeper into species with economic drivers, 

fewer than 1% of the estimated 400,000 diverse land plants are se‐
quenced. This may soon change as several initiatives are proposing 
ambitious collaborations to characterize large sections of the tree of 
life. The Earth BioGenome Project is most notable and intends to se‐
quence 10 to 15 million eukaryotes over the next 10 years (Lewin et 
al., 2018). Obtaining high‐quality reference genomes for more forest 

F I G U R E  2   (a) NCBI project data depicted for 52 species (10 orders) associated with 6,116 BioProject studies. BioProject data were 
organized into whole‐genome shotgun (whole genome or resequencing), Transcriptome (RNA‐Seq, sRNA), Epigenome (bisulfite), GBS 
(genotyping‐by‐sequencing, RAD‐Seq, ddRAD‐Seq, RAPTURE, and similar), and exome (targeted capture). (b) NCBI BioProject data depicted 
for 972 projects representing 373 unique tree species across 16 orders. BioProject data were organized into whole‐genome shotgun (whole 
genome or resequencing), Transcriptome (RNA‐Seq, sRNA), Epigenome (bisulfite), GBS (genotyping‐by‐sequencing, RAD‐Seq, ddRAD‐Seq, 
RAPTURE, and similar), and exome (targeted capture)
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tree species may improve our ability to conserve and manage forest 
populations.

Forest trees are long‐lived, predominantly outcrossing peren‐
nials with long generation times and tremendous genetic diversity. 
As such, a significant body of literature is dedicated to interrogating 
forest tree populations spanning environmental gradients through 
genomics (Aitken & Bemmels, 2016). Population studies examine 
local adaption through a range of techniques with recent efforts fo‐
cused on reduced representation genome sampling (Catchen et al., 
2017). To date, at least 50 tree species were assessed via genotyp‐
ing‐by‐sequencing approaches, such as RAD‐Seq, which is a reliable 
option for trees with and without a reference genome (Parchman, 
Jahner, Uckele, Galland, & Eckert, 2018). These approaches are typ‐
ically paired with extensive phenotypic or environmental data to 
interrogate genotype–phenotype and/or genotype–environment 
associations for a large number of individuals (Sork et al., 2013). The 
associated phenotypic and environmental metrics add yet another 
dimension to the data challenge. High‐throughput phenotyping, or 
phenomics, is extensively adopted in crop species to examine and 
monitor biomass, photosynthetic efficiency, disease status, growth 
traits, and root architecture (Fernandez, Bao, Tang, & Schnable, 
2017; Shakoor, Lee, & Mockler, 2017; Thomas et al., 2016). Recent 
adoption of thermal imaging and LIDAR provides opportunities to 
assess biodiversity, response to drought, growth traits, and pest/
pathogen spread across entire forest plots (Dungey et al., 2018; 
Ludovisi et al., 2017). This review will describe developments in cy‐
berinfrastructure that enable integration across traditional domains 
to advance knowledge in the forest tree research community.

2  | CYBERINFR A STRUC TURE AND FAIR

The term cyberinfrastructure was first defined by the National 
Science Foundation (NSF) in 2003, and described a research 
network that supported all aspects of the data life cycle, from 
acquisition to storage, integration, analysis, and visualization. 
Cyberinfrastructure includes both the software and hardware ele‐
ments to support these endeavors, connected to the Internet and 
accessible to an audience beyond a single institution (Kim, Yu, & 
Park, 2016). There is agreement among many that these frame‐
works and the underlying data should be open, integrated, cur‐
rent, reproducible, and sustainable (Eiserhardt et al. 2018). The 
subsequent NSF investment in the iPlant Collaborative, now 
known as CyVerse, addresses challenges surrounding access to 
analytics, storage, and visualization for plant biologists (Goff et al., 
2011; Stein, 2008). Rebranded in 2015 to serve the entire life sci‐
ence community, CyVerse provides computational infrastructure 
through cloud and virtual machines for common bioinformatic 
workflows as well as dedicated applications for data storage, 
training, and image analysis. The origins of CyVerse in plant biol‐
ogy provide a platform that remains accessible for those studying 
non‐model plants. Reproducible workflows are well integrated for 
de novo genome and transcriptome assemblies, variant detection, 

and targeted capture analysis (Horvath et al., 2018). While CyVerse 
focuses primarily on genomics, the BIEN (Botanical Information 
and Ecology Network), a National Center for Ecological Analysis 
and Synthesis (NCEAS) working group, unifies disparate ecologi‐
cal datasets built from observations across regional plots, her‐
baria, and other collections (Enquist, Condit, Peet, Schildhauer, & 
Thiers, 2016). The challenges are immense with varying degrees 
of digitization, distributed nonintegrated databases, and a lack of 
universally adopted standards for recording observations. BIEN 
is targeting not only integration across these collections but also 
phylogenetic and ‘omic data to fully assess the impact of climate 
change (Enquist et al., 2016). CyVerse and BIEN represent two 
coordinated efforts from which forest tree researchers could 
benefit. Integration of ecological, trait, and genomic data for geo‐
referenced populations, alongside computational resources, is 
critical for questions surrounding forest health and productivity.

Cyberinfrastructure is only as powerful as the underlying 
data that it stores, transports, and analyzes. While this remains 
challenging for genetic and genomic data, it is even more so for 
field observations and measured traits. The FAIR (Findability, 
Accessibility, Interoperability, and Reusability) data reporting 
standards, published in 2016, emphasized that data should not 
only be stored, but also accessible and usable by the greater re‐
search community (Wilkinson et al., 2016). These guidelines en‐
courage individual researchers seek out appropriate tools and 
cyberinfrastructure to support the viability of their digital prod‐
ucts. The FAIR reporting standards ask that data be: (a) findable: 
requires that the information is both machine and human‐readable 
with relevant and persistent identifiers; (b) accessible: requires 
that information be indexed, searchable, and retrievable by both 
machines and humans through the use of open‐source standard 
file formats; (c) interoperable: requires that information be ex‐
changed across platforms and relies on standards and semantics 
to aid in this process; (d) reusable: requires that data are open and 
associated with appropriate metadata (Reiser, Harper, Freeling, 
Han, & Luan, 2018). In the era of high‐throughput data, cyberinfra‐
structure and the associated databases are not yet fully compliant 
with FAIR standards.

3  | WHERE ARE THE DATA?

Journals and funding agencies encourage the deposition of data in 
the appropriate archiving locations. Despite these guidelines, all life 
science fields are experiencing a decrease in well‐connected data‐
sets (Alexander, Johnson, & Brown, 2018). In non‐model species, the 
derived genomic datasets are as important, if not more so, than the 
original raw reads. These derived datasets may include whole‐ge‐
nome assemblies, intermediate assemblies from reduced represen‐
tation population studies, de novo transcriptome assemblies, variant 
information, and genotyping assay designs. For example, of the 
3,133 registered BioProject studies associated with de novo tran‐
scriptomics, only 374 projects representing 73 unique species are 
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associated with a Transcriptome Shotgun Assembly (TSA) database 
record and/or Gene Expression Omnibus record in NCBI. This dis‐
connect provides no mechanism to reproduce or reuse a transcrip‐
tome assembly. Even when datasets are connected, the associated 
metadata is typically sparse and does not include relevant details on 
the analytics involved in generating the connected datasets.

Outside of genomic data, the situation is far more dire; the vast 
majority of this content, if submitted, is associated with generalist 
repositories, such as Dryad (https ://datad ryad.org/), Zenodo (https 
://zenodo.org/), or FigShare (https ://figsh are.com/). These systems 
provide a long‐term Digital Object Identifier (DOI), but the hosted 
data are generally not discoverable or machine‐readable. These 
repositories accept data across a wide range of disciplines, in nu‐
merous formats, and provide little guidance or requirements on the 
submitter (Reiser et al., 2018). As an example, phenotypic and envi‐
ronmental data associated with forest tree populations can be found 
in Dryad for over 43 forest tree species. In all cases, the flat files 
referenced with the study are not provided in a machine‐readable 
format. Some of the best practices for trait data include designation 
of units for trait measures, detailed trait measure descriptions, defi‐
nition of missing data, and tidy format (one row = one observation, 
one column = one trait) (Wilson et al., 2017).

For plant biologists, the ELIXIR UK‐supported Collaborative 
Open Plant Omics (COPO) initiative is improving the situation for 
plant genomic and phenomic data with standards‐based integration, 
guided workflows, DOI generation, and connections to researcher 
profiles (ORCID) (Shaw et al., 2015). The COPO initiative aims to 
limit the variation across standards and provide access to analytics 
which can operate on more robust standards. COPO is just one of 
the registered services listed in the Fairsharing.org portal that pro‐
vides a curated and queryable interface to four linked registries, 
including data standards, databases, collections, and data policies 
(McQuilton et al., 2016). FAIRSharing is aligned with the FAIR princi‐
ples and provides guidance on data sharing for numerous disciplines, 
including the life sciences, for individual researchers, journals, and 
funding agencies.

4  | DATABA SES

Primary databases are long‐term, federally funded, entities that 
are capable of maintaining persistent identifiers. The major rep‐
resentatives in the genetic and genomic world include NCBI 
GenBank, EMBL‐EBI, and DDBJ, which operate as mirrored re‐
positories for several different sequence types with independent 
strengths (Meldal & Orchard, 2018; Miyazawa, 2018; Sayers et al., 
2018). These repositories excel at providing unified access to a 
wide range of sequence data for an unlimited number of species. 
They do not, however, have the capacity to identify specific com‐
munity needs and provide organism‐specific curation. They gen‐
erally provide basic functionality for sequence search, sequence 
comparison (BLAST), and visualization (genome browsers). Since 
users are often seeking substantial volumes of data, they provide 

mechanisms for bulk download via FTP, command‐line search, and 
Web‐based searches, as well as rapid data transfer pipelines, such 
as Aspera. In addition, primary repositories must balance data vol‐
umes and perceived benefit to the research community. They im‐
plement policies that are typically driven by biomedical and model 
system concerns. This includes NCBI’s recent decision to halt the 
collection of variant data from genomes that are not biomedi‐
cal models and within EBI‐EMBL, only variants associated with 
INSDC‐registered genomes. For those species with draft genomes 
or without a reference, this provides no mechanism for integrated 
data sharing of population genomic studies.

Secondary databases curate and provide specialized functionality 
to clade, family, or species‐specific research communities. They operate 
in conjunction with primary databases and have a long history of cross‐
linking resources. They are frequently funded by organizations with 
a data production goal from a multi‐institutional project with a dedi‐
cated team of biocurators. In the broader plant genomic arena, the Joint 
Genome Institute's Phytozome resource hosts versioned genomes via 
JBrowse across the viridiplantae as well as structural and functional 
annotation downloads (Buels et al., 2016; Goodstein et al., 2011). The 
complementary but independent PLAZA plant comparative genomic 
framework focuses on different plant clades with instances for mono‐
cot, dicot, and gymnosperm datasets. Each instance contains curated 
structural and functional gene annotations, gene family comparisons, 
and phylogenetic analysis (Van Bel et al., 2017). Other comparative 
genomic resources such as Gramene and Ensembl Plants provide ex‐
tensive resources for comparative genomics, pathway analysis, and 
variant data, but rely on high‐quality reference genomes from crop spe‐
cies and house few tree species (Bolser, Staines, Pritchard, & Kersey, 
2016; Tello‐Ruiz et al., 2017). Large‐scale collaborative projects are 
also generating and hosting substantial Web‐based genomic resources. 
The international 1KP project generated de novo reference transcrip‐
tomes for over 1,000 viridiplantae species with membership from all 
major lineages (Matasci et al., 2014). The successor to this project, in 
collaboration with Earth BioGenome, is the Plant 10KB project, which 
will sequence 10,000 phylogenetically diverse plant species from major 
clades of embryophytes over the next five years (Cheng et al., 2018). 
Independently, these resources provide valuable contributions to forest 
tree genomic research; however, connections between these resources 
and non‐model databases remain sparse.

Community databases also work in conjunction with primary 
databases and other secondary databases. Their origins are more 
ad hoc in that they are hosted by a variety of different organiza‐
tions and funded through different mechanisms. The Arabidopsis 
Information Resource (TAIR) is a well‐established community repos‐
itory for plant biologists that provides a wealth of information that 
is also cross‐linked across information resources (Berardini et al., 
2015). Community and secondary databases for plants (and trees) 
continue to increase and often originate from a single transcriptome 
or genome project; however, dedicated funding for biocuration be‐
yond the length of the initial project is limited (Harper et al., 2018). 
Until recently, the majority of databases focused on interfaces for 
searching curated data, genome visualization via browser, and basic 

https://datadryad.org/
https://zenodo.org/
https://zenodo.org/
https://figshare.com/
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sequence similarity functions. The tree biologist's need for cyberin‐
frastructure that expands the basic search and BLAST functionality 
of community databases is responsible for recent and successful de‐
ployments of more robust frameworks.

Three Web‐based forest tree repositories have persisted with in‐
dependent specialties and a connection to data analytics: TreeGenes, 
Hardwood Genomics Web, and three PlantGenIE implementations 
(Table 1). Both TreeGenes and Hardwood Genomics Web serve as 
hubs for their respective research communities in addition to the 
role of data storage, access, and analysis (Chen et al., 2017; Falk et al., 
2018). Combined, they host over 1,800 species with the goal of pro‐
viding integrated resources for non‐model forest trees. Hardwood 
Genomics Web provides expression and co‐expression analysis sup‐
port for model and non‐model hardwood species (Chen et al., 2017). 
TreeGenes supports population and landscape genomic analysis as well 
as comparative genomic module for orthologous gene family analysis. 
Recent development in both is focused on the Tripal framework. This 
open‐source platform combines a content management system front 
end with an organism agnostic relational database schema, known as 
Chado (Sanderson et al., 2013; Spoor et al. 2019). This web/database 
combination provides a set of modules that can load and provide pub‐
lic views for standard data types (genomes, transcripts, variants, etc). 
Two other prominent tree databases associated with horticultural 
species, CitrusDB and Genome Database for Rosaceae (GDR), utilize 
Tripal as well as 30 other plant‐focused resources (Jung et al., 2018, 
2017). Tripal‐supported databases integrate with a community of de‐
velopers that contribute modules to extend the functionality of the 
standard install (Zhou, Emmert, & Zhang, 2005). In the forest tree Tripal 
instances, genetic maps are served through the Comparative Genetic 
Map module, genomes through the JBrowse module, and variants in 
the Natural Diversity module (Jung et al., 2011; Youens‐Clark, Faga, 
Yap, Stein, & Ware, 2009). Custom Tripal modules, such as CartograTree 
in TreeGenes, provide analytics for association genetics and landscape 
genomic studies through the large‐scale integration of genetic, pheno‐
typic and environmental data (Falk et al., 2018).

The Plant Genome Integrative Explorer (PlantGenIE) framework 
supports three dedicated forest tree genus/family‐specific domains: 
Populus (PopGenIE), Conifer (ConGenIE), and Eucalyptus (EucGenIE; 
Sundell et al., 2015). Each domain is packaged with a set of core tools 
that are a combination of GMOD project tools, such as JBrowse 
and Apollo, and standard open‐source tools, such as BLAST, and 
custom tools. The custom tools are focused on the large‐scale ex‐
pression study visualization, analysis, such as GO enrichment, and 
co‐expression evaluation (Sundell et al., 2015). Current development 
is focused on the integration of ChiP‐Seq, variant, and small RNA 
(sRNA) datasets. Both the Tripal and PlantGenIE platforms provide 
cross‐site search capabilities and a core framework that allows rapid 
development of a new instance. Tripal implements cross‐site search 
with an Elastic Search module that removes dependence on a uni‐
form database schema (Condon, Almsaeed, Chen, West, & Staton, 
2018). For example, all of the Tripal tree databases are currently run‐
ning the Elastic Search module, which allows a visitor to TreeGenes 
to search a specific gene and request that matching results are 

returned from Hardwood Genomics Web, CitrusDB, and Genome 
Database for Rosaceae. PlantGenIE databases accomplish cross‐site 
query through a shared underlying schema. Both frameworks sup‐
port analytic capacity through the open‐source Galaxy framework 
(Boekel et al., 2015). Galaxy exists as a publicly accessible Web 
framework with community‐curated workflows for a wide range of 
bioinformatic analysis. It is also an international consortium of devel‐
opers that support local instances that can be further customized for 
a variety of community needs. Community databases can manage 
user accounts, provide data storage, and expose custom workflows 
and associated datasets through their sites with Galaxy.

For model organisms, data warehousing solutions can enable faster 
access through alternative (non‐relational) storage designs. BioMART 
is widely adopted and provides an efficient storage method and stan‐
dardized user interface to query genomic objects, including genes and 
functional data (Smedley et al., 2015). BioMART also pairs with an R 
package that allows one to integrate functional annotations directly 
into analytics (Drost & Paszkowski, 2017). Gramene, Phytozome, and 
Ensembl Plants provide data access via BioMART in addition to their 
independent interfaces. InterMine acts as a more robust framework 
that combines efficient storage with standard and custom data load‐
ers and analytic tools (Lyne et al., 2015). The Phytozome framework 
also implements a PhytoMine. As demonstrated by Phytozome, data‐
bases have the option to share or expose data in different frameworks, 
which can enable a variety of Application Programming Interfaces 
(APIs), other databases, or end users to integrate the data.

In alignment with FAIR guidelines, new tree (or plant) com‐
munity databases should examine whether an independent Web 
resource is necessary or whether integration into existing cyberin‐
frastructure is more sustainable. The support of advanced analyt‐
ics in community databases encourages frameworks to efficiently 
transfer data, such as raw reads, from primary repositories to local 
application servers for analysis. In the era of big data, it is not ef‐
ficient or realistic to reinvent the functionality required for each 
new genome or transcriptome. If a new and independent database 
is required, researchers should consider how to share the data 
during the lifetime of the resource as well as a plan to disseminate 
the data in the event it can no longer be maintained as an inde‐
pendent resource. Less than half of the existing databases hosting 
tree related data are considering aspects of FAIR, and just over 
half are providing access to basic analytics (Table 1, Figure 3). In 
the biomedical community, a pilot NIH Data Commons initiative 
is seeking to integrate independent genomic resources, including 
Flybase, Mouse Genome Database (MGD), Wormbase, and others 
into a cloud‐based data sharing platform to minimize redundancy 
and improve integration and data reuse (Mahurkar et al., 2018). 
Related to species of agricultural interest, the AgBioData consor‐
tium, formed in 2015, represents more than 25 genetic, genomic, 
and breeding databases hosted in a range of platforms. The con‐
sortium values the need for biocuration and encourages member 
databases to think about data sharing, reuse, and sustainability 
for existing resources (Harper et al., 2018). Community databases 
should coordinate with existing consortiums to improve visibility, 
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reduce development time, contribute to open source projects, and 
extend the value of their resource. For projects consisting of a 
single genome reference and associated transcriptome, project 
members should explore the options for working with an existing 
resource.

5  | ONTOLOGIES AND STANDARDS

Datasets curated by biologists have concepts and measures associ‐
ated with different definitions across disciplines, organisms, scales, 
and even researchers in the same field. This semantic heterogene‐
ity impedes data integration. Standardized vocabularies, known as 
ontologies, are used to describe genetic, phenotypic, and environ‐
mental observations or products (Bard & Rhee, 2004). The Gene 
Ontology (GO) Consortium is a well‐established effort in the life 
sciences that provides curated, relational‐term databases describ‐
ing the functions, processes, and cellular locations of gene products 
(The Gene Ontology Consortium, 2019). The standard acyclic graph 
organization of ontologies, paired with persistent identifiers for 
terms, supports connections within and between databases. GO and 
the Sequence Ontology (SO), which defines the meaning of words 
such as gene, linkage group, and variant, are adopted by the major‐
ity of databases and frameworks, including InterMine and BioMART 
(Cunningham, Moore, Ruiz‐Schultz, Ritchie, & Eilbeck, 2015; Eilbeck 
et al., 2005). Today, one can visit the OBO Foundry and EMBL‐EBI’s 
Ontology Lookup Service to search the curated bio‐ontologies, of 
which over 30 are specific to plants (Vita, Overton, Mungall, Sette, 
& Peters, 2018). Among these, five, in addition to the Crop Ontology 
(CO), are extensively used by databases supporting plant research 
(Table 2). These ontologies are structured and semantically formal‐
ized to promote integration into data standard recommendations. 
The Plant Trait Ontology (TO), dedicated to phenotypes, the Plant 
Ontology (PO), dedicated to structures and developmental stages, 
and the CO for breeding, germplasm, and traits organized by species 
are most active (Arnaud et al., 2012; Cooper et al., 2013; Shrestha 
et al., 2012). The ecology and phylogenetic community recently 

released the Plant Phenology Ontology (PPO) and Flora Phenotype 
Ontology (FLOPO). The FLOPO is focused on morphological struc‐
tures and traits associated with their identification, value, and ap‐
plication (Hoehndorf et al., 2016). The PPO will address challenges 
associated with the varied vocabularies applied to digitized collec‐
tions and phenological measures across scales (Stucky et al., 2018). 
The PPO is intended to serve three existing networks: USA National 
Phenology Network (USA‐NPN), National Ecological Observatory 
Network (NEON), and the Pan‐European Phenology Database 
(PEP725). A related effort, described as a Thesaurus of Plant 
Characteristics (TOP), is intended for use in the Plant Trait Database 
(TRY‐DB), which is a global archive for curated plant traits (Garnier 
et al., 2017). The TRY‐DB is uniquely positioned to improve on the 

F I G U R E  3   Plant and tree‐specific 
secondary and community databases from 
2002 to present

TA B L E  2   Reference ontologies/vocabularies for plants

Ontology Name Scope Unique Terms

Crop Ontology (CO)a Traits 
(species‐specific)

6298

Trait Ontology (TO)a Trait 1554

Plant Ontology (PO)a Anatomy and 
development

1991

Gene Ontology (GO)a Gene product 49993

Phenotypic Qualities 
Ontology (PATO)a

Trait qualities 2730

Chemical Entities of 
Biological Interest 
(CHEBI)

Chemistry 132780

Plant Experimental 
Conditions Ontology 
(PECO)

Environment 563

Sequence Ontology (SO)a Genetic 2473

Protein Ontology (PRO) Protein products 216442

Plant Phenology 
Ontology (PPO)

Phenology 254

Flora Phenotype 
Ontology (FLOPO)

Morphology and 
trait

24199

aOntologies widely adopted in plant genetic databases. 
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data integration challenges associated with ecological trait data by 
hosting over 6.9 million trait records for 148,000 plant taxa (Kattge 
et al., 2011).

The Planteome initiative provides a Web portal with intercon‐
nected reference ontologies for the annotation of genomes, expres‐
sion data, germplasm, and traits for 95 taxa (Cooper et al., 2018). 
The reference ontologies include PO, TO, and Plant Experimental 
Conditions Ontology (PECO), and the in‐development Plant Stress 
Ontology (PSO), which will describe the abiotic and biotic stressors. 
These are integrated with additional terms from CO, GO, Chemical 
Entities of Biological Interest (ChEBI), Evidence and Conclusion 
Ontology (PECO), and the Phenotypic Qualities Ontology (PATO) 
(Cooper et al., 2018). PATO unifies phenotype descriptions and 
makes them amenable to automated processing. It is both an ontol‐
ogy and a uniform way to express phenotype statements (Gkoutos, 
Schofield, & Hoehndorf, 2017). Planteome leverages the integrated 
platform to provide annotations which connect an ontology term 
to a bioentity. A bioentity is defined as a QTL, gene, protein, germ‐
plasm, gene product, or similar.

Two independent efforts have brought tree biologists and com‐
putational teams to the same table to curate traits and structures. 
A wood anatomy and development working group contributed to 
PO through the partial conversion of established vocabularies in 
the Glossary of Terms used in Wood Anatomy (Lens et al., 2012). 
While this glossary is known to the research community, the term 
definitions lose meaning when adopted in other disciplines classify‐
ing the same structures. Within the CO, an INRA‐sponsored effort 
curated a woody plant trait ontology specific to forest tree breed‐
ing and health with terms such as wood density, wood fiber length, 
tree diameter, and branching angles. This ontology provides a much‐
needed standard for structures and traits specific to forest trees 
that are not represented in other crop species.

The combination of plant‐specific and reference ontologies uti‐
lized in databases leverages curated efforts and minimizes redun‐
dancy. The transition of community‐specific vocabularies or natural 
language descriptions into ontology terms enables automation of 
aspects of the classification process. While biocuration is an im‐
portant and fundamental activity for all life science databases, there 
are few reliable funding streams that will support it (Harper et al., 
2018). Community databases must select the ontologies that are 
appropriate for the data they hold and consider workflows to as‐
sist in automating data annotation from high‐throughput studies. 
The availability of terms appropriate for woody plant species vastly 
improves the ability to annotate population and expression studies 
available to forest tree databases. Reference ontologies applied to 
the sequence objects, gene products, plant traits/phenotypes, and 
environmental metrics describe a complete study in a manner that 
should be easily indexed, searched, integrated, and compared.

The FAIRSharing portal provides details on the registered da‐
tabases and the ontologies they currently support. Ontologies play 
an important role in the implementation of FAIR guidelines as they 
define shared vocabularies and improve the machine‐readable as‐
pect of data. Structured standards, such as the Minimal Information 

About a Plant Phenotyping Experiment (MIAPPE), provide guide‐
lines for reporting on a phenotyping experiment (Ćwiek‐Kupczyńska 
et al., 2016). These guidelines integrate across all of the active plant 
ontologies and several of the reference ontologies named here. The 
MIAPPE standards are flexible to landscape, greenhouse, growth 
chamber, and related study designs. They formalize the language 
around the design, treatments, environmental metrics, plant struc‐
tures, and traits. Ontologies, integrated with standards and con‐
nected to guided workflows, as proposed by COPO, are critical for 
reusable data in community databases. Recent efforts, focused on 
high‐throughout phenotyping, include GnpIS, which serves as a 
FAIR, international information resource for integrating phenomic, 
genomic, and metadata for plants and plant pathogens (Pommier et 
al., 2019). Their efforts have extended outside of species with well‐
resolved genomes and include several forest trees. Coordinated 
development with workflows enforcing FAIR standards and commu‐
nity databases is still needed. Individual researchers do not have the 
time and resources to map terms onto complex ontological frame‐
works. In addition, each ontology requires independent teams to 
generate term annotations and curate updates. Once the ontology 
is established, intelligent workflows for data submission can ease 
the burden on researchers and curation teams, while increasing 
the value of the data itself. Independent and consistent support of 
the ontologies, the data submission frameworks, and the commu‐
nity databases is needed to ensure robust integration. Fields such 
as ecological genomics are relevant for forest trees and are driving 
the need for reporting standards that can integrate across scales 
(Farley, Dawson, Goring, & Williams, 2018). Effective integration of 
metadata standards, data sharing implementations, and ontological 
frameworks provides the basis for tools such as CartograTree that 
enable meta‐analysis across population studies for forest trees (Falk 
et al., 2018).

6  | WORKFLOWS AND ANALY TIC S

The strength of the bioinformatic research community is the active 
open‐source development that provides innovative solutions to ad‐
dress analytic challenges. On the downside, this creates an environ‐
ment where the software versions change rapidly, possibly several 
times a year, and the best package for the task may change just as 
often. For the average tree biologist focused on fieldwork, sampling, 
sequencing, and analysis, the nuances of the latest and greatest ap‐
proach are difficult and overwhelming to track. This environment, 
combined with software that is typically developed for Linux sys‐
tems on HPC, provides additional hurdles for the end user. Access 
to computing resources in research institutions has improved, but 
hurdles in installing and maintaining packages that require frequent 
updates and navigating complex scheduler software to submit jobs 
remain a challenge. Cyberinfrastructure seeks to connect data 
and analytics, which can be facilitated through vetted workflows. 
Workflow languages provide a variety of options, with command‐
line and Web‐based implementations, as well as the ability to wrap 
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Workflow Language/Workbench Year Web‐based/Command Line Syntax

Apache Taverna 2004 Both Explicit

Pegasus 2005 Command Line Explicit

Ruffus 2010 Command Line Explicit

Galaxy 2010 Both Explicit

Snakemake 2012 Command Line Implicit

bpipe 2012 Command Line Explicit

Agave 2012 Both Explicit

BigDataScript 2015 Command Line Implicit

Sci:Luigi 2016 Command Line Implicit

Common Workflow Language 2016 Both Explicit

Nextflow 2017 Both Implicit

Toil 2017 Command Line Explicit

TA B L E  3   Workflow languages to 
support bioinformatic analysis

F I G U R E  4   Schematic of recommended cyberinfrastructure to support and integrate non‐model tree genomics, phenomics, and 
environmental data. Community databases housed within existing frameworks that utilize content management systems will ease the 
management of user accounts, data exchange, and content updates. Guided submission workflows will integrate community‐curated 
ontologies, such as GO, SO, PO, TO, CO, and PATO. Regular imports from primary and secondary sources, as well as multi‐institutional 
projects, will provide the basis for data that can be further curated. Registered users will have direct access to custom workflows with data 
housed in the database and raw data that can be transferred from primary databases to the local application server
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existing packages (Table 3). For community databases and end users, 
workflows implemented in workbenches, such as Galaxy, Taverna, 
or SciApps, offer the ability for end users with less development ex‐
perience to work within a graphical user interface to design modu‐
lar workflows that wrap existing open‐source bioinformatic tools 
(Boekel et al., 2015; Leipzig, 2017; Wang, Lu, Buren, & Ware, 2018; 
Wolstencroft et al., 2013). Community databases can integrate 
with local (or public) instances of these workbenches to expose 
workflows to their user community. The Tripal community provides 
this resource to all member databases and their users via Galaxy. 
Customization of the workflows in tools such as Galaxy allows data‐
base administrators to expose and update best practice workflows 
as well as provide HPC access. This is of tremendous importance 
for non‐model plant databases where custom workflows that do not 
rely on reference genomes must communicate with curated, local 
genomic resources. For both models and non‐models, integration of 
genomic selection workflows with management tools for breeding 
could produce robust infrastructure for the full life cycle in forestry. 
Following the execution of a workflow hosted by a community da‐
tabase, tools such as CyVerse's Data Store can provide indexed and 
labeled storage with support for authentication, permissions man‐
agement, and metadata associations (Schneider & Jimenez, 2019).

7  | CYBERINFR A STRUC TURE 
RECOMMENDATIONS FOR THE FUTURE

The era of high‐throughput data necessitates efforts to minimize 
redundancy in storage and optimize methods for finding and reus‐
ing the information generated (Figure 4). While genomic data are 
better positioned for integration among model systems, the current 
state for non‐models is less than ideal. With the upcoming increase 
in draft and complete genome references for species without a sub‐
stantial research community, integration of these resources into 
established frameworks, such as Tripal, PlantGenIE, InterMine, or 
BioMART, is important in an era of limited public funds for compu‐
tational resources. Community databases should consider expos‐
ing data in more than one semantic framework to maximize data 
sharing, and new databases should develop their resource in one 
of the community‐supported open‐source frameworks to minimize 
developer time and leverage established standards. Integration of 
ontological frameworks with guided submission workflows that 
can capture and label metadata (study design, geographic data, and 
analytical methods) is key to generating reusable and reproducible 
datasets. These guided workflows can enforce submission of both 
the raw data and derived objects to ensure they are well described 
and accessible. Generation of persistent identifiers (DOIs) will also 
be required to provide lasting value to the associated digital ob‐
jects. They should be designed to provide at least partial automa‐
tion for term assignments for sequence types, gene products, and 
phenotypes.

We expect that many of our forest tree species will have a ref‐
erence genome in the next five to ten years. As such, the ability to 

integrate decades of population studies onto these genomes will 
be critical. In addition, we will want to leverage efforts, such as 
Planteome, to aid in the functional annotation of the gene space. 
Journals and funding agencies, in collaboration with initiatives 
such as FAIRSharing, must continue their role as gatekeepers and 
determine best practices and preferred standards for specific data 
types. Agreement on best practices and enforcement of these 
standards for both publications and data management plans re‐
mains a significant barrier. Researchers and funding agencies 
should look to existing cyberinfrastructure solutions to manage 
projects from start to finish, rather than at the end of the project. 
Metadata tagging, ontology term assignment, and raw data stor‐
age can be managed during small‐ or large‐scale collaborations. 
Many community databases and other information resources 
can support this activity and keep data accessible only to project 
members until public release (Pommier et al., 2019; Wegrzyn et 
al., 2019).

Finally, reproducible, documented, and custom analytic work‐
flows should be accessible to researchers through the community 
databases that provide the curated datasets. These integrated 
platforms must be accessible in the field as a data and metadata 
collection tool and at the desktop to provide analysis, visualiza‐
tion, and submission. Mobile applications for data collection on 
the landscape as well as in tree plantations are a key element of 
cyberinfrastructure (Crocker et al., 2019). Machine learning sup‐
ported workflows to distill information from high‐throughput 
phenotyping via remote sensing, an increasingly important com‐
ponent of data collection for forest health and productivity, will 
be required (Kälin, Lang, Hug, Gessler, & Wegner, 2019). Forest 
tree research will benefit from well‐connected and labeled data‐
sets with access to analytics that can integrate across genomic, 
phenomic, and environmental data.
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