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SUMMARY

Histological grading is the key factors affecting the prognosis and instructive in guiding treatment and
assessing recurrence in non-functional pancreatic neuroendocrine tumor (NF-Pan-NET). Approximately
one-third of patients without copy number variation (CNV) alteration and the prognosis of these patients
are better than that of patients with CNV alteration. However, the difference between CNV and histolog-
ical grading is unclear. Here, we analyzed the heterogeneity of tumor cells according to two classification
criteria, genomic instability (including CNV alteration and tumor mutation burden) and histological
grading. We revealed that the activated core pathways of tumor cells were significantly different under
different histological grading’s and genomic instability patterns. We also found that tip cells, lymphatic
endothelial cells, macrophages, CD1A + dendritic cell, Treg, MAIT, ILC, and CAFs might participate in
the process of hepatic metastases, which will facilitate the understanding of the patterns to decode the
malignant potential and of NF-Pan-NET.

INTRODUCTION

Pancreatic neuroendocrine neoplasm (Pan-NEN) ranks the second most common malignancies of the pancreas, which originate from the

neuroendocrine precursor cells or neuroendocrine transdifferentiation of epithelial cell.1,2 According to the data from the Surveillance, Epide-

miology, and End Results (SEER) program, in the context of a plateau in the overall incidence of all malignant neoplasms, the incidence of

NEN increased by a staggering 7 times between 1973 and 2012 in the United States.3 Pan-NEN account for 30% of gastroenteropancreatic

neuroendocrine neoplasm (GEP-NEN) and 1–2% of all pancreatic malignancies.4 Compared with other GEP-NEN, Pan-NEN has a higher rate

of liver metastasis, up to 20%–64%, and diffuse liver metastasis was the most common.5,6 It is characterized by high heterogeneity, and can

manifest slow inert growth, invasive growth or even early metastasis. These characteristics may vary with the progression of the disease. Ac-

cording to cell differentiation, well-differentiated was defined as Pan-NET and poorly differentiated was defined as pancreatic neuroendo-

crine carcinoma (Pan-NEC). Pan-NET was divided into functional and non-functional Pan-NET (NF-Pan-NET) according to whether it secreted

hormones and caused clinical symptoms. Further, based on mitotic image and ki-67 proliferation index, Pan-NET were divided into three

grades of G1, G2, andG3. Histological grading is instructive in guiding treatment, assessing recurrence, and estimating prognosis. Generally,

G1 indicates the best prognosis and G3 implies the worst prognosis.4 However, once G1 and G2 Pan-NET are complicated by liver metas-

tases, the prognosis is extremely poor, themedian survival is 24months7 Therefore, decoding the liver recurrence andmetastasis of Pan-NEN

can radically improve the prognosis. In addition, the histological grading is not static. In some cases, the grade increases with the progression
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Figure 1. Single-cell profiling of the tumor ecosystem in NF-Pan-NET

(A) The demographic and pathological data of the 17 randomly selected NF-Pan-NET cases in our center, single-cell RNA-sequence, and multiple-omics (WES,

RNA-sequencing and proteomics) of bulk tissues were conducted in some of cases.

(B) Schematic diagram showed the design and purpose of this study.

(C) The cells were visualized by UAMP.

(D) Marker genes of each cluster were shown in the heatmap.

(E) The proportion of selected cell types in bulk RNA-seq was calculated by CIBERSORTx (left) and the proportion of selected cell types in our enrolled scRNA-seq

data. The data of scRNA-seq are represented as meanG SEM. The statistical analysis in the left showed the comparation of cell proportion between bulk RNA-

seq and scRNA-seq data. The statistical analysis in the right showed the comparation of cell proportion in scRNA-seq data between group NT and PT.

(F) Proportion of cell types in different groups.

(G) Heatmap showed the proportion of cell types in each specimen.
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of the disease, especially in the metastases.8 Increased grade tends to predict a worse prognosis.9 Besides, 90% of Pan-NET are grade G1 or

G2, leading to an unpredictable clinical course that varies from indolent to highly malignant. Therefore, there is an urgent need to find better

patterns to decode the malignant potential of Pan-NET.

One previous study recruited whole-genome sequencing (WGS) of 98 Pan-NET, in which the authors revealed four discrete groups of pa-

tients based on arm length copy number patterns, including: (1) recurrent pattern of whole chromosomal loss (RPCL); (2) limited copy number

events, many of which were losses affecting chromosome 11; (3) polyploidy; and (4) aneuploidy.10 Increased genomic instability such as

increased tumor mutation burden (TMB) and copy number variations (CNV) is the basis of tumor development. Most of tumors show high

levels of mutations or high levels of CNVs, and some belongs to an intermediate level of both.11 However, according to the data of these

98 Pan-NET, more than a third of the population, possessed limited copy number events and lowest mutation burden.10 This suggests

that these patients have low genomic instability. Another study recruited whole-genome/whole-exome sequencing (WGS/whole exome

sequencing [WES]) of 211 Pan-NET also revealed novel categories of Pan-NET based on CNV patterns: amplification, copy neutral, and dele-

tion. It was found that non-functional pancreatic neuroendocrine tumors (NF-Pan-NET) with CNV alterations (amplification and deletion) had

an elevated risk of relapse and worse survival. Same as the previous study, the group of copy neutral had the lowest TMB. In addition, the

distribution of histological grading also varied from the CNV patterns: in the CNV neutral group, G1 accounted for more than 50%, while

in the CNV amplification/deletion groups, G2 dominated.12 This suggests that the combination of histological grading and CNV alterations

classification system may have important significance for the treatment and prognosis assessment of NF-Pan-NET.

Single-cell sequencing has unique superiorities in interpreting tumor heterogeneity. Chromosome instability, found in almost every tumor,

is the internal impetus for tumor evolution, endowing tumors with multifarious clones. This internal impetus coupled with tumor microenvi-

ronment provokes high heterogeneity intra or inter-tumors.13,14 However, the commonly used bulk sequencing, which profiles a holistic ge-

netic landscape of many cells, shows obviously deficiencies in disclosing tumor heterogeneity. In this study, we recruited 17 NF-Pan-NET pa-

tients and analyzed their single-cell sequencing profiles to map associated genetic landscape and cell type. We further explored the

heterogeneity in NF-Pan-NETwith different histological grading and genomic instability patterns, in addition to identifying the characteristics

of patients with hepatic metastases (PHM).

RESULTS
Single-cell profiling of the tumor ecosystem in NF-Pan-NET

To explore the tumor ecosystem in NF-Pan-NET, we performed scRNA-seq using the Chromium platform (103 Genomics) from 15 NF-Pan-

NET tumor specimens (primary tumor tissues, PT), 3 control pancreas (adjacent normal tissues, NT) and 2 hepaticmetastases (HM) without any

treatment. Besides, further WES, bulk RNA-sequencing and proteomics were performed in six or seven of these patients (Figure 1A). The

demographic and pathological data of the 17 randomly selected NF-Pan-NET cases were shown in Figure 1A. To better identify tumor cells,

we also included scRNA-seq data of 8 control pancreases from the study by Peng et al. (Numbers N1, N4-9, and N11 in the original study).15

These data were used to characterize tumor heterogeneity and hepaticmetastases in NF-Pan-NET (Figure 1B). After the initial quality control,

we acquired scRNA-seq data of 123 106 cells in total. Uniform manifold approximation and projection (UMAP) algorithm was performed to

reduce nonlinear dimensionality and visualize these data. These cells were clustered into 47 clusters corresponding to 12 cell types, including

B cells, T cells, smoothmuscle cells (SMC), plasma cells, mast cells, macrophages, fibroblasts, endothelial, endocrine cells, ductal cells, cycling

cells, and acinar cells (Figure 1C).Marker genes of each cluster were calculated by FindAllMarkers functionwith wilcox rank-sum test algorithm

(Figure 1D). Furthermore, CIBERSORTx was used to analyze the proportion of these 12 cell types in 83 bulk RNA-seq samples from Alvarez’

study.16 Comparing with the proportion in our scRNA-seq data, we found that for half of the cell types in the two datasets, there was no sig-

nificant difference in their proportion. However, in our data, the proportion of endocrine cells was significantly reduced (although still themost

abundant), while the proportion of some immune cells was significantly increased (B cells, macrophages, mast cells, and T cells) (Figure 1E). In

addition, the proportion of endocrine cells, B cells, macrophages, T cells, and mast cells were increased in primary tumor tissues while ductal

cells, acinar cells, endothelia cells, and fibroblast showed an obviously opposite trend in our data (Figure 1E). Intriguingly, there was no sig-

nificant difference in the distribution of these cells between the G1 and G2 (Figure 1F). In general, tumor tissue and normal tissue have signif-

icantly different dominant cell populations (Figure 1G). These data initially delineated the single-cell profiling of the tumor ecosystem in NF-

Pan-NET. Notably, there was no endocrine cell found in T4 and T6 samples. Therefore, these two specimens will be excluded when analyzing

the heterogeneity of tumor cells.
iScience 27, 110836, September 20, 2024 3



ll
OPEN ACCESS

iScience
Article
Tumor cells show marked heterogeneity in copy number variation

To definemalignant cells, we calculated large-scale chromosomal copy number variation (CNV) in endocrine cells by InferCNV.We found that

endocrine cells in tumor tissues exhibit significant differences in CNV patterns. In T1 (3.94%), T11 (4.98%), and T13 (23.33%) themalignant cells

identified by inferCNV were only a small part of the endocrine cells in the tissues. In H1 (36.85%), H2 (43.18%), and T15 (49.89%), which were

from the same patient, and in T3 (40.30%) and T12 (41.68%) the malignant cells identified by inferCNV accounted for a medium portion of the

endocrine cells in the tissues. While in T2 (96.27%), T5 (91.76%), T7 (99.54%), T8 (83.12%), T9 (92.18%), T10 (99.33%), and T14 (56.35%) the ma-

lignant cells identified by inferCNV accounted for the vast majority of the endocrine cells in the tissue (Figures 2A, 2B, and S1A). To further

confirm the CNV differences, we performedWES in T2, T3, T6, T10, T11, and T14 bulk tissues, and we found that T3 and T11 had neutral CNV,

T6 had a deleted CNV, whereas T2, T10, and T14 had amplified CNV (Figure 2C). Intriguingly, T3 and T11 presented neutral CNV in bulk tis-

sues and had lower proportions of inferCNV-high neuroendocrine cells in scRNA-sequence. Correspondingly, T2, T10, and T14 presented

amplified CNV in bulk tissues and had higher proportions of inferCNV-high neuroendocrine cells in scRNA-sequence. These indicated

that there was a strong correlation between CNV in the WES data of bulk tissues and the proportion of inferCNV-high neuroendocrine cells

in scRNA-sequence. We further calculated the TMB using the WES data. We found that T6, T2, T10, and T14 had higher TMB than that of T3

and T11 (Figure 2D). Both CNV and TMB are important elements of genomic instability, which play an important role in the development of

cancers. Generally, there is a striking inverse relationship between CNV and TMB at the extremes of genomic instability, particularly in highly

altered tumors.11 However, inNF-Pan-NET, the patients withCNV alteration tended to have higher TMB andworse prognosis,10,12 suggesting

that there is great heterogeneity in the pathogenesis of Pan-NET. However, single-cell profiling in the context of genomic instability pattern of

NF-Pan-NET is unknown. The proportion of normal pancreatic endocrine cells in the pancreatic tissue is very low (Figure 1F). Therefore, the

inferCNV-low endocrine cells still should be tumor cells. To confirm it, we analyzed the signal pathway of endocrine cells in different speci-

mens. We found that the endocrine cells in tumor tissues had activated signal pathways, including DNA repair, ROS, mTOR signaling, and so

on. However, endocrine cells in normal pancreas had activated signal pathways associated with endocrine and even exocrine functions of the

pancreas, such as insulin secretion, bile secretion, fat digestion and absorption, protein digestion and absorption, pancreatic secretion, and

hallmark of pancreas beta cells (Figures 2E and S1B). To further verify this, we analyzed the data of transcriptomics and proteomics in bulk-

tissues. We calculated the tumor purity through the transcriptome data and found that the selected sample had a high tumor purity (Fig-

ure S1C). Our results showed that tumor tissues exhibited reduced normal pancreatic function and enhanced tumor-related pathways regard-

less of genomic stability (Figures S1D and S1E). These results suggested that the identified endocrine cells in tumor tissues by scRNA-seq

were tumor cells. In addition, tumor cell showedmarked heterogeneity in genome instability and inferCNV had limitation in identifying tumor

cells in scRNA-seq data of NF-Pan-NET. We defined the patients with high CNV alteration (CNV deletion and CNV amplification) and high

TMB as high genome instability group (GIH). Correspondingly, patients with low CNV alteration (CNV neutral) and low TMB as low genome

instability group (GIL). We defined T1, T3, T11, and T13, which possessed a low proportion of inferCNV-high neuroendocrine cells, as the

group of low genome instability (GIL). Correspondingly, T2, T5, T7, T8, T9, T10, T12, and T14, which possessed a high proportion of in-

ferCNV-high neuroendocrine cells, as the group of high genome instability (GIH). Notably, despite the malignant cells identified by inferCNV

accounted for a medium portion of the endocrine cells in in T3 (40.30%) and T12 (41.10%), T3 was classified in the GIL group due to the bulk-

sequence indicating that it presented neutral CNV. T12 was classified in the GIH group due to its high CNV score, which was similar to T2, T7,

T8, T9, and T10. The proportion of malignant cells identified by inferCNV was 56.35% in T14. T14 was classified in the GIH group due to its

bulk-sequence indicates that T14 presented amplifiedCNV. Since H1 (36.85%), H2 (43.18%), and T15 (49.89%) were from the same patient and

in these specimens, we defined these special tissues as group of NF-Pan-NET with hepatic metastases (PHM) (Figure 2A).
Revealing the heterogeneity of tumor cells under the pattern of genomic instability and histological grading

To further unscramble the heterogeneity of tumor cells, we tried to explore the rules of tumor cell subtype analysis.We depicted all endocrine

cells in the tumor tissue and normal pancreas by t-distributed stochastic neighbor embedding (tSNE)map and found 18 sub-clusters of neuro-

endocrine cells (Figure 3A). Histological grading, based on themitotic image and ki-67 proliferation index, is instructive in guiding treatment,

assessing recurrence, and estimating prognosis in NF-Pan-NET.4 However, in the tSNE map of endocrine cells, we found that there was no

obvious distribution pattern of tumor cells between G1 and G2 (Figure 3B). We further found that the distribution of tumor cells in this partic-

ular patient specimen with hepatic metastases was significantly different from that in other patients. Besides, in this patient, there was also no

clear demarcation between the hepatic metastases and the primary tumor (Figure 3C). Thus, it was reasonable to assign this patient’s tumor

cells to a separate group (PHM). However, when inferCNV values were used as a classification basis, tumor cells were clearly differentiated

(Figure 3D). To further demonstrate the role of CNV, we calculated the proportion of tumor cells with high CNV in each cluster. We found

that cluster 4, 5, 8, 9, and 12 were mainly composed of CNVhigh tumor cells. Cluster 7, 10, 11, 13, 14, 15, and 16 were mainly composed of

CNVlow tumor cells. However, in cluster 0, 1, 2, 3, 6, and 17 CNVhigh tumor cells accounted for nearly half (Figure 3E). We further analyzed

the subcluster of tumor cells according to the source of tumor cells and the group of patients. We found that cluster 4, 5, 8, 9, and 12

were mainly composed of tumor cells from patients with G1 grade. Cluster 7, 10, 11, 13, 14, 15, and 16 were mainly composed of tumor cells

frompatients withG2 grade (Figure 3F). Intriguingly, if the samplewas classified according to genomic instability, cluster 4, 5, 8, 9, and 12were

almost composed of tumor cells from patients in GIH group and cluster 7, 10, 11, 13, 14, 15, and 16 were almost composed of tumor cells from

patients in GIL group. Cluster 0, 1, 2, 3, 6, and 17 were almost composed of tumor cells from the PHM (Figure 3G). This indicated that genomic

instability was more suitable for classifying tumor cells than histological grading. In addition, the proportion of tumors from group GIH in the

subcluster was positively correlated with the proportion of tumors from patients with G1 grade (Figure S2A). Similarly, the proportion of
4 iScience 27, 110836, September 20, 2024



Figure 2. Tumor cells show marked heterogeneity in copy number variation

(A) CNV score of all endocrine cells in each sample. The ordinate represents the frequency.

(B) CNV score of selected CNV-high endocrine cells in each sample. The ordinate represents the frequency. Percentage represents the proportion of inferCNV-

high neuroendocrine cells to total neuroendocrine cells.

(C) Copy number variations in the WES data.

(D) TMB were analyzed in the WES data.

(E) Signal pathway of endocrine cells in different specimens.
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Figure 3. Revealing the heterogeneity of tumor cells under the pattern of genomic instability and histological grading

(A) The subcluster of endocrine cells was presented on the tSNE map.

(B–D) The source of endocrine cells was presented on the tSNE map. PT-G1, endocrine cells from the patients with histological grading G1. PT-G2, endocrine

cells from patients with histological grading G2. HM, hepatic metastases. NT-a, endocrine cells of normal pancreas from patients in our center. NT-b, endocrine

cells of normal pancreas from Peng’s study. PT non-metastatic, endocrine cells from patients without hepatic metastases. PT metastatic, endocrine cells of

primary lesion from patients with hepatic metastases.

(E) The proportion of CNVhigh tumor cells, CNVlow tumor cells, and normal endocrine cells in each cluster.

(F) The proportion of tumor cells from patients with G1 grade, G2 grade, hepatic metastases, and normal adjacent tissues in each cluster.
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Figure 3. Continued

(G) The proportion of tumor cells from group GIL, GIH, PHM, and normal adjacent tissues in each cluster.

(H) Differentiated degree of endocrine cells in each cluster was analyzed by CytoTRACE.

(I) Gene-module analysis of endocrine cells in each cluster.

(J and K) The activation of KEGG pathway in endocrine cells of different group was analyzed by QuSAGE.
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tumors from groupGIL in the subcluster was positively correlated with the proportion of tumors from patients with G2 grade (Figure S2B). For

patients with liver metastases, there was no significant relationship between the proportion of CNVhigh tumor cells in the subcluster between

the proportion of tumors from primary or metastatic site (Figure S2C). However, the proportion of CNVhigh tumor cells in the subcluster was

positively correlated with the proportion of tumors from GIH group and patients with G1 grade and was negatively correlated with the pro-

portion of tumors fromGIL group and patients withG2 grade (Figure S2D). Further analysis by CytoTRACE showed that cluster 0, 1, 2, 3, 6, and

17, whichweremainly fromgroup PHM, exhibited the similar differentiation state, followed by cluster 4, 5, 8, 9, and 12, which weremainly from

group GIH. Cluster 7, 10, 11, 13, 14, 15, and 16, which were mainly from group GIL, exhibited the state of terminal differentiation, which was

similar to normal endocrine cells (Figure 3H). Gene-module analysis showed that cluster 4, 5, 8, 9, and 12, which were mainly from group GIH,

had similar gene expression mode, such as mTOR signaling pathway; cluster 0, 1, 2, 3, 6, and 17, which were mainly from group PHM, had

similar gene expression mode, such as TGF-b signaling pathway; sub-clusters 11, 14, 15, and 16, which mainly from group GIL, had similar

gene expression mode such as Notch signaling pathway; cluster 7, 10, and 13, and, which were mainly from group GIL and normal neuroen-

docrine cells, had similar gene expression mode such as Wnt signaling pathway and insulin secretion (Figure 3I). We further analyzed the de-

gree of pathway activation using quantitative set analysis for gene expression (QuSAGE) and found that tumor cell from group PHMexhibited

activated hedgehog signaling, TGF-b signaling, glycolysis, hypoxia, and Wnt signaling pathway; tumor cell from group GIH exhibited acti-

vated DNA repair, ROS, E2F, and growth-factor signaling; while tumor cell from group GIL exhibited activated pancreatic beta cells and

pentose phosphate pathway (Figure 3J). Tumor cells from patients with G1 grade exhibited activatedWnt-b-catenin signaling pathway; while

tumor cells from patients with G2 grade exhibited activated ROS signaling (Figure 3K).

In order to further explore the relationship between genomic instability and histological grading, we performWES on 77 NF-Pan-NET tumor

specimens and analyzed the CNV alteration (Figure S2E). We divided the patients into 3 group based on the overall CNV and the presence of

hepatic metastases (PHM, GIH, and GIL). Indeed, in group PHM, 5 out of 11 patients showed low genome instability and 6 out of 11 patients

showed high genome instability (Figure S2E). In this cohort, patients in group GIL or patients with G1 grade showed significantly longer

relapse-free survival (RFS) compared with patients in group GIH or patients with G2 grade (Figures S2F and S2G). Since patients with G1 grade

had a very good prognosis and patients with G2 grade had a relatively poor prognosis, we further divided patients with G2 grade into G2(GIL)

and G2(GIH) based on genome instability and found that patients in group G2(GIL) showed significantly longer RFS compared with patients in

groupG2(GIH) (Figure S2H). Receiver operating characteristic curve (ROC) also showed that this new classification (G1, G2(GIL),G2(GIH), G3) was

better than that classification based on genomic instability (GIL, GIH) and histological grading (G1, G2, G3) (Figure S2I). This indicated that the

combination of genomic instability and histological grading was of great value in evaluating clinical prognosis. Furthermore, in the new classi-

fication system, the proportion of CNVhigh tumor cells in the subcluster was positively correlatedwith the proportion of tumors frompatients with

G1 grade and G2(GIH), and was negatively correlated with the proportion of tumors from patients with G2(GIL) (Figure S2J).

We further analyzed the genes specifically expressed in group PHM and found that SMOC1 and PCSK1 were significantly expressed in

group PHM (Figure S3A). Indeed, SMOC1 and PCSK1 were reported to be associated with hepatic metastases in NF-Pan-NET.17 Immuno-

histochemistry assay was performed to detect SMOC1, PCSK1, and PCSK2. In group PHM, the expression of SMOC1 and PCSK1 was signif-

icantly increased (Figures S3B and S3C).

Identifying subtype of fibroblasts associated with malignant progression

Fibroblasts was analyzed and visualized in the tSNEmap. There were 9 sub-clusters of fibroblasts (Figure 4A). By analyzing the distribution of

fibroblasts, we found that sub-cluster 6 was unique to the tumor tissue andwasmainly concentrated in group PHM, which was a typical tumor-

associated fibroblast (CAFs) (Figure 4B). Sub-cluster 6 particularly expressedNSG1 and COL9A1 (Figure 4C). Sub-cluster 2 was large distrib-

uted in groupG2(GIH) and sub-cluster 2 particularly expressed LAMP5 and RRGS5 (Figures 4B and 4C). The result of CytoTRACE showed that

sub-clusters 2 and 6 had lowest degree of cell differentiation (Figure 4D). Pathway analysis showed that oxidative phosphorylation and path-

ways of neurodegeneration were mainly enriched in sub-cluster 2 while focal adhesion and PI3K-Akt signaling pathway were mainly enriched

in sub-cluster 6 (Figure 4E). Gene-module analysis showed that sub-cluster 6 had activated hippo signaling pathway, cytokine-cytokine recep-

tor interaction, and transforming growth factor (TGF-beta) signaling pathway (Figure 4F). QuSAGE analysis also showed that sub-cluster 6

exhibited activated hedgehog signaling, PI3K-Akt-mTOR signaling pathway, IL6-JAK-STAT3 signaling, IL2-STAT5 signaling, and so on (Fig-

ure 4G). By analyzing interleukin family gene expression, we found that sub-cluster 6 might secrete IL32 (Figure 4H). CAF-derived IL32 has

been reported to promote cancer cell invasion and metastasis in breast cancer.18 These data indicate that fibroblasts in the tumor tissue

were highly heterogeneous and NSG1+ CAFs might play a facilitating role in the metastasis of NF-Pan-NET.

Analysis of endothelial cell heterogeneity based on genome instability and histological grading

Endothelial cells have been reported to be associated with tumor cell invasion, metastasis, and immunosuppression.19,20 We thus analyzed

the subpopulations of endothelial cells and showed in the tSNE map (Figure 5A). According to the expression of marker gene, these 11
iScience 27, 110836, September 20, 2024 7



Figure 4. Identifying subtype of fibroblasts associated with malignant progression

(A) tSNE map showed the sub-cluster of fibroblasts.

(B) The proportion of sub-cluster in different groups.

(C) Selected marker genes of fibroblasts in cluster 2 and 6.

(D) Differentiated degree of fibroblasts in each cluster was analyzed by CytoTRACE.

(E) Pathway analysis of fibroblasts in cluster 2 and 6.

(F) Gene-module analysis of fibroblasts in each cluster.

(G) The activation of KEGG pathway in fibroblasts in each cluster was analyzed by QuSAGE.

(H) Part interleukin family gene expression of fibroblasts in each cluster.
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clusters of cells were divided into five subtypes (Figure 5B). The proportion of each endothelial cell subpopulation in different groups was

calculated and we found that in group PHM the proportion of tip cells and lymphatic endothelial cells were higher. Compared with group

G2(GIL), the proportion of tip cells was significantly increased while the proportion of artery cells was significantly decreased in group
8 iScience 27, 110836, September 20, 2024



Figure 5. Analysis of endothelial cell heterogeneity based on genome instability and histological grading

(A) tSNE map showed the subpopulations of endothelial cells.

(B) Selected marker genes of each endothelial cell subpopulation.

(C) The proportion of each endothelial cell subpopulation in different groups.

(D) Gene-module analysis of endothelial cells in each cluster.

(E) The expression of chemokines in each endothelial cell subpopulation.
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Figure 5. Continued

(F) Immunohistochemistry assay showed the typical staining of PDPN and CCL21 in a sample of PHM (primary lesion).

(G) The proportion of PDPN+/CCL21+ endothelial cells in different groups.

(H) The Chi-square test compared the composition ratio of CCL21+ to PDPN+ endothelial cells.

(I) Kaplan-Meier depicted the effect of PDPN+/CCL21+ endothelial cells on PFS probability.
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G2(GIH) (Figure 5C). Gene-module analysis showed that Notch signaling pathway, platelet activation, and PI3K-Akt signaling pathway were

enriched in tips cell; Vascular endothelial growth factor (VEGF) signaling pathway and mitogen-activated protein kinase (MAPK) signaling

pathway were enriched in artery cells and extracellular matrix (ECM) receptor interaction, cell adhesion molecules and adenosine 5‘-mono-

phosphate (AMP)-activated protein kinase (AMPK) signaling pathwaywere enriched in lymphatic endothelial cells (Figure 5D). Further analysis

showed thatCCL21was significantly expressed in lymphatic endothelial cells (Figure 5E). CCL21 in the tumormicroenvironment was reported

to be associated with the formation of immune tolerance in cancer.21 To validate this, we performed immunohistochemistry assay to detect

PDPN andCCL21 expression in tumor tissues. In group PHM, PDPN+, or CCL21+ endothelial cells were significantly increased (Figures 5F and

5G). In addition, PDPN+ endothelial cells tend to accompanied by CCL21+ endothelial cells (Figure 5H). Both PDPN+ and CCL21+ endothelial

cells predicted a worse progress free survival (PFS) probability (Figure 5I). These results suggest that endothelial cells, especially lymphatic

endothelial cells, might play key role in the metastasis of NF-Pan-NET.

The heterogeneity of immune cells based on genome instability and histological grading

Tumor immune microenvironment plays a vital role in the occurrence and development of tumors and tumor immunotherapy.19,22 We

analyzed the subpopulation of monocytic cells and visualized them in the tSNE map (Figures 6A and 6B). We found that macrophages

were the most abundant monocytic cells in the microenvironment. CD1A + dendritic cell was significantly enriched in group PHM. CD14+

monocyte was significantly enriched in group G1(GIH) and G2(GIL). CD1C+ dendritic cell as significantly enriched in group G2(GIH) (Fig-

ure 6C). We further analyzed the subtypes of macrophage and there were 8 sub-cluster macrophages. Compared with group G2(GIL), the

proportion of clusters 2 and 6 were significantly higher and clusters 0 and 4 were significantly lower in group G2(GIH). Cluster 1 were signif-

icantly increased group PHM (Figure 6D). Gene-module analysis showed that MAPK signaling pathway, tumor necrosis factor (TNF) signaling

pathway, IL-17 signaling pathwaywere enriched in cluster 1. NF-kB signaling pathwaywas enriched inCluster 0. cGMP-PKG signaling pathway

and AMPK signaling pathway was enriched in cluster 2 and 6 (Figure 6E). By analyzing interleukin family gene expression, we found that IL-1b,

which is an important inducer of immunosuppressive microenvironment in cancer,23 was significantly in clusters 0, 1, and 7 (Figure 6F).

There were 3,051 CD4+ T cells in our data. The subpopulation of CD4+ T cells were shown in the tSNEmap (Figure S4A). Themarker genes

of CD4+ T cells were was shown in the tSNE map (Figure S4A). There were 4,422 CD8+ T cells in our data. The subpopulation of CD8+ T cells

were shown in the tSNEmap (Figure S4B). The marker genes of CD8+ T cells were was shown in the tSNEmap (Figure S4B). There were 2,889

natural killer cells (NK) and innate lymphoid cells (ILC) in our data. The subpopulation of NK and ILC cells andmarker genes were shown in the

tSNE map (Figure S4C). We found that Treg cells, mucosal-associated invariant T (MAIT), and ILC were significantly enriched in group PHM

(Figure S4D). By multiplex immunohistochemistry, antibody against CD4 was used to stain CD4+ T cells and antibodies against IL2RA and

FOXP3 was used to stain Treg cells. We confirmed that the proportion of Treg cells in CD4+ T cells was higher in group PHM (Figures S4E

and S4F). Antibody against CD8 was used to stain CD8+ T cells and antibodies against NCR3 and SLC4A10 was used to stain MAIT cells.

We found that MAIT was significantly enriched in group PHM (Figures S4G and S4H). These data imply that the PHM had a unique immune

cell infiltration pattern.

DISCUSSION

Pan-NENs are a kind of highly heterogeneous tumors. The heterogeneity can be found from clinical symptoms to molecular pathology and

distinct prognosis.24 Depending on the degree of differentiation, Pan-NENs can further classified as Pan-NET and Pan-NECs. Pan-NECs are

poorly differentiated and highly aggressive. As a comparison, Pan-NET is well-differentiated and indolent.25 According to hormone secretion

and the corresponding clinical symptoms, Pan-NET can be divided into functional and non-functional categories.26 Based on the mitotic im-

age and ki-67 proliferation index, Pan-NET are further divided into three grades, G1 (Ki-67 < 2%), G2 (2% % Ki-67 % 20%), and G3(Ki-67 R

20%). This classification forms the basis of current treatment guidelines.4,27 However, the histological grading is dynamic as the disease pro-

gresses.8 Furthermore, 90% of Pan-NET are grade G1 or G2, thereby making it hard to decode the malignant potential of Pan-NET.

Attempts to classify the heterogeneity of Pan-NET have never been interrupted. One study involving theWGS data of 98 Pan-NET showed

that Pan-NET can be divided into four discrete groups according to CNV patterns. In addition, their data reported an interesting phenom-

enon that a third of the population possessed limited copy number events and lowest mutation burden.10 This was verified in our present

study.We found a certain proportion of endocrine cells could not be identified asmalignant by inferCNVdue to the low copy number variants.

Coincidentally, another study involving theWGS/WESdata of 211 Pan-NET gave a similar conclusion: CNV alteration is a better index for NET

classification besides histological grading. In their data, there were also approximately one-third of patients without CNV-amplification/dele-

tion. In addition, the distribution of histological grading also varied from the CNV patterns: in the CNV-neutral group, G1 accounted for more

than 50%, while in the CNV- amplification/deletion groups, G2 dominated.12

In this study, we performed single-cell sequencing of 17 NF-Pan-NET and found that inferCNV, which is widely used to identify malignant

cells in other cancers, had significant deficiencies in identifying tumor cells in scRNA data of NF-Pan-NET. Because a third of the NF-Pan-NET
10 iScience 27, 110836, September 20, 2024



Figure 6. The heterogeneity of monocytic cells based on genome instability and histological grading

(A) Selected marker genes of monocytic cells.

(B) tSNE map showed the subpopulations of monocytic cells.

(C) The proportion of subpopulations of monocytic cells in different groups.

(D) The proportion of subpopulations of macrophages in different groups.

(E) Gene-module analysis of macrophages in each cluster.

(F) The expression of IL-1b in each cluster of macrophages.
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possessed limited copy number variants in bulk-sequences. The proportion of normal endocrine cells in pancreas is very low. Thus, it is

reasonable to speculate that endocrine cells in the tumor samples are tumor cells. We further proved that endocrine cells in the tumor

samples had tumor cell characteristics by combining scRNA-seq data with that of multi-omics. There was strong heterogeneity between
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samples. We found that genome instability was better than histological grading in subtyping tumor cells. Particularly, patients with G2 grade

can be divided into two separated subgroups based on genome instability. In our single-cell data, clusters with G1 had high CNV and

genomic instability. However, in the single-cell data, we only had 4 patients with G1 grade, which may result in an error due to a small sample

size. We further perform WES on 77 NF-Pan-NET tumor specimens and analyzed the CNV and genomic instability alteration and found that

high or low levels of CNV and genomic instability are present in both G1 and G2. However, in a larger cohort study by Hong et al.,12 the dis-

tribution of CNV and genomic instability between G1 and G2 is different. Patients with G1 tend to have lower genomic instability, while pa-

tients with G2 tend to have higher genomic instability. Therefore, we focused on the differences of tumor cells under different genome insta-

bility patterns, and the differences of tumor immune microenvironment between genome instability and histological grading classification.

CAFs affect many aspects of tumor biology, ranging from collagen deposition to immunosuppression, and CAFs have been the target of pre-

clinical and clinical studies due to their potential pro- and anti-tumorigenic functions.28 We found a special subpopulation of fibroblasts that

only exist in tumor tissues. TheseCAFs had an enriched expression of IL32, which was reported to promote cancer cell invasion andmetastasis

in other cancers implying that CAFsmight play a promotional role in themetastasis of NF-Pan-NET.We further analyzed the heterogeneity of

endothelial cells under genome instability pattern and histological grading. Compared with group G2(GIL), the proportion of tip cells was

significantly increased while the proportion of artery cells was significantly decreased in group G2(GIH). In addition, we found that tip cells

and lymphatic endothelial cells might play a significant role in the metastasis of NF-Pan-NET. In terms of the tumor immune microenviron-

ment, we found that there was significant heterogeneity in the enrichment of immune cells regardless of genome instability or histological

grading in Pan-NET. Macrophages, CD1A + dendritic cell, Treg, MAIT, and ILC might participate in the process of hepatic metastases in

NF-Pan-NET. In summary, we explored the heterogeneity in NF-Pan-NET of different histological grading and genome instability patterns

as well as identified the characteristics of PHM. Our results provide valuable insights into better management of NF-Pan-NET.

Conclusion

In brief, we deciphered the heterogeneity of the tumormicroenvironment under the pattern of genomic instability and histological grading. In

particular, we found that the combination of genomic instability and histological grading was of great value in evaluating clinical prognosis,

especially for patients withG2 grade.We also identified the factors associatedwith hepaticmetastases, whichmight facilitate the understand-

ing of the patterns to decode the malignant potential and of NF-Pan-NET.

Limitation of the study

The number of cases recruited in our study was limited, especially only one patient with liver metastasis. In addition, we had no further ex-

periments to validate our results. We will explore the underlying molecular mechanisms to reveal how genomic instability affects tumor pro-

gression in a larger cohort.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Recombinant Anti-CD4 antibody Abcam Cat# ab133616; RRID:AB_2750883

Recombinant Anti-FOXP3 antibody Abcam Cat# ab20034; RRID:AB_445284

Recombinant Anti-IL-2 Receptor alpha (IL2RA) Abcam Cat# ab128955; RRID:AB_11141054

Recombinant Anti-CD8 alpha antibody Abcam Cat# ab237709; RRID:AB_2892677

SLC4A8/SLC4A10 Polyclonal Antibody Invitrogen Cat# PA5-101904; RRID:AB_2851336

NKp30/NCR3 Polyclonal Antibody Invitrogen Cat# PA5-104376; RRID:AB_2853684

Recombinant Anti-Podoplanin (PDPN)

antibody

Abcam Cat# ab236529; RRID:AB_2889051

CCL21 Rabbit pAb Abclonal Cat# A1896; RRID:AB_2763928

Recombinant Anti-PC1/3 (PCSK1) Antibody Abcam Cat# ab233397; RRID:AB_3096426

Recombinant Anti-PCSK2 Antibody Abcam Cat# ab274418; RRID:AB_3271522

Recombinant Anti-SMOC1 Antibody Abcam Cat# ab313569; RRID:AB_2941846

Recombinant Anti-SCGN/Secretagogin

Antibody

Abcam Cat# ab137017; RRID:AB_3271547

Biological samples

Pan-NET primary tumor tissue Fudan University Shanghai Cancer Center N/A

Pan-NET adjacent normal tissue Fudan University Shanghai Cancer Center N/A

Pan-NET hepatic metastases Fudan University Shanghai Cancer Center N/A

Deposited data

Single RNA-seq of Pan-NET tissue This paper GEO: GSE256136

Software and algorithms

GraphPad Prism 8 GraphPad N/A

SPSS 26.0 IBM N/A
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Clinical specimens

A total of 17 consecutive patients who underwent surgical treatment at the Fudan University Shanghai Cancer Center (FUSCC) between 2020

and 2021 and were pathologically confirmed to have NF-Pan-NET were recruited for single-cell sequencing in this study. Validation cohort of

NF-Pan-NET patients (77) for WES sequencing underwent surgical treatment and were pathologically confirmed to NF-Pan-NET at FUSCC

between 2012 and 2021. Patient information and clinicopathological characteristics were acquired from medical records. Progression-free

survival was measured from the time after surgery until detection of disease progression or the last follow-up.
Ethics statement

The study was approved by the Ethics Committee of FudanUniversity Shanghai Cancer Center (2105235-9), and written informed consent was

obtained from each patient.
METHOD DETAILS

Single-cell dissociation

During surgery, immediately after the tissue specimens were isolated, the tissue specimens were cuted and kept in MACS Tissue Storage

Solution (Miltenyi Biotec) for further processing. Tissue specimens were processed as described below. Briefly, specimen was first washed

with phosphate-buffered saline (PBS), minced into small pieces (approximately 1 mm3) on ice and enzymatically digested with collagenase

I (Worthington) and DNase I (Worthington) for 45 min at 37�C, with agitation. After digestion, specimen was sieved through a 70 mm cell

strainer, and centrifuged at 300 g for 5min. After the supernatant was removed, the pelleted cells were suspended in red blood cell lysis buffer
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(Miltenyi Biotec) to lyse red blood cells. After washing with PBS containing 0.04% BSA, the cell pellets were re-suspended in PBS containing

0.04% BSA and re-filtered through a 35mm cell strainer. Dissociated single cells were then stained with AO/PI for viability assessment using

Countstar Fluorescence Cell Analyzer. The single-cell suspension was further enriched with a MACS dead cell removal kit (Miltenyi Biotec).
Single-cell sequencing

The scRNA-seq libraries and V(D)J libraries were generated using the 10x Genomics Chromium Controller Instrument and Chromium Single

Cell 5’ library & gel bead kit, along with the V(D)J enrichment kit (10x Genomics). Briefly, cells were concentrated to 1000 cells/mL and approx-

imately 10,000 cells were loaded into each channel to generate single-cell Gel Bead-In-Emulsions (GEMs), which resulted in expected mRNA

barcoding of 6,000 single-cells for each specimen. After the reverse transcription step, GEMs were broken and barcoded-cDNA was purified

and amplified. The amplified barcoded cDNA was used to construct 5’ gene expression libraries and TCR and BCR enriched libraries. For 5’

library construction, the amplified barcoded cDNA was fragmented, A-tailed, ligated with adaptors and index PCR amplified. The final li-

braries were quantified using the Qubit High Sensitivity DNA assay (Thermo Fisher Scientific) and the size distribution of the libraries were

determined using a High Sensitivity DNA chip on a Bioanalyzer 2200 (Agilent). All libraries were sequenced by a NextSeq2000 sequencer

(Illumina) on a 150 bp paired-end run.
QuSAGE analysis (gene enrichment analysis)

To characterize the relative activation of a given gene set such as pathway activation, ‘‘Human_41GeneSets_190716.gmt’’ as described

before, we performed QuSAGE (2.16.1) analysis.
Differential gene expression analysis

To identify differentially expressed genes among specimen, the function FindMarkers with wilcox rank sum test algorithm was used under

following criteria: 1) Log2FC > 0.25; 2) pvalue<0.05; and 3) min.pct>0.1.
CNV estimation

Cells defined as endothelia, fibroblast and SMC were used as reference to identify somatic copy number variations with the R package in-

ferCNV (v0.8.2). We scored each cell for the extent of CNV signal, defined as the mean of squares of CNV values across the genome. CNV

correlation was the Pearson correlation between CNV profile of each cell and the average CNV of all malignant cells identified by unsuper-

vised clustering from the same sample.29 Putative CNV-highmalignant cells were then defined as those with CNV signal above 0.05 and CNV

correlation above 0.5.
Go analysis

Gene ontology (GO) analysis was performed to facilitate elucidating the biological implications of marker genes and differentially expressed

genes. We downloaded the GO annotations from NCBI (http://www.ncbi.nlm.nih.gov/), UniProt (http://www.uniprot.org/) and the Gene

Ontology (http://www.geneontology.org/). Fisher’s exact test was applied to identify the significant GO categories and false discovery

rate (FDR) was used to correct the p-values.
Pathway analysis

Pathway analysis was used to find out the significant pathway of the marker genes and differentially expressed genes according to KEGG

database. We turned to the Fisher’s exact test to select the significant pathway, and the threshold of significance was defined by P-value

and FDR.
ssGSEA analysis

The ssGSEA function of GSVA package was utilized to quantify the enrichment scores of the geneset for each specimen cells.
Immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC)

The expression of CD4, FOXP3, IL2RA, CD8, SLC4A10 and NCR3 were detected by multiplex IHC through a tyramide signal amplification

system. In brief, slices were deparaffinized with gradient concentrations of xylene and ethanol. Then these slices were incubated with a

3% solution of H2O2 for 15 minutes to suppress endogenous peroxidase activity. Antigen retrieval was performed by heating the samples

in the recommended antigen retrieval solution. After blocking with 5% BSA for 30 minutes, the slides were incubated with primary antibodies

at optimal dilutions overnight at 4�C and then incubated at 37�C for 1 hours. Next, the slides were incubated with tyramide conjugated fluo-

rophore at room temperature for 20 minutes. The same procedure was repeated with other primary antibodies, and the nuclei were stained

with DAPI. The expression of PDPN, CCL21, PCSK1, PCSK2, SMOC1 and SCGN were detected by IHC. The procedure was similar to mIHC.

Secondary antibodies were conjugated with enzymes and diaminobenzidine as the chromogen andMayer’s hematoxylin as the counterstain.
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WES, RNA sequencing and proteomic analysis

The experimental procedure was consistent with that of Professor Zhou’s previous multi-omics analysis of HBV-related hepatocellular carci-

noma.30 Tissue samples were collectedwithin 30min after operation and snap-frozen in liquid nitrogen. Tissue samples were pulverized using

the CryoPrepTM CP02 (Covaris) and then divided into three parts to perform whole exome sequencing (WES), RNA sequencing, proteomic

and phosphoproteomic analyses. The specific experimental procedures of each omics were the same as Zhou’s research.30
QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq data analysis was performed by NovelBio Co.,Ltd. with NovelBrain Cloud Analysis Platform (https://www.novelbrain.com). We

applied the down specimen analysis among specimen sequenced according to the mapped barcoded reads per cell of each specimen

and finally achieved the aggregated matrix. Cells contained over 200 expressed genes and mitochondria UMI rate below 40% passed the

cell quality filtering and mitochondria genes were removed in the expression table.

Seurat package (version: 4.0.3, https://satijalab.org/seurat/) was used for cell normalization and regression based on the expression table

according to the UMI counts of each specimen and percent of mitochondria rate to obtain the scaled data. Principle component analysis

(PCA) was constructed based on the scaled data with top 2 000 high variable genes and top 10 principals were used for t-distributed Stochas-

tic Neighbor Embedding (tSNE) construction and Uniform Manifold Approximation and Projection (UMAP) construction. Utilizing graph-

based cluster method, we acquired the unsupervised cell cluster result based the PCA top 10 principal and calculated the marker

genes by FindAllMarkers function with wilcox rank sum test algorithm under following criteria: 1) Log2FC> 0.25; 2) P value<0.05; and 3)

min.pct >0.1. In order to identify the cell type detailed, the clusters of same cell type were selected for re-tSNE analysis, graph-based clus-

tering and marker analysis. Statistical analysis about the proportion of cell subpopulations was performed by GraphPad Prism. The Student’s

t-test was applied for statistical discrepancy between two groups. Kaplan-meier analysis was performed to depict overall survival of patients

and the log-rank test was conducted for statistical difference comparisons. P<0.05 was considered significant. ns P>= 0.05, * P < 0.05,

**P < 0.01, ***P < 0.001.
iScience 27, 110836, September 20, 2024 17

https://www.novelbrain.com
https://satijalab.org/seurat/

	ISCI110836_proof_v27i9.pdf
	Single-cell sequencing reveals the heterogeneity of pancreatic neuroendocrine tumors under genomic instability and histolog ...
	Introduction
	Results
	Single-cell profiling of the tumor ecosystem in NF-Pan-NET
	Tumor cells show marked heterogeneity in copy number variation
	Revealing the heterogeneity of tumor cells under the pattern of genomic instability and histological grading
	Identifying subtype of fibroblasts associated with malignant progression
	Analysis of endothelial cell heterogeneity based on genome instability and histological grading
	The heterogeneity of immune cells based on genome instability and histological grading

	Discussion
	Conclusion
	Limitation of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Clinical specimens
	Ethics statement

	Method details
	Single-cell dissociation
	Single-cell sequencing
	QuSAGE analysis (gene enrichment analysis)
	Differential gene expression analysis
	CNV estimation
	Go analysis
	Pathway analysis
	ssGSEA analysis
	Immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC)
	WES, RNA sequencing and proteomic analysis

	Quantification and statistical analysis




