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Abstract

Motivation: Seurat is one of the most popular software suites for the analysis of single-cell RNA sequencing data.
Considering the popularity of the tidyverse ecosystem, which offers a large set of data display, query, manipulation,
integration and visualization utilities, a great opportunity exists to interface the Seurat object with the tidyverse. This
interface gives the large data science community of tidyverse users the possibility to operate with familiar grammar.

Results: To provide Seurat with a tidyverse-oriented interface without compromising efficiency, we developed tidy-
seurat, a lightweight adapter to the tidyverse. Tidyseurat displays cell information as a tibble abstraction, allowing in-
tuitively interfacing Seurat with dplyr, tidyr, ggplot2 and plotly packages powering efficient data manipulation, inte-
gration and visualization. Iterative analyses on data subsets are enabled by interfacing with the popular nest-map
framework.

Availability and implementation: The software is freely available at cran.r-project.org/web/packages/tidyseurat and
github.com/stemangiola/tidyseurat.

Contact: papenfuss@wehi.edu.au or mangiola.s@wehi.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Nucleotide sequencing at the single-cell resolution level has proven to
be a disruptive technology that is revealing unprecedented insights
into the role of heterogeneity and tissue microenvironment in disease
(Keil et al., 2018; Xiao et al., 2019). Single-cell RNA sequencing data
allows the robust characterization of tissue composition (Abdelaal
et al., 2019), the identification of cellular developmental trajectories
(Chen et al., 2019; Gojo et al., 2020; Saelens et al., 2019; Van den
Berge et al., 2020) and the characterization of cellular interaction pat-
terns (Cabello-Aguilar et al., 2020; Kumar et al., 2018; Shao et al.,
2020). In recent years, the scientific community has produced many
computational tools to analyze such data (Butler et al., 2018; Lun et
al., 2016; McCarthy et al., 2017). One of the most popular of these,
Seurat (Butler et al., 2018; Stuart et al., 2019), stores raw and proc-
essed data in a highly optimized, hierarchical structure (Fig. 1A). This
structure is displayed to the user as a summary of its content. The user
can extract and interact with the information contained in such a
structure with Seurat custom functions.

Machines and humans often have orthogonal needs when inter-
acting with data. While machines prioritize memory and computation
efficiency and favour data compression, humans prioritize low-di-
mensional data display and direct and intuitive data manipulation.
Considering that low-dimensionality data representation often

requires redundancy, balancing all priorities in a unique data contain-
er is challenging. Separating roles between the back-end data contain-
er and the front-end data representation is an elegant solution for
ensuring transparency and efficiency. The scientific community has
tackled this issue by offering visual and interactive representations of
Seurat single-cell data containers. For example, Cerebro (Hillje et al.,
2020) is a Shiny-based standalone desktop application that enables
the investigation and the inspection of pre-processed single-cell tran-
scriptomics data without requiring bioinformatics experience. This
application can import and export Seurat data containers.

Similarly, BioTuring (BioTuring INC) offers a visual web inter-
face for facilitating data analysis by scientists without coding experi-
ence. NASQAR (Yousif et al., 2020) (GitHub.com/nasqar) enables
interactive analysis of a wide variety of genetic data, including sin-
gle-cell RNA sequencing data from Seurat. Single Cell Viewer (SCV)
(Wang et al.) is an R shiny application that offers users rich visual-
ization and exploratory data analysis options for single-cell datasets,
including Seurat. Although these tools allow an intuitive data repre-
sentation and analysis, they are not fully programmable and pose a
challenge for reproducibility. Moreover, they are generally less ex-
pandable than code-based tools, posing a challenge for the scientific
community’s contribution. For example, as it is in the case of R data
analysis repositories such as CRAN (Ripley, 2001) and Bioconductor
(Huber et al., 2015).
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Recently, the data science community has made efforts towards
the representation and manipulation of data using the concept of
data tidiness (Wickham et al., 2019). This paradigm allows the or-
ganization of information as a two-dimensional, highly flexible table
(referred to as tibble, a type of data frame), with variables oriented
in columns and observations oriented in rows. This new standard
has become extremely popular across fields of data science. The ap-
plication of tidiness principles would be compelling if applied to sin-
gle-cell transcriptomic data. A tidy data structure would capture
how biological data measurements relate to experimental design and
metadata (e.g. technical and clinical properties of transcripts, cells
and biological replicates). The shift from a compressed and hierarch-
ical to a tabular data representation of cell- (by default) and (option-
ally) transcript-related information has two advantages. More
extensive data display improves scientific awereness, and its tabular
representation enables interfacing with a large ecosystem of tidy-ori-
ented APIs for data manipulation and visualization. This interface
facilitates data analysis and reproducibility for researchers across a
broad spectrum of computational literacy. For example, tidyseurat
allows to display, plot, modify, join, delete, filter, subsample, nest
and summarize information of a Seurat object without leaving the
tidyverse syntax. These functionalities offer a compelling synergy
with the tidy counterpart for Bioconductor’s SingleCellExperiment
objects (Amezquita et al., 2020), tidySingleCellExperiment (avail-
able at bioconductor.org), moving towards a unified interface for
single-cell data containers. As for comparison, although the indirect
interface between Seurat objects and the tidyverse is possible, it
requires intermediate steps to extract information that can be passed
to downstream APIs. For example, building a custom plot that inte-
grates reduced dimensions with cell-wise annotations (e.g. library
size) requires integrating multiple data frames with custom routines
(e.g. direct querying for metadata and embeddings for reduced
dimensions).

Here, we present tidyseurat, an adapter that interfaces Seurat, a
popular single-cell RNA sequencing data analysis tool, with tidy-
verse, a popular R data analysis framework. Although the data con-
tainer is Seurat’s, tidyseurat displays a tibble abstraction that
contains cell-wise information (Fig. 1B). Tidyseurat includes adapt-
ers to most methods included in dplyr (Wickham et al., 2019), a
powerful grammar of data manipulation; tidyr an extensive collec-
tion of methods for data reshaping and grouping; ggplot2, the most
popular R visualization tool; and plotly, a powerful tool for inter-
active visualizations. As a result, the user can perform efficient anal-
yses using Seurat (and Seurat-compatible software) while
visualizing, manipulating, integrating and grouping the data using

tidyverse (-compatible for plotly) software. This package is aimed at
analysts of single-cell data who favor the use of tidyverse and Seurat.
Tidyseurat is part of a larger ecosystem called tidytranscriptomics
that aims to bridge the transcriptomics and tidy universes (github.-
com/stemangiola/tidytranscriptomics).

2 Materials and methods

2.1 Data user interface
Tidyseurat abstracts the complexity of the data container and pro-

vides a friendlier interface for the user. Tidyseurat implements an
improved data display method (replacing the Seurat ‘show’ method),
mapping the cell-wise information into a user-friendly table. By de-
fault, cell-wise information is displayed to the user (e.g. cell-cycle
phase, cluster and cell-type annotation), leaving the transcript infor-
mation available upon request using the ‘join_features’ function.
This function adds transcript identifiers, transcript abundance and
transcript-wise information (e.g. gene length, genomic coordinates
and functional annotation) as additional columns. Cell-wise infor-
mation is prioritized over transcript-wise information on the ration-
ale that it is more often directly queried.

The tidyseurat tibble abstraction includes two types of columns,
columns that can be interacted with and modified and columns that
are view only. The editable columns are part of the cell metadata,
while the view-only columns include data-derived variables, such as
reduced dimensions (e.g. principal component and UMAP dimen-
sions). The default integration of all cell-wise information, including

Fig. 1. Comparison between the data structure (https://github.com/boxuancui/DataExplorer) (top; abstracted tibble for tidyseurat) and the information presented to the user

(bottom) for Seurat (A) and tidyseurat (B; including transcript information). The dataset underlying these visualizations is a subset of a peripheral blood mononuclear cell frac-

tion provided by 10� (10xgenomics.com)

Table 1. Example of a tibble abstraction of a Seurat table

# A Seurat-tibble abstraction: 8033 � 11

# Features¼ 1000 j Active assay¼SCT j Assays¼RNA, SCT

Cell Total count Total

transcripts

PC1 UMAP1 Cluster Cell type

cell_1 10 456 450 �1.23 �3.47 1 T cell

cell_2 2088 400 0.98 �1.59 2 B cell

cell_3 11 309 699 5.55 1.26 5 Monocyte

cell_4 8791 423 �5.42 �4.42 1 Monocyte

Note: Pre-existing cell-wise annotation and newly calculated information

are all coexisting in a unique table.
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reduced dimensions, in one tibble representation, facilitates data
visualization, filtering and manipulation. To allow the manipulation
and plotting of the data using the tidyverse ecosystem, the dplyr,
tidyr, ggplot2 and the tidyverse-compatible plotly routines have
been adapted to work seamlessly with the back-end Seurat data
structure, allowing the user to operate as if it was a standard tibble.
This abstraction strategy allows the data to appear as a tibble for
end-users and the tidyverse (Table 1) but appear as a Seurat contain-
er for any other algorithm, thus preserving full backward compati-
bility (Fig. 2).

2.2 API user interface
The seamless integration with the tidyverse is obtained through
adapters for most methods in the packages dplyr, tidyr, ggplot2, as
well as plotly (Fig. 2). These methods belong to three groups based
on the action that they perform on the back-end Seurat container.
Methods such as ‘mutate’, ‘left_join’, ‘separate’, ‘unite’, ‘extract’
and ‘select’ manipulate or subset the information present in the cell-
wise metadata. Methods such as ‘slice’, ‘filter’, ‘sample_n’, ‘sample_-
frac’, ‘inner_join’ and ‘right_join’ subset cells. Methods such as
‘bind_rows’ join two or more datasets. All these methods return
Seurat objects (abstracted as tibbles) if those procedures do not lead
to cell duplication and if key columns (e.g. cell identifier) are pre-
sent. Otherwise, these methods return a tibble for independent anal-
yses. Another group of functions such as ‘summarise’, ‘count’,
‘distinct’, ‘join_features’ and ‘pull’ return a tibble or an array for in-
dependent analyses. Tidyverse-compatible visualization methods in-
clude ggplot and plotly. The tidyseurat data abstraction allows the

use of the nest-map tidyverse framework. Briefly, nesting divides
tables into subsets according to any reference column, while the map
function allows applying operations across subsets iteratively.

3 Algorithm and implementation

To demonstrate the use of tidyseurat, we provide as an example an
integrated analysis of peripheral blood mononuclear cells from pub-
lic sources. We show the main steps of a typical workflow, along
with code examples (Fig. 3) and tidyverse-compatible visualizations
(Fig. 4). We show how data manipulation and filtering can reduce
coding lines and temporary variables compared to Seurat alone.

3.1 Data import, polishing and exploration
The single-cell RNA sequencing data used in this study consists of
seven datasets of peripheral blood mononuclear cells, including
GSE115189 (Freytag et al., 2018), SRR11038995 (Cai et al., 2020),
SCP345 (singlecell.broadinstitute.org), SCP424 (Ding et al., 2020),
SCP591 (Karagiannis et al., 2020) and 10�-derived 6K and 8K
datasets (support.10xgenomics.com/). In total, they include 50 706
cells. Data exploration is a crucial phase of any analysis workflow.
It includes data curation, visualization and summary statistics,
combined with dimensionality reduction and data scaling. Tidyverse
commands allow intuitive manipulation and polishing of cell-wise
annotations (cell-cycle phase and sample name) from the data
abstraction (Fig. 3, import and polishing; Supplementary code chunk
2). Cell properties included in the resulting table (e.g. proportion of
mitochondrial transcripts and cell-cycle phase; Fig. 4A) can be

Fig. 2. A cheat sheet of the tidyverse functionalities that tidyseurat enables for Seurat objects. This cheat sheet provides examples of the alternative tidyverse and Seurat syntax.

The green colour scheme includes procedures that output a tidyseurat, if: (i) do not lead cell duplication; and (ii) key columns (e.g. cell identifier) are not excluded, modified,

nor renamed (e.g. through a select, mutate and rename commands). In this case, a table (rather than an abstraction) is returned for independent analysis and visualization. The

blue colour scheme includes procedures that return tibble tables for independent analyses and plotting. The grey-shaded boxes include the alternative code utilizing Seurat and

base-R.
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visualized in a faceted and integrated fashion using standard tidy-
verse tools (Fig. 3, Plot summary). This visualization facilitates qual-
ity control, helping identify potential low-quality samples such as
SCP424 (Fig. 4A).

3.2 Dimensionality reduction
Dimensionality reduction allows visualizing cell heterogeneity in a
low dimensional space (Fig. 3, Dimensionality reduction). Methods
such as uniform manifold approximation and projection (UMAP)
(McInnes et al., 2018) define local cell similarities while preserving
global distances. Seurat and tidyverse methods can be seamlessly
integrated through tidyseurat to calculate and visualize UMAP
dimensions (Fig. 3, Dimensionality reduction). The reduced dimen-
sions are displayed as additional columns (view only) of the tidy-
seurat table. The use of tidyverse (Wickham et al., 2019) for
visualization allows great customization of two-dimensional plots
(Fig. 4B). The advantage of tidyseurat here is the presence of cell an-
notation and reduced dimensions in the same data frame, which can
be used for arbitrarily complex annotated visualizations
(Supplementary code chunk 3). Tidyseurat enables the three-dimen-
sional cell visualization with plotly (Sievert, 2020) (Fig. 4B).
Displaying a third reduced dimension confers better awareness of
cell heterogeneity and clustering. Dimensionality reduction shows
three main cell clusters and a minor intermediate cell cluster (Fig.
4B, top). The larger cluster (bottom-left) includes 69% of all cells
(https://github.com/stemangiola/tidygate). The display of the third
UMAP dimension in an interactive environment gives an additional
perspective on cell heterogeneity compared to only calculating and
visualizing the first two (Fig. 4B, bottom).

3.3 Clustering and marker genes identification
Unsupervised clustering is essential to define self-similar groups of
cells quantitatively. Similar to previous procedures, Seurat and tidy-
verse commands can be concatenated through inference and visual-
ization (Fig. 3, Clustering; Supplementary code chunk 4). The newly
calculated cluster identities will be displayed as additional columns
in the tidyseurat table. Marker genes can be identified using cell clus-
tering information (Fig. 3, Gene marker identification). Gene marker

identification can be performed with Seurat, and transcript abun-
dance distribution can be visualized for selected marker genes in a
faceted and integrated manner using tidyverse (Fig. 4C). The advan-
tage of tidyseurat here is the ease of integrating the transcript and
cell information in the same data frame (through ‘join_features’) for
joint manipulation, filtering and visualization (Supplementary code
chunk 5). Heatmaps can visualize cell-wise transcript abundance for
marker genes. While it is possible to use the Seurat integrated heat-
map function (DoHeatmap), the tidyverse-style heatmap method
(Mangiola and Papenfuss, 2020), tidyHeatmap, allows for more
flexibility. For example, cell-wise data (e.g. principal components)
can be used as annotations, choosing among four representations
(e.g. tile, point, line and bar; Fig. 4E). The integration of diverse in-
formation facilitates quality check and curation. Shared-nearest-
neighbour (SNN) method (Ertöz et al., 2003) for unsupervised clus-
tering identified 24 cell clusters with default settings. The largest
cluster includes 17% of cells. The largest supercluster includes 69%
of all cells and encompasses 18 clusters.

3.4 Cell type inference
While the classification of cell clusters in cell-type categories can be
performed manually by analyzing marker genes, the automatic cell
or cluster classification can represent a critical first step in the pro-
cess. Several methods are publicly available (Alquicira-Hernandez
et al., 2019; Jaitin et al., 2014; Kim et al., 2019; Nagendran et al.,
2018; Tan and Cahan, 2019), including label transfer from publicly
available annotated datasets (MapQuery functionality, satijala-
b.org). SingleR (Aran et al., 2019) is a popular tool to classify both
clusters and single cells using transcriptional references. While using
cluster identity to drive the cell-type classification can benefit from
data aggregation and improve the overall robustness of the infer-
ence, it relies on the goodness of clustering and the assumption that
cells within the same cluster are of the same type. On the contrary,
single-cell classification avoids biases due to clustering but introdu-
ces challenges relative to the absence of data hierarchy. Using tidy-
seurat, the consistency between these two methods can be visually
and quantitatively checked (Fig. 3, comparison of cell classification).
The tidyverse-style alluvial visualization is ideal for communicating

Fig. 3. Pseudo-code representing procedures for the analysis of single-cell RNA sequencing data integrating Seurat and tidyverse functions through tidyseurat. For functions

that are not part of tidyseurat nor base R, package prefixes were added
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Fig. 4. Tidyverse-compatible libraries offer powerful, flexible and extensible tools to visualize single-cell RNA sequencing data. Natively interfacing with such tools expands the

possibilities for the user to learn from the data. Graphical results of the example workflow, integrating Seurat and tidyverse with tidyseurat. (A) Sample-wise distribution of bio-

logical indicators, including the proportion of mitochondrial transcripts and cell-cycle phase scores. For optimum visualization, a 20% subsampling was performed on the cell

set. (B) Cells mapped in two- and three-dimensional UMAP space. The default integration of reduced dimensions and other cell-wise information in a tibble abstraction facili-

tates such visualization. (C) Distribution of transcript abundance for two marker genes, identified for each cluster identified by unsupervised estimation. Cells mapped in two-

dimensional Uniform Manifold Approximation and Projection (UMAP) space. (D) Mapping of cells between the cell- or cluster-wise methods for cell-type classification. Only

large clusters are labelled here. The colour scheme refers to cell types classified according to clusters. The bottom containers refer to the classification based on single cells. (E)

Heatmap of the marker genes for cell clusters, produced with tidyHeatmap, annotated with data source and the first principal component. Only the ten largest clusters are dis-

played. The integrated visualization of transcript abundance, cell annotation and reduced dimensions is facilitated by the ‘join_features’ functionality and by the default com-

plete integration of cell-wise information (including reduced dimensions) in the tibble abstraction
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the differences in classification with or without cluster information
and integrates with the tidy data structure (Bojanowski and
Edwards, 2016; Brunson, 2020; Kennedy and Sankey, 1898)
(Fig. 4D). Using the Human Protein Atlas reference (Uhlén et al.,
2015), eight cell types were identified in total (including platelets,
T, B, pre-B, natural killer, monocyte, myeloid progenitor and hem-
atopoietic stem cells). For both classification approaches (cluster- or
cell-wise), the most abundant cell type was T cells, including on
average 51% of all cells. In total, 9.4% of cells were classified differ-
ently between the two methods (Fig. 4D).

3.5 Nesting
Subsetting the data according to sample, cell identity or batch is a
common step of a standard analysis workflow. For example, group-
ing cells according to major cell subtypes (e.g. lymphocytes, myeloid
and stromal cells) is helpful to improve the resolution of the analy-
ses. Also, performing independent analyses across biological repli-
cates can be helpful to assure that data integration is not creating
artefacts. Similarly, balanced subsampling across biological repli-
cates might be needed for an unbiased visualization of reduced
dimensions. This grouping can be obtained by manually splitting the
data into subsets according to a variable and iteratively applying
procedures to each subset. Tidyverse gives a more powerful and in-
tuitive framework to perform such operations on tibbles. According
to any combination of variables, the function nest allows for nesting
data subsets into a table column. The function map allows iterating
procedures across such subsets without leaving the clear and explicit
tibble format. An example is shown (Table 2; Fig. 3, Nesting) where
(i) cell types are grouped in lymphoid and myeloid, and (ii) variable
gene transcripts are independently identified for each of the two cell
populations without the need to create any temporary variable.

3.6 The difference in coding style to Seurat
Tidyseurat expands the tools available for interacting with Seurat
data containers, especially for analyses not included in the standard
Seurat framework. We present a case study where a single-cell RNA
sequencing dataset (see Section 3) is analyzed for the presence of
gamma delta T cells using a multiple-gene score (Pizzolato et al.,
2019). For this case study, samples were assigned to two groups (A
or B). The study consists of five steps: (i) the score for the transcrip-
tomic signature of gamma delta T cell is calculated; (ii) a balanced
subsampling of cell across samples is taken for visualization; (iii)
cells are visualized in UMAP reduced dimensions, faceting for both
for their score and transcript abundance (Fig. 5A); (iv) cells with
high gamma delta T cell score are manually gated (github.com/ste-
mangiola/tidygate; Fig. 5B) and (v) proportions of gamma delta
across samples are calculated, and sample groups are compared
using a boxplot (Fig. 5C). Table 3 shows that tidyseurat allows a
1.4-fold reduction of lines of code (24 for Seurat versus 17 for tidy-
seurat) and a 9-fold reduction of variable assignment (9 for Seurat
versus 1 for tidyseurat). Lines are evaluated as expressing one com-
mand [e.g. function(data) %>%].

4 Discussion

Seurat is the most popular single-cell RNA sequencing data analysis
workflow. It includes user-friendly methods for data analysis and
visualization. Data query, manipulation and visualization require
Seurat-specific functions. The R data-science community has settled
on a robust, consistent and modular data representation, referred to
as tidy. Tidyseurat exposes the data from the complex hierarchical
structure of a Seurat object in the form of a tidy table. As a result,
most of the data is readily visible to the user, who can leverage the
large computational and visualization tidy ecosystem. Considering
that tidyverse syntax and vocabulary (e.g. dplyr and tidyr) is becom-
ing common knowledge, tidyseurat diminishes the domain-specific
bioinformatic knowledge required to operate with Seurat objects.
Most importantly, the full compatibility with the Seurat ecosystem is
not compromised. By default, Seurat provides a wide range of

custom methods for data plotting. The customizability of these

methods is necessarily limited and achieved through setting com-
mand parameters. The tidyverse includes an increasing number of
connected modules for data visualization that the tidy data represen-
tation can leverage, complementing or replacing custom methods.
The amount of information and heterogeneity within single-cell
RNA sequencing data often requires data subsetting and reanalysis.
For example, highly diverse broad cell populations such as lymphoid

and myeloid are often subset and analyzed independently to decrease
the inference complexity and increasing resolution. While it is com-
monly required to manually subset the Seurat object, perform itera-
tive analysis for each subset, and reintegrate the objects (if
necessary), the tidy abstraction enables performing this more effi-
ciently using the nest-map paradigm. This elegant and powerful

paradigm allows self-contained and robust iterative analysis of data
subsets. Tidyseurat is a standalone adapter that improves analysis re-
producibility and scientific awareness, in a user-friendly way, with-
out changing the user’s familiar Seurat analysis workflow. As the

Table 2. Example of a nested tidyseurat table, with gene markers

calculated internally for each major immune cell type

# A tibble 2 � 3

Cell class Data Top markers

lymphoid <tidyseurat> RPL34, RPS27, RPL32, RPS3A, RPL21,

RPL31

myeloid <tidyseurat> S100A8, S100A9, S100A12, VCAN,

CYP1B1, CD14

Note: This nesting is obtained with the nest-map combination from tidyverse.

Fig. 5. Presence of gamma delta T cells among lymphocytes, part of the case study

for comparing Seurat with tidyseurat. (A) Integrative UMAP plot including both the

signature score and the genes within the signature. Plots are faceted horizontally for

biological condition (artifactual). (B) Interactive gating of high scoring cells for the

gamma delta T cell signature (Pizzolato et al., 2019), using tidygate (github.com/ste-

mangiola/tidygate). (C) Distribution of the proportion of gamma delta T cells across

patients from conditions A and B
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display and manipulation are centred on cell-wise information by de-
fault, the use of tidyseurat does not add any perceptible overhead.
This approach is compelling in moving towards a unified interface
for single-cell data containers, with a tidy container for
SingleCellExperiment objects, tidySingleCellExperiment, now also
available. We anticipate that this data abstraction will also be the
pillar of more extensive analysis-infrastructures based on the tidy
paradigm, such as has happened for bulk RNA sequencing data
(Mangiola et al., 2021). In summary, tidyseurat offers three main
advantages: (i) it allows tidyverse users to operate on Seurat objects
with a familiar grammar and paradigm; (ii) it streamlines the coding,

resulting in a smaller number of lines and fewer temporary variables
compared with the use of Seurat only and (iii) it provides a consist-
ent user interface shared among other tidy-oriented tools for single-
cell and bulk transcriptomics analyses (e.g.
tidySingleCellExperiment and tidySummarizedExperiment at github
stemangiola/tidySingleCellExperiment and stemangiola/
tidySummarizedExperiment). The package tidyseurat offers exten-
sive documentation through methods description, vignettes [access-
ible through typing browseVignettes(‘tidyseurat’)], and through
workshop material (e.g. rpharma2020_tidytranscriptomics,
ABACBS2020_tidytranscriptomics at github/stemangiola).

Table 3. Case study for the detection of gamma delta T cells among lymphoid cells

Step Seurat tidyseurat

Create and visualize signature in UMAP dimension

Score signature signature_score_1 =

seurat_obj[c(“CD3D”, “TRDC”, “TRGC1”, “TRGC2”),] %>%

Seurat::GetAssayData(assay¼“SCT”, slot¼“data”) %>%

colSums() %>%

scales::rescale(to¼c(0,1))

signature_score_2 ¼
seurat_obj[c(“CD8A”, “CD8B”),] %>%

Seurat::GetAssayData(assay¼“SCT”, slot¼“data”) %>%

colSums() %>%

scales::rescale(to¼c(0,1))

seurat_obj$signature_score ¼
signature_score_1 - signature_score_2

seurat_obj_sig ¼ seurat_obj %>%

join_features(

features ¼
c(“CD3D”, “TRDC”, “TRGC1”, “TRGC2”,

“CD8A”, “CD8B”),

shape ¼ “wide”,

assay ¼ “SCT”

) %>%

mutate(signature_score ¼
scales::rescale(CD3D þ TRDC þ TRGC1þ

TRGC2, to¼c(0,1)) -

scales::rescale(CD8A þ CD8B, to¼c(0,1))

)

Subsample splits ¼ colnames(seurat_obj) %>%

split(seurat_obj$sample)

min_size ¼ splits %>%

sapply(length) %>% min()

cell_subset ¼ splits %>%

lapply(function(x) sample(x, min_size)) %>%

unlist()

seurat_obj ¼ seurat_obj[, cell_subset]

seurat_obj_sig %>%

add_count(sample, name ¼ “tot_cells”) %>%

mutate(min_cells ¼min(tot_cells)) %>%

group_by(sample) %>%

sample_n(min_cells) %>%

Plot Seurat::FeaturePlot(

seurat_obj,

features ¼ c(“signature_score”, “CD3D”, “TRDC”, “TRGC1”,

“TRGC2”, “CD8A”, “CD8B”),

split.by ¼ “type”,

min.cutoff ¼ 0.1

)

pivot_longer(cols¼c(“CD3D”, “TRDC”,

“TRGC1”, “TRGC2”, “CD8A”, “CD8B”,

“signature_score”)) %>%

group_by(name) %>%

mutate(value ¼ scale(value)) %>%

ggplot(aes(UMAP_1, UMAP_2, color¼value)) þ
geom_point() þ
facet_grid(type�name)

Gate cells and visualize cell proportions biological conditions

Gate cells p ¼ Seurat::FeaturePlot(seurat_obj, features ¼ “signature_score”)

seurat_obj$within_gate ¼
colnames(seurat_obj) %in%

CellSelector(plot ¼ p)

seurat_obj[[]] %>% # Pass object to plot

seurat_obj_sig %>%

mutate(gamma_delta ¼ tidygate::gate_chr(

UMAP_1, UMAP_2, .color ¼ signature_score

)) %>%

Proportion (common) add_count(sample, name ¼ “tot_cells”) %>%

count(sample, type, tot_cells, within_gate) %>%

mutate(frac ¼ n/tot_cells) %>%

filter(within_gate =¼ T) %>%

Plot (common) ggplot(aes(type, frac)) þ
geom_boxplot() þ
geom_point()

Note: Both Seurat and tidyseurat style coding is shown.
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