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Abstract
The dismal success rate of clinical trials for Alzheimer’s disease (AD) motivates us to

develop model systems of AD pathology that have higher predictive validity. The advent of

induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease

mechanisms directly in human neural cells from healthy individual as well as AD patients.

However, two-dimensional culture systems do not recapitulate the complexity of neural tis-

sue, and phenotypes such as extracellular protein aggregation are difficult to observe.We

report brain organoids that use pluripotent stem cells derived fromAD patients and recapitu-

late AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein,

and endosome abnormalities. These pathologies are observed in an age-dependentman-

ner in organoids derived frommultiple familial AD (fAD) patients harboring amyloid precur-

sor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The

incidence of AD pathology was consistent amongst several fAD lines, which carried differ-

ent mutations. Although these are complex assemblies of neural tissue, they are also highly

amenable to experimental manipulation.We find that treatment of patient-derived organoids

with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. More-

over, these results show the potential of this model system to greatly increase the translat-

ability of pre-clinical drug discovery in AD.

Introduction
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder associated with severe
memory impairments, which has become the sixth leading cause of death in the United States
(www.alz.org) [1,2]. Individuals with AD develop brain atrophy and neuronal loss, and the dis-
ease is characterized by the presence of dense extracellular deposits of amyloid plaques and
neurofibrillary tangles [3–14]. Much of our understanding of the mechanisms underlying AD
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pathology comes from a population of individuals with early-onset familial AD (fAD). These
cases harbor causal mutations involving primarily the Aβ processing enzymes, presenilin 1 and
2 (PSEN1, PSEN2), which are part of the γ-secretase complex [15–18] [15–18], or mutations
within or duplications of the amyloid precursor protein (APP) gene itself [19–22]. Neurofibril-
lary tangles are comprised of intraneuronal accumulations of the microtubule-associated pro-
tein tau [19]. Tau pathology (tauopathy), consisting of aberrantly phosphorylated (pTau) and
aggregated tau, is characteristic of a number of neurodegenerative disorders, including AD
[23–25]. The extent of tau pathology in human AD has been shown to correlate well to cogni-
tive impairment [26]. Many studies have shown that the aberrant phosphorylation and aggre-
gation of tau underlie tauopathy in human brain and animal models.

Neurological conditions are difficult to study because of the limited accessibility to human
brain tissue. Animal models, such as transgenic rodents, can recapitulate AD phenotypes to an
extent; however, a number of drugs that have shown promising results in mouse models have,
failed to prevent cognitive decline in late phase clinical trials [27–30]. There are general con-
cerns on the validity of rodent models [31,32], and a number of genetic variants associated
with increased risk for human disease are located in non-coding regions of the genome that are
not well-conservedbetween species [33]. Thus, an alternative model for AD that exhibits
pathology in human cells may better serve to predict clinical outcomes. In the last decade, the
advent of induced pluripotent stem cells (iPSCs) has revolutionized human in vitro models sys-
tems [34–37]. Using this technology, we can derive specific neural cell types from patients with
sporadic or familial AD, and use these cultures to both study diseasemechanisms and develop
novel therapies [38,39]. A number of groups have performed functional studies using iPSC-
derived neural cells to model various aspects of AD pathology [40–50].

One concern with the use of in vitro systems to model AD pathology, however, is that phe-
notypes of aberrant extracellular protein aggregation are lost in two-dimensional (2D) cultures
simply due to the lack of an interstitial compartment. To overcome this, the next logical
approach is to use three-dimensional (3D) culture systems. There exist two main types of 3D
culture systems: a scaffold-free 3D culture system, exemplified by self-organizing structures
such as organoids or spheroids [51–53] and 3D engineering tissue, in which a variety of sup-
port materials (scaffolds or gels) provide a structure within which cells are cultivated [54–57].
One published study in this second category embedded geneticallymodified human neural
precursor cells, which overexpressed mutant APP and PSEN1, into a Matrigel scaffold. After
twelve weeks in vitro, these cultures generated AD-like phenotypes including amyloid plaque
deposition and hyperphosphorylated tau [40,58]. Another group studied AD-relevant pheno-
types in scaffolded 3D culture systems following exogenous amyloid β (Aβ) application [59].

While the tissue engineering approaches mentioned above do produce AD-like phenotypes
and are highly amenable to experimentalmanipulation, the process is labor-intensive and
requires the exogenous overexpression of disease-relevantmutations or factors. In the current
work, we have adapted a scaffold-free culture approach to generate neural organoids from AD
patient derived cells. These 3D cultures efficiently produce robust AD phenotypes, without
genetic manipulation or exogenous toxins. Although neural organoids have been shown to be
extremely useful for the study of neurodevelopmental phenomena and prenatal injury [51–
53,60–63], no previous study had applied this system to the study of age-related neurodegen-
eration. We show that, by “aging” these cultures in vitro, we can observe the spontaneous
emergence of hallmark AD pathologies such as amyloid aggregates and hyperphosphorylated
tau. Importantly, we demonstrate that this model system is amenable to experimentalmanipu-
lation, such as drug treatment, and that these phenotypes are robust enough to be recapitulated
across multiple cells lines derived from different AD patients.
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Results

Generation of organoids and analysis
To investigate the utility of such a system, we created scaffold free three-dimensional (3D)
human neural organoids, from human iPSCs derived from AD patients and healthy controls
and test each line for pluripotency (S1 Fig). Several protocols have been developed to create
neural organoids from human pluripotent stem cells [53,64–67].We followed the protocol
published by Kadoshima et al. [64] with minor modifications (seeMethods) and successfully
created complex dense 3D neural tissues from a number of human iPSC lines from AD patients
and healthy control (S2A Fig and S1 Table). We subjected the 3D cultures, heretofore referred
to as organoids, to immunohistochemistry with antibodies against a neuronal protein (MAP2)
as well as SOX2, a marker for neural progenitor cells, to determine the presence of neural cell
types. After one month of culture, we observed the emergence of translucent regions of neu-
roectodermand immunolabeling for neuronal MAP2 as well as SOX2-positive neural progeni-
tor cells, as previously described [64] (S2 Fig). At 60 days (60d) and 90–100 days (90d) in
culture, the organoids demonstrated formation of a rolling morphology structure with rosette-
like neuroprogenitor rich regions in which the neuroprogenitor cells are spatially arranged in a
spherical format, and unorganized regions that contain dense populations of MAP2-positive
neurons (S2B Fig). With age, immunoreactivity for SOX2 appeared to decrease, whileMAP2
immunoreactivity remained (S2C and S2D Fig). Since we are interested in age-related neural
pathology, we found that the large regions of neuron-rich tissue produced by the modified
Kadoshima et al protocol [64] best suited our modeling needs.

At 60d and 90d of culture, we subjected organoids from a healthy control (Ctrl) and a famil-
ial (fAD) patient (APP duplication, APPDp1-1, reported in Israel et al., 2012) to a number of
assays for AD-relevant phenotypes.We also examined additional fAD lines in (S1 Table). As
the organoid continues to increase in size, the deeper regions of the tissue show evidence of
necrosis, which is likely due to the absence of vasculature and lack of nutrients and oxygen pen-
etration in the deeper layers. As the presence of necrosis could confound our measurements of
AD-like phenotypes.We used immunohistochemistry for cleaved caspase 3 (CC3; S3A Fig) as
an indicator of apoptotic cells and calculated the average distance between the surface and
regions of increasing CC3 immunoreactivity. We found that the region of neuron-rich,
CC3-sparse tissue extended an average of 250 μm from the surface into the interior of the orga-
noid (S3A Fig). In addition, we incubated sections with secondary antibody alone (after block-
ing) to assess the presence of nonspecific binding.We observed that the inner tissue region also
gave rise to nonspecific antibody binding compared to the more superficial region (S3B Fig).
Based on these data, we established a limit of 250 μm from the surface of the organoid for our
further characterization.

Alzheimer’s disease phenotypes in organoids
Amyloid beta. Neurons derived from the APPDp1-1 line had previously exhibited

increased levels of secreted Aβ40 and Aβ42 (Israel et al., 2012). To determine whether this phe-
notype was perpetuated in 3D culture, we subjected culture media from fAD and control orga-
noids to ELISA. In agreement with the previous study, we detected significantly higher levels of
Aβ in the media from fAD organoids culture compared to controls (Fig 1A). We performed
immunohistochemistryon fixed cryosections from control and fAD organoids to examine
AD-like pathology using two different antibodies that recognizeAβ. The first antibody, 4G8
(immunoreactive against amino acid residues 17–24 of Aβ) has been widely used to label both
soluble and aggregated Aβ [68]. In addition, we co-labeled sections with the anti-Aβ antibody
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Fig 1. Organoids created from patient-derived iPSCs exhibit robust Alzheimer’s disease (AD)-likepathology. (A) Concentration of
Aβ1–40 and Aβ1–42 from supernatantof control (Ctrl; CS-0020-01) and familial AD (fAD;APPDp1-1) organoid cultures, measured by ELISA,
as well as the ratio of Aβ1–42 to Aβ1–40 concentrations. Unpaired two-tailed t-test with equal variance: *p = 0.047 (Aβ1–40), unpaired two-
tailed t-test withWelch’s correction for unequal variance: **p = 0.004 (Aβ1–42), p = 0.48 (Aβ1-42/Aβ1–40). (B) Tissue sections from fAD
(APPDp1-1) and control (Ctrl; CS-0020-01) organoids were processed for immunoreactivity against amyloid β (Aβ) using two antibodies
(D54D2: white, 4G8: green), as well as antibodies against the neuronal markerMAP2 (red) and stainedwith the nuclear dye Hoechst (blue).
Insets demonstrate Aβ immunoreactivity that appears both extracellular (i, arrow) and intracellular (ii, arrowhead) based uponMAP2 co-
localization. (C) Z-projection of immunolabeled tissue sections from 90 day old Ctrl and fAD organoids showing immunoreactivity for Aβ
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D54D2, which recognizes several isoforms of amyloid (Aβ37, Aβ38, Aβ39, Aβ40, and Aβ42). In
90d organoids, we detected aggregates that were immunopositive for both Aβ antibodies (Fig
1B), while 4G8 immunoreactivity appeared against intracellular amyloid that co-localizeswith
MAP2 as well as putative extracellular aggregates (Fig 1B, S4A Fig and S1 and S2 Movies). We
then used the D54D2 antibody to quantify the size and number of Aβ aggregates. The 90d fAD
organoids contained numerous Aβ aggregates compared to the control organoid tissue (Fig
1C). Analysis at 60d and 90d of culture identified a progressive increase in number and size of
Aβ aggregates in the fAD organoids compared to controls (Fig 1D and S4B Fig). Additionally,
we performedWestern blot on the 90d whole organoids lysates and observed increased levels
of Aβ oligmers in fAD organoids compared to controls (data not shown). These data demon-
strate the presence of robust and spontaneous Aβ aggregation in AD patient-derived organoid
culture models that appears to develop in a time-dependentmanner.

Hyperphosphorylated Tau (pTau). Another hallmark of AD is the abnormal phosphory-
lation, mislocalization, and aggregation of the tau protein. Beta-plated sheets of hyperpho-
sphorylated tau (pTau) leads to the disruption of neuronal microtubule assemblies and
neurodegeneration [19]. To examine control and fAD organoids for the presence of tau pathol-
ogy (tauopathy), we conducted immunohistochemistry in organoid sections using antibodies
against pTau (Ser396 or Thr181). At 90d, the fAD organoids exhibit significantly greater pTau
immunoreactivity than did control sections (Fig 1E and 1F and S4C Fig). Interestingly, there
was no significant difference in pTau levels between fAD and control organoids at 60 days (Fig
1F). This is in contrast to the amyloid phenotype, in which more Aβ aggregates were observed
at both 60d and 90d in the fAD organoids (Fig 1D). The Thioflavin-S dye binds aggregates of
β-pleated sheets and is used as an indicator of tau pathology in human brain and mousemodels
[69]. We observed a greater total area covered by Thioflavin-S dye labeling in fAD organoids
compared to controls, as well as a higher number of Thioflavin-S positive particles (S4D and
S4E Fig). Together, these various measures demonstrate that the AD patient-derived organoids
have the power to recapitulate both amyloid and pTau phenotypes.

Endosome abnormalities. Endosome abnormalities are another common cellular pheno-
type in AD. Enlarged RAB5-positive early endosomes have been observed in mouse models
and in the brains of sAD and fAD patients [70,71]. Such enlarged endosomesmay contain
aberrantly phosphorylated APP and aggregated Aβ [72]. iPSC-derived neurons created from
sAD, fAD, and frontotemporal dementia (FTD) patients also show increases in the number of
medium to large RAB5-positive endosomes [44] and defects in endosome trafficking [43,48].
To examine endosome phenotypes in iPSC-derived organoids, we labeled control and fAD

(D45D2: white) andMAP2 (red). The edge of the tissue section is visible at the left bottom corner of each example. (D) Quantification of Aβ
immunoreactivity in fAD and Ctrl organoids following 60d and 90d culture. Particle Counts: one-way ANOVA with post-hoc Fishers Least
Significant Difference (LSD) test for multiple comparisons; F (3,28) = 4.385, ***p = 0 0.0008, R2 = 0.32 (i-60 days); F (5,43) = 3.346, *p = 0
0.012, R2 = 0.28 (90 days). Particle Size: Two-tailed MannWhitney test for non-normal distributions (normalityα < 0.05), **p = 0.006 (60
days), ***p = 0.001 (90 days). (E) Tissue sections from fAD (APPDp1-1) and control (Ctrl; CS-0020-01) organoidswere processed for
immunoreactivity against phosphorylated Tau (pTau, green) at Serine 396 (S396) andMAP2 (red) following 90d culture. Hoechst (blue)
labels cell nuclei. (F) Quantification of pTau immunoreactivity for the Ser396 at 60d and 90d, and for the Threonine 181 (Thr181) pTau at
90d. Values are plotted as mean intensity of immunoreactivity as fold change of Ctrl. Unpaired two-tailed t-test with equal variance: p = 0.67
(60 day Ser396),**p = 0.001 (90 day Ser396), *p = 0.03 (90 day Thr181). (G) Sections from fAD (APPDp1-1) and control (Ctrl; CS-0020-01)
organoidswere processed for immunoreactivity against the early endosome antigen 1 (EEA1, green) andMAP2 (red). The dottedwhite line
outlines the region of highermagnification to show EEA1 detail. (H) Quantification of EEA1 immunoreactivity in fAD and Ctrl organoids
following 90d culture. EEA1 Particle Counts: one-way ANOVA with post-hoc Fisher’s LSD test for multiple comparisons; F (3,16) = 4.0,
*p = 0.026, R2 = 0.43. EEA1 Particle size: unpaired two-tailed t-test withWelch’s correction:*p = 0.041. (I) Organoids fromCtrl and fAD
lines were subjected to the transferrin endocytosis assay to label pools of clathrin-coated early endosomes. (Each data point represent one
organoid)Quantification of the average size of transferrin-positive particles: unpaired two-tailed t-test with equal variance, **p = 0.005.
Average number (count) of transferrin-positiveparticles, unpaired two-tailed t-test with equal variance, p = 0.64. On charts:*p < 0.05,
**p < 0.01, ***p < 0.001.

doi:10.1371/journal.pone.0161969.g001
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organoid sections with antibodies against the early endosomemarker 1 (EEA1; Fig 1G). The
fAD organoids trended towards an increase in the number of small endosomes (<1 μm in
diameter) and exhibited a significantly higher number of large (1–2 μm) endosomes compared
to controls. Additionally, we observed a trend towards an increased overall size for EEA1-posi-
tive endosome particles in the fAD organoids (Fig 1H). To functionally assess endosome traf-
ficking in the control and fAD organoids, we employed the transferrin endocytosis assay, in
which labeled transferrin is taken up by live cells via clathrin-mediated endocytosis [73]. Fol-
lowing incubation with Alexa 488-conjugated transferrin, we observed a significant increase in
the size of transferrin-containing endosomes in the fAD line, compared to controls (Fig 1I).
Together, these results demonstrate that AD patient-derived organoids display a third hallmark
AD: abnormal endosomemorphology and recycling.

Organoids frommultiple AD lines recapitulateAD pathology
To ascertainwhether the AD phenotypes of Aβ aggregation and Tau hyperphosphorylation are
generalizable to fAD organoids from different sources, rather than being a phenomenon of the
APPDp1-1 line, we examined additional organoids created from patient-derived and healthy
control iPSCs (S1 Table). At 90d of culture, we processed and analyzed organoids created from
an additional APP duplication line (APPDp2-3; [44]) two PSEN1 fADmutant lines
(PSEN1M146I, PSEN1A264E; Fig 2A, S1 Table). Organoids derived from fAD patients with APP
duplication (APPDp2-3) or the PSEN1A264E mutation exhibited increased numbers of Aβ aggre-
gates verses the control lines (Fig 2B). While the fAD organoids from PSEN1M146I patient cells
exhibited a trend towards higher amyloid levels, this was not significant.We also examined
organoids from these additional fAD lines for the presence of pTau immunoreactivity. Similar
to the pattern observedwith amyloid aggregation, the APPDp2-3 and the PSEN1A264E fAD
organoids exhibited increased pTau (Ser396) immunoreactivity at 90 days of culture, while the
PSEN1M146I organoids did not differ from control (Fig 2C).

Attenuation of AD pathology in neural organoids by β- and γ-secretase
inhibitor treatment
These data indicate that organoids created frommultiple fAD patient iPSC lines demonstrate
robust and relevant AD-like phenotypes. To determine whether these phenotypes are indeed a
result of altered Aβ production, we treated the fAD organoids with two compounds well
known to reduce amyloid aggregation: the γ-secretase inhibitor Compound E (Comp-E; γ2)
and a BACE-1 β-secretase inhibitor (β-Secretase Inhibitor IV, EMDMillipore) [40,74]. These
experiments also allow us to determine the feasibility of pharmacologicmanipulation in the
organoid cultures. Comp-E and β-Secretase Inhibitor IV, or DMSO vehicle, were added to the
culture media of 30-day-old fAD organoids and replenished with everymedia change (Fig 3A).
At day 60 (30 days of treatment) we assessed Aβ and pTau pathology (Fig 3A) and showed that
compound treatment significantly reduced the number of amyloid aggregates in the fAD orga-
noids in dose dependent manner, compared to vehicle treated fAD tissue (Fig 3B). This reduc-
tion was particularly evident in the in 90-day-old fAD organoids treated for 60-days (Fig 3C).
In contrast to the dramatic reduction of Aβ aggregation with compound treatment, immunore-
activity for pTau was unaffected following 30 days of treatment compared to vehicle-treated
controls (Fig 3D). However, following 60 days of treatment, the 90 day-old organoids showed
significantly less pTau immunoreactivity compared to vehicle-treated controls in dose depen-
dent manner (Fig 3D). These results indicate that specificAD-like phenotypes observed in
patient iPSC-derived organoids can be ameliorated with drug treatment, suggesting that this
system is amenable to compound testing.
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Discussion
In diseases such as AD that are characterized by protein aggregation, the presence of a true
interstitial compartment is important for modeling pathology. Previous three-dimensional
(3D) tissue engineering approaches have embeddedneural progenitors or cell types of interest
in a matrix or a scaffold [40,58]. While these ingenious approaches can model AD phenotypes,
they do not recapitulate spontaneous pathology resulting from endogenous cellular character-
istics, but rather necessitate the overexpression of fAD genes. In the current work, we took
advantage of scaffold-free 3D tissue culture protocols to create neural organoids using iPSCs
from fAD patients and healthy controls. The dense nature of these cultures likely facilitates

Fig 2. Organoids created from different lines of AD patient iPSCs exhibit AD phenotypes. (A) Tissue sections from fAD (APPDp2-3,
ND34732, AG068840) and control (Ctrl; CS-0020-01, AG09173) organoidswere processed for immunoreactivity against Aβ (D45D2,
white),MAP2 (red), and pTau (S396, green) and labeledwith the nuclear dye Hoechst. (B) Quantification of Aβ immunoreactivity in fAD and
Ctrl organoids following 90 days of culture. Values between the two control lines did not significantly differ. Number of Aβ-positive
aggregates in two size classes (ParticleCounts): one-way ANOVA with post-hoc Tukey’s multiple comparisons test; F (4,21) = 6.15,
**p = 0.0019, R2 = 0.5396 (1–3μm);F (4,21) = 7.95, ***p = 0.0005, R2 = 0.6024 (3–6 μm). (C) Quantification of the average intensity of
pTau Ser396 immunoreactivity as a fold change of Ctrl in fAD and Ctrl organoids following 90 days of culture. Values between the two
control lines did not significantly differ. (Each data point represent one organoid). One-way ANOVA with post-hoc Tukey’s multiple
comparisons test; F (4,20) = 9.629, ***p = 0.0002, R2 = 0.6582.On charts:*p < 0.05, **p < 0.01, ***p < 0.001.

doi:10.1371/journal.pone.0161969.g002
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protein aggregation, while remaining amenable to experimentalmanipulation such as com-
pound treatment.

The ease with which large numbers of these organoids can be created, and their ability to
respond to compound treatment, open the possibility for phenotypic and mechanistic com-
pound screening in complex human tissue models of multiple neurodegenerative diseases.
With iPSC technology, we can access patient-derived cells carryingAD-associated variants in a
number of genes, which are difficult to model as many are non-coding and/or associated with
more than one significant single-nucleotide polymorphism (SNP) [75]. Moreover, rapid
improvements in gene editing technology allows researchers to create isogenic iPSC and ESC

Fig 3. Organoids created from AD patient iPSCs respond to compound treatment. (A) Schematic of beta (BACE-1) and gamma
(Comp-E) secretase inhibitor treatment (top). At 30 days of culture, fAD (APPDp1-1) organoidswere treatedwith low dose (BACE-1, 1μM
and Comp-E, 3nM) or high dose (BACE-1, 5 μMand Comp-E 6nM) combined compounds, or equivalent DMSO vehicle. Following 30 or 60
days of culture and drug treatment, organoids at 60 and 90 days of culture, respectively, were processed for immunohistochemistry (IHC).
Tissue sections from fAD (APPDp1-1) and control (Ctrl; CS-0020-01) organoidswere processed for immunoreactivity against Aβ (D45D2,
white), pTau (Ser396, green), andMAP2 (red). Examine images are from 90 day organoids. (B) Quantification of Aβ particlenumber and
size in compound treated and fAD organoids following 30 days of administration. Number of Aβ-positive aggregates in two size classes
(ParticleCounts): one-way ANOVA with Fishers LSD test for multiple comparisons; F (5,24) = 3.58, *p = 0.014, R2 = 0.4296. Particle size:
one-way ANOVA with Kruskal-Wallis test for non-normaldistribution (α < 0.05), p = 0.475. (C) Quantification of Aβ particlenumber and size
in treated (high dose) and untreated fAD organoids following 60 days of compound administration. Number of Aβ-positive aggregates in
three size classes (ParticleCounts): one-way ANOVA with Fishers LSD test for multiple comparisons; F (5,19) = 5.02, **p = 0.004, R2 =
0.5691. Particle size: Mann-Whitney two-tailed test for non-normaldistribution (α < 0.05), p = 0.09. (D) Quantification of the average
intensity of pTau Ser396 immunoreactivity as a fold change of Ctrl in fAD organoids following 30 and 60 days of compound treatment. 30
day treatment. (Each data point represent one organoid). Unpaired two-tailed t-test with equal variance, p = 0.69. 60 day treatment: one-
way ANOVA with Tukey’s multiple comparisons test, F (2,13) = 19.82, ***p = 0.0001, R2 = 0.7530.On charts:*p < 0.05, **p < 0.01,
***p < 0.001.

doi:10.1371/journal.pone.0161969.g003
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lines that carry disease-associatedcoding variants, both well-known (such as in the APOE
gene, [76,77] or emerging (i.e. SORL1 [50,78], TREM2, [79]). Together, these advancements
allow us to conceive of systems in which we can test candidate therapies on complex neural tis-
sue systems targeted to defined subpopulations of late-onset or sporadic AD patients.

One powerful aspect of the current model is the spontaneous appearance of both [1] amy-
loid and tau pathology, and the distinct timeline on which these phenotypes appear. Modeling
both these facets of AD has been challenging in mouse models. Most mouse ADmodels must
carrymultiple transgenes to achieve robust amyloid phenotypes, and rarely have significant
tau pathology or neuronal loss (for review see [31]). Mouse models of tauopathy overexpress
mutated human MAPT (which is causal for frontotemporal dementia, not AD) to induce tau
pathology [80,81], and do not exhibit amyloid aggregation. Using the organoid model, we
observed that amyloid pathology emerges prior to significant tau hyperphosphorylation in
neural tissue derived from fAD patients carrying a duplication of the APP gene. While the
sequential emergence of amyloid and tau pathology in human AD remains somewhat contro-
versial [82–85], this timing is in close agreement with that observed in the scaffolded 3D cul-
tures of Choi et al. 2014; [40]. Additionally, the inhibition of Aβ production using β and γ-
secretase inhibitors reduced tau hyperphosphorylation only at the later time point of treatment,
after Aβ reduction was observed.Thus, AD-relevant phenotypes of Aβ accumulation emerge
prior to tauopathy in this model. Moreover, the reductions in Aβ accumulation that occur
from the inhibition of APP processing lead to a dose- and time-dependent amelioration of
tauopathy in the fAD organoids, suggesting a causal relationship between these relevant
pathologies in the neural organoid model.

In the current work, we focusedour efforts on determiningwhether or not these organoid sys-
tems couldmodel age-related AD-like pathology. The pioneering works that we drew our tech-
niques from used the organoid system as a means to study neurodevelopment [53,64,66,67].
Since work by several groups has suggested that iPSC reprogramming “re-sets” the epigenome,
and that other phenotypes associated with cellular aging, such as mitochondrial function and
telomere length, are returned to a “juvenile-like” state [86,87], the obvious question is: to what
extent can we model phenotypes associated with aging in human neural cells?While we observe
robust AD-like phenotypes that increase with “age” in the organoids, the extent to which the
organoid tissue represents the aged human brain has not been examined.We believe that the
scaffold-free three dimensional model has good potential for studying neurological diseases. This
will be important for future works to use this model system to examine other AD related pheno-
types, such as neuroinflammation, gliosis, DNA damage, U1 tangles [88] and synaptic dysfunc-
tion. Also, without a means of tissue perfusion, the organoid suffers from the same issues as
primary slice culture, in that the distance from the culture medium interface is correlated with
tissue necrosis. There is currently great interest in the combination of three-dimensional neural
culture systems with artificial blood-brain barrier technology [89–91], to address this issue.

ExperimentalProcedures

Maintenance of PSC and 3D culture differentiation
Induced pluripotent stem cells (iPSCs) were created from human fibroblasts (S1 Table). Two
of the iPSC lines carrying duplications in the gene for Amyloid Precursor Protein (APP;
APPDp1-1 and APPDp2-3) were provided by Dr. Lawrence Goldstein at the University of Cali-
fornia, San Diego, and have been describedpreviously [44]. One control iPSC line (AG09173)
was kindly provided by Dr. Bruce A. Yankner at McLean Hospital and Harvard Medical
School. The other lines were generated from fibroblasts at the Picower institute of Learning
and Memory, iPSC core facility at the Massachusetts Institute of Technology (MIT) using
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Sendai virus to overexpress OCT4, SOX2, KLF4, and c-MYC. S1 Table. details the sources and
attributes of the cells used in this study. Pluripotency was confirmed by immunocytochemistry
for TRA-1-81 and TRA-1-60 (S1 Fig). All reagents were purchased from Life Technologies
Corporation,Grand Island, NY, unless mentioned otherwise. iPSCs were cultured on irradiated
mouse embryonic fibroblasts (MEFs, MTI-GlobalStem,Gaithersburg, MD) in DMEM/F12
media supplemented with knockout serum replacement (KSR, 20% v/v), non-essential amino
acids (NEAA-1X), GlutaMAX (1X), beta-Fibroblast Growth Factor (FGF2, PeproTech, Inc,
Rocky Hill, NJ) and 2-mercaptoethanol (0.1 mM). The quality of cells was monitored daily and
differentiated cells were mechanically removed under a light microscope in a biosafety hood.
iPSCs were culture up to 80% confluence and dissociated into single cell suspension after
treated with Accutase (diluted in PBS (1.5:1) containing Rock inhibitor (Y-27632 dihy-
drochloride, Tocris Biosciences,Minneapolis, MN) to improve cell survival. The MEFs and
iPSCs were separated by plating the single cell suspension onto 0.1% gelatin (0.1%, EMDMilli-
pore, Billerica,MA) coated dishes for 45 min, after which time the MEFs attach to the substrate
and the non-adherent iPSCs were collected.

To create 3D cultures, or neural organoids, we followed a published protocol [64] with some
modifications. Embryoid bodies (EBs) were formed by loading 12,000 iPSCs per well into
96-well plates with cone-shaped wells (Nunc1 96-well Conical Bottom plates, VWR Interna-
tional, Bridgeport,NJ) pre-coated with Pluronic acid (F-127, 1%, Sigma-Aldrich,Natick, MA).
The 96 well plates were transferred to an incubator at 37 C° with 95% relative humidity and 5%
CO2. Media used in EB culture consisted of Glasgow-MEM supplement with KSR (20% v/v),
SodiumPyruvate (1X), NEAA (1x), 2-mercaptoethanol (0.1mM), Rock inhibitor (20 μM),
TGFβ-inhibitor (SB431532 compound, Tocris Biosciences,Minneapolis, MN; 5 μM),Wnt-
inhibitor (IWRe1 compound, Tocris Biosciences,Minneapolis,MN; 3 μM). The EBs maintained
in this medium for 18–20 days, with Dorsomorphin (BMP signal inhibitor, Tocris Biosciences,
Minneapolis,MN; 2 μM) added to the culture for the first three days to promote a neuronal line-
age. Media was replaced every other day. The edges of the EBs began to appear translucent
around day 10, and the tissue grew to be large than 0.6 mm in diameter by day 18. The cell
aggregates, or organoids, were transferred to non-adherent petri-dishes (EZsphere dish) to pre-
vent fusion of separate organoids, and cultured in a medium designed to promote neuroepithe-
lial formation, which consisted of DMEM/F12 supplemented with Chemically Defined Lipid
Concentrate (1X) and N2-supplement (1X) and maintained in an incubator with 5% CO2 and
40% Oxygen. The aggregates were kept in this media for 15 to 20 days, at which time heparin
(5 μM, Sigma-Aldrich,Natick, MA), FBS (10% v/v, Gemini Bio-Products,West Sacramento
CA), and Matrigel (final 1% v/v, Corning Incorporated—Life Sciences,Oneonta, NY) were
added to the medium.On day 70 the amount of Matrigel was increased to 2% and B27 supple-
ment (1X) was added to the medium. The aggregates were maintained in this final medium for
the remained of the culture period.Medium in the culture dishes was replaced every 4 to 5 days.

Tissue processing and Immunohistochemistry
At pre-defined time points (60 days (60d) and 90–100 days (90d)) the organoids were fixed
overnight in 4% paraformaldehyde (diluted from 32%, ElectronMicroscopy Sciences,Hatfield,
PA) and cryoprotected in a 30% sucrose solution prior to embedding in optimal cutting tem-
perature compound (OCT), VWR International, Bridgeport,NJ). Frozen tissue was sectioned
at 30 μm using a cryostat and collected on ultra-frosted glass microscope slides. Sections were
stored at -20C°. For immunolabeling, sections were permeabilized for 30 minutes in phos-
phate-buffered saline (PBS) containing 0.3% Triton-X100 (Sigma-Aldrich,Natick, MA) and
then blocked in 10% v/v horse serum solution in PBS contain 0.1% Triton-X100 (PBST) for 1
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hour followed by incubation with primary antibodies overnight at 4°C in PBST containing 5%
horse serum (source). Sections were received three 15 min washes in PBST containing 5%
horse serum. Secondary antibodies was prepared in PBST containing 5% horse serum and
Hoechst (for nuclear immunoreactivity, source) and sections were incubated in secondary for
1 hour at room temperature before washing as before. Sectionswere then coverslipped in
Fluoromount-G (ElectronMicroscopy Sciences,Hatfield, PA) mounting medium and the
edges sealed with nail polish. For consistency, sections from control (Ctrl) and familial Alzhei-
mer’s disease (fAD) organoids were processed in the same batch. The primary antibodies used
with following dilutions: Microtubule-associated protein 2, MAP2 (chicken/1:400, Biolegend,
San Diego, CA), 4G8 (mouse/1:400, Biolegend, San Diego, CA), β-amyloid (D54D2) (rabbit/
1:400, Cell Signaling Technology, Danvers, MA), phosphorylated Tau (Ser396 –PHF13 and
Thr181—D9F4G) (mouse and rabbit/1:400, Cell Signaling Technology, Danvers, MA), Early
endosome antigen 1 (EEA1) (mouse/1:500, BD Biosciences, San Jose, CA) and Cleaved Cas-
pase-3 (Asp175) (rabbit, 1:500, Cell Signaling Technology, Danvers, MA). Secondary anti-
mouse, anti-rabbit, and anti-chicken antibodies conjugated to cyanine dyes (Cy2, Cy3 and
Cy5, respectively) were purchased from Jackson Immuno Research laboratories (West Grove,
PA). Twenty-four hours after coverslipping, sections were imaged using a laser scan confocal
microscope (LSM710, Carl Zeiss) by researchers blind to experimental condition. For each tis-
sue section and organoid, we imaged five different regions. Each treatment and conditioned
contained between five and eight organoids.

Thioflavin-S staining
All reagents for Thioflavin-S staining were purchased from Sigma-Aldrich,Natick, MA, unless
otherwise indicated. Sectionswere rinsed with PBS for 5 minutes and then incubated in 0.05%
potassium permanganate solution for 20 minutes followed by two washes in PBS and de-stain-
ing in 0.2% potassiummetabisulfite and 0.2% oxalic acid (until the brownish color from the
potassium permanganate is removed, less than 1 minute). The potassiummetabisulfite/oxalic
acid was washed out using PBS and sections were incubated in freshly-prepared 0.02% Thiofla-
vin-S solution (in 40% ethanol) for four minutes in the dark. The remaining steps took place in
the dark. Following staining, sections were developedwith 50% ethanol for 15 minutes and fol-
lowed by three time PBS wash and one time deionizedwater wash. Slides were coverslipped in
Fluoromount-G and edges were sealed with nail polish. Fluorescent Thioflavin-S signals were
imaged using a laser scan confocal microscope (LSM710, Carl Zeiss) by researchers blind to
experimental condition. For each tissue section, we imaged five different regions.

Image processing
Images were processed using ImageJ software (NIH) by researchers blind to experimental con-
dition. Measurements consisted of particle counts and size for β-amyloid (Aβ), EEA1, and
transferrin immunoreactivity, as well as signal intensity for pTau. Particle count and size were
measured using a macro that converted the desired image channel into grayscale with auto-
matic thresholding, inverting, and calling up the Analyze Particle measurement tool. Particle
counts were binned by size range. Images were decoded and plotted as fold increase compared
to control. For pTau immunoreactivity, the mean intensity of the entire image was measured
and plotted as fold increase compared to control.

Enzyme-linked immunoabsorbent assay (ELISA)
Aβ concentration was measured from organoid supernatants using commercially available
ELISA kit for Aβ (1–40) and Aβ (1–42) (Life Technologies Corporation, Grand Island, NY)
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following the manufacturer’s protocol. Briefly, media samples were incubated (4 hours) in
primary antibodies against the COOH-terminus of the 1–40 or 1–42 Aβ sequence in pre-
coated 96 well plates (pre-coated with monoclonal antibody specific to human Aβ 1–40 or
1–42) followed by aspiration and four washes (in washing buffer) prior to incubation with
HRP-conjugated secondary antibodies followed by aspiration, four washes, and addition of
HRP substrate (3,3',5,5'-tetramethylbenzidine). The reaction was stopped using 1 N sulfuric
acid and absorption was measured at 450 nm in an EnSpire plate readers (Perkin Elmer).
Absolute values were calculated from a standard curve and plotted as either picogram/ml
(pg/ml) or Aβ42/40 ratio per organoid.

Transferrin assay
Live organoids were cut in small pieces using surgical blade and cultured in a solution of trans-
ferrin conjugated to Alexa Fluor-488 (Alexa Fluor-488, Life Technologies Corporation,Grand
Island, NY). Following a 10 minute incubation in 200 μg/ml transferrin solution in media,
organoids were washed three time in PBS and fixed using 4% paraformaldehyde. The fixed
organoids were then washed with PBS, stained with Hoechst, and whole-mounted onto glass
coverslip. The outer (flat) surface of tissue sitting on the glass coverslip were imaged using con-
focal microscope. The images were processed in ImageJ, by removing the background (thresh-
olding) and counting the size of Alexa Fluor-488 positive particles.

Drug treatment
Organoids were treated for 30 or 60 days with a combination of beta secretase (BACE-1) inhib-
itor (β-Secretase Inhibitor IV, EMDMillipore) and gamma secretases inhibitor (Compound E;
EMDMillipore) or equivalent DMSO vehicle. Each compound was diluted into culture
medium from a 5 mMDMSO stock that had been stored at -20°C. The concentrations of
BACE-1 and Comp-E that were used were 5 μM and 6 nM or 1 μM and 3 nM, respectively.
Vehicle-treated cultures received the same concentration of DMSO. Drug treatment was begun
at day 30 of the culture and maintained until the endpoint at 60 or 90 days of culture. Media
containing treatment or vehicle was replaced every 4 to 5 days. Organoids were processed for
immunohistochemistry as described above.

Statistical Analysis
The data were plotted using GraphPad Prism software. Groups were compared via Student’s
two tailed t-test (two groups) or one-way analysis of variance (ANOVA; multiple groups).
Please see figure legends for details.

Supporting Information
S1 Fig. Immunoreactivity for markers of pluripotency. iPSC colonies were plated onto MEF-
covered glass coverslips in hES maintenance media and subjected to live immunocytochemis-
try for the pluripotencymarkers Tra-1-60 and Tra-1-81 three days after plating. Cells were
then fixed and stained with the nuclear dye Hoechst (blue) and imaged using a confocal micro-
scope. All lines tested were immunopositive for Tra-1-60 (left, green) and Tra-1-81 (right,
green).
(TIF)

S2 Fig. Work flow for three-dimensional (3D) neural organoid culture and immunohis-
tochemistrywith cell type-specificmarkers. (A) The process of 3D culture protocol begins
with iPSCs that are dissociated into a single-cell suspension and induced to form embryoid
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bodies (EBs) in a 96 well format (one EB per well). EBs were then differentiated over a period
of weeks to months. (B) Images from organoids cultured for fewer than 60 days: phase contrast
images (left) and sections immunostained using antibodies against markers of neural progeni-
tor cells (SOX2, white) and neurons (MAP2, red), as well as the nuclear stain Hoechst (blue).
In the images, one can see the (i) rolling morphology structure with organized translucent lay-
ers previously reported by the Sasai group [64], (ii) regions of the organoid with a rosette-like
structure dense in neural progenitors, and (iii) unorganized translucent regions. (C and D) At
60 and 90 days in culture, organoids exhibit SOX2 (white) and MAP2 (red) immunoreactivity
that is variable by region.
(TIF)

S3 Fig. Immunoreactivity for cleaved-caspase3 (CC3) and non-specific antibody binding
define deep regions of necrotic tissue in the organoid. (A) A quantitative analysis of CC3
immunoreactivity leads us to limit our analyses to the peripheral 250 μm of MAP2-rich (red) and
CC3-poor (white) region of the organoid. CC3- and Hoechst (nuclei)-positive cells were counted
in bins of 30μm from the surface of the organoid in three replicates. (B) Organoid sectionswere
blocked and incubated with secondary antibodies alone to determine the degree of non-specific
labeling (left column = 90d whole organoid images). Regions of interest within the first 250 μm
(right column) and deep (middle column) in the organoid tissue were analyzed for signal from
secondary antibodies (anti-mouse-Cy2, green; anti-rabbit-Cy3, red; anti-chicken, white).
(TIF)

S4 Fig. Immunohistochemistry for amyloid beta and pTau at Threonine 181 (Thr181) and
quantification for Thioflavin-S labeling in Ctrl and fAD organoids. (A) Additional images
from tissue sections from fAD (APPDp1-1) and control (Ctrl; CS-0020-01) organoids processed
for immunoreactivity against amyloid β (Aβ) using two antibodies (D54D2: white, 4G8: green),
as well as antibodies against the neuronal marker MAP2 (red) and stained with the nuclear dye
Hoechst (blue). (B) Table of average particle number observedper 250 x 250 μm2 area in con-
trol and fAD organoids. (C) Tissue sections from fAD (APPDp1-1) and control (Ctrl; CS-0020-
01) organoids were processed for immunoreactivity against phosphorylated Tau (pTau, green)
at Thr181 and MAP2 (red) following 90 days of culture. Hoechst (blue) labels cell nuclei. (D)
Representative images of fAD (APPDp1-1) and control (Ctrl; CS-0020-01) organoids section
stained with Thioflavin-s dye for beta-pated sheet structure. (E) Quantification of fluorescent
Thioflavin-S in tissue sections from fAD (APPDp1-1) and control (Ctrl; CS-0020-01) organoids
after 90 days of culture (Each data point represent one organoid). Measurements consist of the
percent of the visual field covered by Thioflavin-S signal (left) and the number of distinct Thio-
flavin S-positive particles (right). Unpaired two-tail t-test with equal variance, ��p = 0.0074 (%
Area Covered), �p = 0.022 (Particle Count). On charts: �p< 0.05, ��p< 0.01.
(TIF)

S1 Movie. Extracellularamyloid aggregates. 30 μm thick (90d) fAD organoids (made from
AppDp1-1) were stained for amyloid beta using two different antibodies; 4G8 (green) and
D54D2 (White) along with neuronal marker MAP2 and Hoechst for nuclear staining. The
images were converted into movie (2 frames per second) using imageJ (NIH).
(AVI)

S2 Movie. Extracellularamyloid aggregates. 90d fAD organoids (made from AppDp1-1) were
immunolabeled using antibodies against amyloid beta (D54D2,White) along with neuronal
marker MAP2 and Hoechst for nuclear staining. The images were converted into movie (6
frames per second) using imageJ (NIH).
(AVI)
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S1 Table. Cell lines used in the current study.
(PDF)
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