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Abstract: Pyroptosis is a necrotic form of regulated cell death. Gasdermines (GSDMs) are a family of
intracellular proteins that execute pyroptosis. While GSDMs are expressed as inactive forms, certain
proteases proteolytically activate them. The N-terminal fragments of GSDMs form pores in the
plasma membrane, leading to osmotic cell lysis. Pyroptotic cells release pro-inflammatory molecules
into the extracellular milieu, thereby eliciting inflammation and immune responses. Recent studies
have significantly advanced our knowledge of the mechanisms and physiological roles of pyroptosis.
GSDMs are activated by caspases and granzymes, most of which can also induce apoptosis in
different situations, for example where the expression of GSDMs is too low to cause pyroptosis; that
is, caspase/granzyme-induced apoptosis can be switched to pyroptosis by the expression of GSDMs.
Pyroptosis appears to facilitate the killing of tumor cells by cytotoxic lymphocytes, and it may also
reprogram the tumor microenvironment to an immunostimulatory state. Understanding pyroptosis
may help the development of cancer immunotherapy. In this review article, recent findings on the
mechanisms and roles of pyroptosis are introduced. The effectiveness and limitations of pyroptosis
in inducing antitumor immunity are also discussed.
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1. Introduction

Previously, cell death was classified into two types: apoptosis and accidental necrosis,
but recently, several forms of regulated necrosis have been discovered and received con-
siderable interest [1,2]. Accidental necrosis is passive cell death caused by, for example,
mechanical, thermal, and chemical damage to the cell membrane. On the other hand,
regulated cell death, including apoptosis and regulated necrosis, is caused by a genetically
encoded machinery, in other words, it is “programmed”.

Apoptosis is characterized by cell shrinkage, membrane blebbing, phosphatidylserine
externalization, nuclear DNA fragmentation, and nuclear condensation [1,2]. Moreover,
cell membrane integrity is preserved in the early stages of apoptosis, and apoptotic cells
are efficiently cleared from tissues by phagocytes before becoming lytic. This is important
for avoiding unwanted inflammation and autoimmunity, which are attributed to the re-
lease of pro-inflammatory molecules and self-antigens from dying cells. For these reasons,
apoptosis is considered to be immunologically silent and even anti-inflammatory, though
its pro-inflammatory effects have also been described in some settings [1,2]. Caspases are a
family of intracellular cysteine proteases, and the majority of them participate in the induc-
tion of apoptosis [2–4]. Caspase-8 and caspase-9 are activated in death receptor-mediated
(also known as extrinsic) and intrinsic apoptosis pathways, respectively. These caspases,
in turn, serve as initiator caspases that directly or indirectly activate downstream effector
caspases, such as caspase-3 and caspase-7. Effector caspases then cleave a number of
substrates, including Rho-associated protein kinase I, ATPase 11A/C, Xk-related protein 8,
and inhibitor of caspase-activated DNase. The cleavage of so-called death substrates leads
to apoptosis with the above-mentioned properties [2,3].
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In contrast to apoptosis, regulated necrosis occurs with rapid plasma membrane
damage [1]. Regulated necrosis is considered to be inflammatory, because cells undergo-
ing regulated necrosis rapidly release pro-inflammatory intracellular contents, including
damage-associated molecular patterns (DAMPs) and cytokines. Several modes of regulated
necrosis have been reported, for example, pyroptosis, necroptosis, and ferroptosis, which
are induced by different stimuli through different signal transduction pathways [1,2]. While
necroptosis is mediated by the pseudokinase mixed lineage kinase domain-like (MLKL),
pyroptosis is mediated by gasdermin (GSDM) family proteins. Ferroptosis involves abnor-
malities in lipid peroxidation metabolism and iron homeostasis. In necroptosis, MLKL is
activated by phosphorylation of key residues and subsequently act as an effector of plasma
membrane permeabilization, leading to osmotic cell swelling and eventual necrotic lysis.
On the other hand, in pyroptosis, GSDM proteins are proteolytically activated by certain
proteases and subsequently form plasma membrane pores, which also lead to cell swelling
and lysis [4,5].

Recent studies have identified proteases that activate GSDMs. There have also been
new findings about the mechanisms by which pyroptosis induces inflammation and its
impact on the tumor microenvironment. This review article introduces recent findings on
the mechanisms and roles of pyroptosis and discusses its effectiveness and limitations in
cancer treatment.

2. The Characteristics and Mechanism of Pyroptosis

Pyroptosis was originally proposed by Cookson and Brennan as caspase-1-dependent
non-apoptotic cell death induced in macrophages during infection with Salmonella Ty-
phimurium [6,7]. In 2001, these researchers coined the term “pyroptosis” that stems from
the Greek roots “pyro”, relating to fire or fever, and “ptosis” to denote a falling, to describe
pro-inflammatory regulated necrosis [7]. Later, human caspase-4 and caspase-5 and their
mouse ortholog, caspase-11, have also been demonstrated to induce pyroptosis [8–10].
Pyroptotic cells rapidly lose cell membrane integrity, increase in size, and have smaller
nuclei [4,5,11]. DNA damage also occurs upon pyroptosis, and pyroptotic cells become
positive in terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling with a
lower intensity than apoptotic cells. Intracellular pro-inflammatory molecules are rapidly
and efficiently released from pyroptotic cells, thus triggering inflammation.

Although the mechanism of pyroptosis had long been unclear, in 2015, GSDMD, a
53 kDa cytoplasmic protein, was identified as a critical mediator of pyroptosis induced by
inflammatory caspases (caspase-1, -4, -5, and -11) [12,13]. These caspases proteolytically
activate GSDMD, leading to pore formation in the plasma membrane and pyroptosis
(Figure 1). GSDMD consists of an N-terminal pore-forming domain, a C-terminal regulatory
domain, and a central linker region. The pore-forming activity of the N-terminal domain is
inhibited by the C-terminal domain in full-length GSDMD [14,15]. The cleavage of GSDMD
by inflammatory caspases at the linker region liberates the N-terminal domain from the
C-terminal domain. The N-terminal fragment (GSDMD-N) binds to phospholipids on the
inner leaflet of the plasma membrane and in the mitochondria, such as phosphatidylinositol
phosphates, phosphatidic acid, phosphatidylserine, and cardiolipin. GSDMD-N molecules,
in turn, undergo conformational changes that facilitate oligomerization and membrane
insertion to form transmembrane β-barrel pores with an inner diameter of 10–15 nm [16,17].
The plasma membrane pores cause water influx driven by oncotic pressure, cell swelling,
and, ultimately, cell lysis [11].
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Figure 1. The molecular mechanism of pyroptosis. Pyroptosis is a necrotic form of regulated cell death executed by gasder-
min (GSDM) family members. GSDMs, which are expressed as inactive forms, are proteolytically activated by certain 
proteases. The N-terminal fragments of GSDMs form pores in the plasma membrane. These pores cause water influx 
driven by osmotic pressure, leading to cell swelling and ultimately plasma membrane rupture. GSDM pores also allow 
the influx of Ca2+, which directs the assembly of the endosomal sorting complex required for transport (ESCRT) machinery. 
The ESCRT machinery mediates plasma membrane repair by promoting budding and pinching off of the damaged mem-
brane. Calpains are also activated, which in turn degrade vimentin intermediate filaments, thereby enhancing rupture of 
the plasma membrane by extrinsic forces. 

The formation of GSDMD pores in the plasma membrane allows the influx of Ca2+ 
from the extracellular milieu, which directs calpain activation and the assembly of the 
endosomal sorting complex required for transport (ESCRT) machinery during pyroptosis 
(Figure 1) [18,19]. The Ca2+-dependent proteases calpains promote severe rupture of py-
roptotic cell membranes by degrading vimentin intermediate filaments [18]. This is re-
quired for the release of macromolecules and organelles from pyroptotic cells. On the 
other hand, the ESCRT machinery promotes budding and pinching off of the damaged 
membrane, thereby mediating plasma membrane repair. Depletion of the ESCRT-III com-
plex enhanced pyroptosis, suggesting that ESCRT-dependent membrane repair controls 
this cell death [19]. Therefore, GSDMD pore-mediated Ca2+ influx has opposite effects on 
pyroptosis, which may depend on the stage of the cell death process. Taken together, 
GSDMD pores not only execute pyroptosis, but also regulate it positively and negatively, 
and the fate of a cell, in which GSDMD is activated, may be determined at least in part by 
balance between the amount of GSDMD pores and the Ca2+-dependent regulation mech-
anisms. 

Recent studies have revealed the crystal structures of full-length GSDMs and com-
plexes between inflammatory caspases and GSDMD and the cryo-electron microscopy 
structure of a GSDMA3 oligomer [16,17,20,21]. The dynamics of pore formation by 
GSDMD-N has also been visualized by atomic force microscopy [22,23]. The structural 
insights may guide future drug design targeting GSDMs for controlling or facilitating py-
roptosis. 

3. GSDM Family Proteins 
The human and mouse genomes encode six (GSDMA, GSDMB, GSDMC, GSDMD, 

GSDME, DFNB59) and ten (GSDMA1, GSDMA2, GSDMA3, GSDMC, GSDMC2, 
GSDMC3, GSDMC4, GSDMD, GSDME, DFNB59) members of GSDM family proteins, re-
spectively [24,25]. While GSDME and DFNB59 are conserved in diverse species from 
fishes to mammals, other GSDM family genes are only conserved in birds to mammals. 
All the members of the GSDM family (except DFNB59) consist of two domains that are 
connected by a central linker region. The N-terminal domains of the GSDM proteins as 
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Figure 1. The molecular mechanism of pyroptosis. Pyroptosis is a necrotic form of regulated cell death executed by
gasdermin (GSDM) family members. GSDMs, which are expressed as inactive forms, are proteolytically activated by certain
proteases. The N-terminal fragments of GSDMs form pores in the plasma membrane. These pores cause water influx driven
by osmotic pressure, leading to cell swelling and ultimately plasma membrane rupture. GSDM pores also allow the influx
of Ca2+, which directs the assembly of the endosomal sorting complex required for transport (ESCRT) machinery. The
ESCRT machinery mediates plasma membrane repair by promoting budding and pinching off of the damaged membrane.
Calpains are also activated, which in turn degrade vimentin intermediate filaments, thereby enhancing rupture of the
plasma membrane by extrinsic forces.

The formation of GSDMD pores in the plasma membrane allows the influx of Ca2+

from the extracellular milieu, which directs calpain activation and the assembly of the
endosomal sorting complex required for transport (ESCRT) machinery during pyroptosis
(Figure 1) [18,19]. The Ca2+-dependent proteases calpains promote severe rupture of pyrop-
totic cell membranes by degrading vimentin intermediate filaments [18]. This is required
for the release of macromolecules and organelles from pyroptotic cells. On the other hand,
the ESCRT machinery promotes budding and pinching off of the damaged membrane,
thereby mediating plasma membrane repair. Depletion of the ESCRT-III complex enhanced
pyroptosis, suggesting that ESCRT-dependent membrane repair controls this cell death [19].
Therefore, GSDMD pore-mediated Ca2+ influx has opposite effects on pyroptosis, which
may depend on the stage of the cell death process. Taken together, GSDMD pores not only
execute pyroptosis, but also regulate it positively and negatively, and the fate of a cell, in
which GSDMD is activated, may be determined at least in part by balance between the
amount of GSDMD pores and the Ca2+-dependent regulation mechanisms.

Recent studies have revealed the crystal structures of full-length GSDMs and com-
plexes between inflammatory caspases and GSDMD and the cryo-electron microscopy
structure of a GSDMA3 oligomer [16,17,20,21]. The dynamics of pore formation by GSDMD-
N has also been visualized by atomic force microscopy [22,23]. The structural insights may
guide future drug design targeting GSDMs for controlling or facilitating pyroptosis.

3. GSDM Family Proteins

The human and mouse genomes encode six (GSDMA, GSDMB, GSDMC, GSDMD, GS-
DME, DFNB59) and ten (GSDMA1, GSDMA2, GSDMA3, GSDMC, GSDMC2, GSDMC3, GS-
DMC4, GSDMD, GSDME, DFNB59) members of GSDM family proteins, respectively [24,25].
While GSDME and DFNB59 are conserved in diverse species from fishes to mammals,
other GSDM family genes are only conserved in birds to mammals. All the members of
the GSDM family (except DFNB59) consist of two domains that are connected by a central
linker region. The N-terminal domains of the GSDM proteins as well as that of GSDMD
have the ability to form plasma membrane pores, resulting in cell lysis [14,25]. Hence, like
GSDMD, other GSDM members have been expected to execute pyroptotic cell death after
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being processed by proteases at the linker region. Indeed, recent studies have shown that
proteolytic activation of GSDME, GSDMB, and GSDMC by certain caspases and granzymes
can lead to necrotic cell death (Figure 2) [25–30]. The Nomenclature Committee on Cell
Death has proposed to define pyroptosis as depends on the formation of plasma membrane
pores by members of the GSDM family, often (but not always) as a consequence of inflam-
matory caspase activation [1]. It has also been demonstrated that GSDM members can be
cleaved by multiple proteases that activate or inactivate them, depending on the cleavage
site. Of note, most of the proteases that induce pyroptosis can also induce apoptosis in
the absence of the corresponding GSDM protein, which means that GSDMs can convert
apoptosis into pyroptosis.
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by GSDMD-N [33,34]. Importantly, caspase-1 initiates pyroptosis only in cells expressing 
sufficiently high levels of GSDMD to cause pyroptosis, including macrophages, mono-
cytes and dendritic cells (DCs). On the other hand, caspase-1 initiates apoptosis in cell 
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Figure 2. Proteases that activate GSDM members. GSDMB is processed by granzyme A into the active form; GSDMC by
caspase-8; GSDMD by caspase-1, and to a lesser extent, by caspase-8; GSDME by caspase-3 and granzyme B. Of note, these
GSDM-activating proteases can also induce or execute apoptosis or ROS-dependent, apoptosis-like cell death in cells that
do not express sufficient levels of GSDMs for causing pyroptosis, in other words, caspase/granzyme-induced apoptosis
can be switched to pyroptosis by the expression of GSDMs. GSDMD is also proteolytically activated by caspase-11/4/5,
neutrophil elastase, and cathepsin G.

3.1. GSDMD

GSDMD was the first identified pyroptosis executor that acts downstream of inflam-
matory caspases [12,13]. Caspase-1 is activated in inflammasomes, cytosolic multiprotein
oligomers formed in response to microbial and sterile stimuli [31,32]. An inflammasome
complex comprises a pattern recognition receptor (PRR), which defines the inflammaosme,
and the inactive zymogen pro-caspase-1. In inflammasomes, pro-caspase-1 molecules are
brought into close proximity, resulting in the activation of caspase-1, which in turn cleaves
GSDMD to induce pyroptosis. Active caspase-1 also processes the biologically inactive pro-
cytokines, pro-interleukin (IL)-1β and pro-IL-18, into the active mature forms [31,32]. These
cytokines lack a signal sequence for secretion and are released from cells by unconventional
mechanisms, such as the formation of plasma membrane pores by GSDMD-N [33,34]. Im-
portantly, caspase-1 initiates pyroptosis only in cells expressing sufficiently high levels of
GSDMD to cause pyroptosis, including macrophages, monocytes and dendritic cells (DCs).
On the other hand, caspase-1 initiates apoptosis in cell types that do not express sufficient
levels of GSDMD, such as neuronal cells and mast cells [5,35,36]. Bid and caspase-7 are
caspase-1 substrates. tBid, the C-terminal fragment of caspase-1-cleaved Bid, activates the
mitochondrial apoptosis pathway, and Bid is the major mediator of caspase-1-induced
apoptosis [35]. Caspase-7 plays a complementary role in caspase-1-induced apoptosis,
as caspase-7 contributes to cell death when Bid is depleted [37]. In a previous study,



Int. J. Mol. Sci. 2021, 22, 426 5 of 23

UVB-irradiated human primary keratinocytes underwent caspase-1-dependent apoptosis,
most likely because of inefficient activation of GSDMD [38]. Degradation of the major
vault protein by caspase-1 might be involved in the induction of apoptosis. In neutrophils,
GSDMD-N targets azurophilic granules, but not the plasma membrane, and consequently
does not cause pyroptosis after inflammasome activation [39].

Caspase-11/4/5 directly bind with lipopolysaccharide, resulting in their activation
via dimerization-induced autoproteolysis, without the need for inflammasome-forming
PRRs [9,10]. Thus, these caspases serve as sensors of cytosolic LPS. LPS may be released into
the cytoplasm during infection with Gram-negative bacteria, which enables it to gain access
to caspase-11/4/5 [40]. Outer membrane vesicles and high mobility group box-1 protein
(HMGB1) can also deliver LPS into the cytoplasm [41,42]. Active caspase-11/4/5 induces
pyroptosis by cleaving GSDMD at the same site as caspase-1 [12,13]. Caspase-11/4/5
are considered to contribute to the pathology of endotoxemia through the induction of
pyroptosis. Activation of caspase-11 in neutrophils appears to induce GSDMD-dependent
extrusion of neutrophil extracellular traps [43]. Caspase-11 has been suggested to recognize
not only LPS, but also endogenous and protozoan ligands [44,45].

In addition to inflammatory caspases, caspase-8, neutrophil elastase, and cathepsin G
have also been demonstrated to proteolytically activate GSDMD. The caspase-8-GSDMD
pathway operates in pyroptosis induced by Yersinia infection [46,47]. In aged neutrophils,
neutrophil elastase released from granules into the cytoplasm induces cell death by acti-
vating GSDMD, which negatively regulates neutrophil accumulation and inflammation
in the site of bacterial infection [48]. The intracellular serine protease inhibitors (serpin)
B1a and serpin B6a protect neutrophils from cathepsin G-mediated cell death. In Ser-
pinb1a/Serpinb6a-double mutant neutrophils, GSDMD is cleaved by cathepsin G at the
linker region, resulting in increased inflammation, whereas GSDMD is dispensable for the
neutrophil cell death [49]. In contrast, caspase-3 cleaves GSDMD within the N-terminal
domain, which inactivates the cytolytic activity of GSDMD [26,50].

During infections, pyroptosis may eliminate intracellular replication niches for in-
tracellular parasitic pathogens [51]. Pyroptosis may also promote the recruitment and
activation of leukocytes through the release of DAMPs and IL-1 family cytokines. GSDMD
forms pores not only in the membranes of eukaryotic cells, but also in those of bacterial cells,
which enables it to kill bacteria directly [15,52]. During pyroptosis of host macrophages, in-
tracellular bacteria may be released into the extracellular space, where neutrophils can kill
the released bacteria, or may be trapped in the pyroptotic cell corpse, termed pore-induced
intracellular traps (PITs), which prevents the dissemination of pathogens [51,53]. PITs may
also be engulfed (efferocytosed) by macrophages and neutrophils to kill the bacteria trapped
inside. GSDMD has been shown to contribute to host defense against bacterial and viral
pathogens, including Burkholderia thailandensis, Brucella abortus, and rotavirus, as GSDMD-
deficient mice were more susceptible to these pathogens than control mice [52,54,55]. In
Paracoccidioides brasiliensis infection, caspase-11-and GSDMD-dependent pyroptosis occurs
and promotes IL-1α release, which protects the host by inducing the production of nitric ox-
ide and IL-17 [56]. Mice lacking both GSDMD and caspase-7 showed decreased resistance
to Legionella pneumophila compared with control mice, while mice lacking either of them
did not, suggesting that GSDMD-mediated pyroptosis and caspase-1/8-induced apoptosis
are functionally redundant in restricting L. pneumophila infection [57]. GSDMD has also
been implicated in the pathogenesis of autoinflammatory and autoimmune diseases, such
as cryopyrin-associated periodic syndromes, familial Mediterranean fever, experimen-
tal autoimmune encephalomyelitis, and graft-versus-host disease following allogeneic
hematopoietic stem cell transplantation [58–61].

3.2. GSDME

GSDME (also known as DFNA5) was identified as the causative gene for nonsyn-
dromic hearing loss and has been considered as a tumor suppressor [24,62]. GSDME is
proteolytically activated by caspase-3, and the resultant N-terminal fragment, like GSDMD-
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N, induces pyroptosis [26,27]. Caspase-3 is known to play a central role in morphological
changes and execution of apoptosis [1,2]. While apoptosis is not a lytic form of cell death,
cells expressing high levels of GSDME rapidly undergo pyroptosis after caspase-3 acti-
vation. GSDME is expressed in a wide range of tissues and cell types, particularly in the
central nervous system, small and large intestine, and reproductive tissues. On the other
hand, GSDME expression is silenced in most cancer cells, likely attributed to promoter
methylation of the GSDME gene [63–66]. Indeed, GSDME expression in cancer cells was up-
regulated after treatment with the DNA methyltransferase inhibitor 5-Aza-2’-deoxycytidine
(decitabine). Since the silencing of the GSDME gene makes it difficult to induce cancer cell
pyrotosis with apoptosis-inducing drugs, and since reduced expression levels of GSDME
are associated with poor prognosis in cancer patients, the promoter methylation may be a
potential drug target in cancer therapy [30,64]. However, chemotherapy drug-induced toxi-
city in normal tissues also involves GSDME-mediated pyroptosis, indicating that attempts
to increase GSDME expression, for example by DNA methyltransferase inhibition, should
be combined with cancer-targeted drug delivery and/or molecular-targeted anticancer
drugs to avoid the detrimental effects of GSDME [27]. At the terminal stage of apopto-
sis, cells become necrotic, called secondary necrosis [2]. Given that caspase-3 can induce
pyroptosis via GSDME maturation, the question arises whether GSDME is a mediator
of secondary necrosis. GSDME causes rapid cell lysis (pyroptosis) upon treatment with
apoptotic stimuli in cells expressing it at high levels. However, loss of membrane integrity
eventually occurs in late apoptosis, even in the absence of GSDME [67]. If secondary
necrosis is defined as passive lysis of cells in late apoptosis, it can be distinguished from
GSDME-mediated pyroptosis, which is active cell lysis.

Granzyme B is a serine protease found in and released from cytotoxic granules of
cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells that recognize infected and
cancerous cells to eliminate them as target cells [68,69]. CTLs and NK cells interact with the
target cells to elicit specific killing, upon which granzyme B released from cytotoxic granules
diffuses into the cytoplasm of the target cells via plasma membrane pores formed by
perforin. Granzyme B in the cytoplasm induces apoptosis, as it proteolytically activates Bid
and caspase-3, degrades the anti-apoptotic protein Mcl-1, and can cleave other key caspase
substrates [68,69]. Granzyme B can also enter into the mitochondria to induce reactive
oxygen species (ROS)-dependent cell death through the disruption of the mitochondrial
respiratory chain complex I [70]. A recent report has demonstrated that granzyme B
cleaves GSDME at the linker region, leading to pyroptosis [30]. In Hela cells overexpressing
GSDME, pyroptosis occurred after incubation with the human NK cell line YT cells. The
induction of pyroptosis was in part independent of caspase-3, as it was only partially
reduced in the absence of caspase-3. The ability to evade apoptosis is a hallmark of
cancers and mediated by downregulation or defective function of pro-apoptotic molecules
and upregulation of anti-apoptotic molecules. However, the direct activation of GSDME
by granzyme B implies that CTLs and NK cells are capable of inducing pyroptosis in
GSDME-expressing cancer cells even when apoptosis signaling pathways are impaired in
the targets.

GSDME is conserved in fishes. A teleost fish orthologue of GSDME is activated ef-
ficiently by caspase-1 and, to a lesser extent, by caspase-3/7, to mediate pyroptosis [71].
Besides, zebrafish has two GSDME orthologues, GSDMEa, and GSDMEb, which are pre-
dicted to be cleaved by caspase-3 and caspase-1, respectively [72]. Hence, lower vertebrate
GSDME may serve a function analogous to that of mammalian GSDMD.

3.3. GSDMB

Human GSDMB has at least four isoforms (isoform 1-4) with different linker region
sequences. All of the hGSDMB isoforms have recently been described to be cleaved and
activated by granzyme A, which, as well as granzyme B, is abundant in cytotoxic gran-
ules [28,68]. Cytotoxic lymphocytes could induce pyroptosis in their target cells expressing
sufficient levels of GSDMB. Granzyme A also processes the electron transport chain compo-
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nents and the SET complex components, resulting in ROS generation and single stranded
DNA nicks, thereby inducing caspase-independent cell death with apoptotic morphol-
ogy [70,73]. Thus, GSDMB joined the death substrates for granzyme A, while it mediates
pyroptosis. GSDMB is expressed in normal tissues, including the gastrointestinal mucosa,
esophageal epithelium, tongue, trachea, and bladder [28]. GSDMB is often expressed in
cancer cells derived from these tissues, whereas it may be silenced in esophageal and
gastric cancer cells. Besides, significant correlations were found between expression levels
of GSDMB and overall survival of patients with bladder carcinoma or skin cutaneous
melanoma [28]. Strikingly, GSDMB expression is increased in cancer cells stimulated with
cytokines, including interferon (IFN)-γ and tumor necrosis factor (TNF)-α, which makes
us speculate that cytokine production and cytotoxic mechanisms cooperate in inducing
GSDMB-mediated pyroptosis in cancer cells [28]. However, GSDMB is overexpressed in
several kinds of cancers and has also been proposed to exert pro-tumor activities, though
how this protein promotes tumor progression remains unclear [74–76].

Single nucleotide polymorphisms (SNPs) in the GSDMB gene were associated with
increased risks of asthma, Crohn’s disease, inflammatory bowel disease, and ulcerative
colitis [77,78]. GSDMB was highly expressed in bronchial epithelial cells from asthmatic
patients, and human GSDMB-expressing transgenic mice showed spontaneous increases in
airway hyperresponsiveness, peribronchial smooth muscle, and collagen deposition. A
previous report has proposed that caspase-1 proteolytically activates the longest isoform
(isoform 3) of human GSDMB, but not GSDMB isoform 1 that lacks 13 amino acids in
the interdomain linker encoded by exon 6 [79]. The SNPrs11078928, which prevents the
splicing of exon 6, and thus abolishes the expression of GSDMB isoform 3, was associated
with decreased asthma risk, implying that caspase-1-induced, GSDMB-mediated pyrop-
tosis perhaps plays a role in asthma pathogenesis. However, in other studies, GSDMB
was not activated by caspase-1 [78,80]. Rather, caspase-3, 6, and 7 cleaved GSDMB within
the N-terminal domain, resulting in inactivation of the pore-forming activity. Our un-
published data also do not support the idea that caspase-1 directly activates GSDMB. In
our experiments, GSDMD-deficient THP1 cells, which did not undergo pyroptosis after
LPS priming followed by stimulation with the inflammasome activator nigericin, were
transduced with full-length human GSDMD, GSDMB isoform 1, or GSDMB isoform 3.
Pyroptosis was induced by LPS plus nigericin in the GSDMD-deficient cells complemented
with GSDMD, but not in those with the GSDMB isoforms (data not shown). Moreover, both
GSDMB isoforms were cleaved within the N-terminal domain following inflammasome
activation, most likely due to caspase-1/8-induced activation of executioner caspases (data
not shown). Hence, these results are consistent with those in the latter studies.

Unlike other GSDMs, GSDMB can bind to phospholipids even at the intact form (full-
length protein), whereas it requires proteolytic maturation for inducing pyroptosis [78].
In addition, GSDMB binds to sulfatide, but not cardiolipin. Another unique property
of GSDMB is the ability to enhance the cleavage of GSDMD by caspase-4 [80]. GSDMB
directly interacted with the CARD domain of caspase-4 through its N-terminus, which
might augment the enzymatic activity of caspase-4.

3.4. GSDMC

GSDMC was first identified as a marker for melanoma progression [81]. GSDMC
is expressed in the proximal digestive tract, skin, spleen, tonsil, and female tissues. In a
murine colon cancer model, expression of Gsdmc2/Gsdmc4 was increased by blockade of
transforming growth factor (TGF)-β signalling [82]. Upregulation of GSDMC was found
in human colorectal cancer tissues, and its oncogenic potential was experimentally con-
firmed [82]. In human keratinocytes, UV irradiation increased the expression of GSDMC,
which in turn contributed to the expression of matrix metalloproteinase-1 [83].

A recent study has demonstrated that GSDMC is a substrate of and activated by
caspase-8, an initiator caspase in the extrinsic apoptosis pathway, and caspase-6 [81]. In
that study, the expression of GSDMC, but not other GSDMs, was increased in cancer cells
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by nuclear translocation of programmed death ligand 1 (PD-L1), which was induced by
hypoxia or chemotherapeutic drugs. Treatment with TNF-α (plus cyclophosphamide)
induces apoptosis via caspase-8 activation [2]. TNF-induced apoptosis was observed in
cell lines of multiple cancer types under normoxia, whereas the same treatment induced
necrotic cell death under hypoxia. The necrotic cell death was found to depend on caspase-
8 and GSDMC, suggesting that increased GSDMC expression under hypoxic conditions can
switch caspase-8-induced apoptosis to pyroptosis. Necrotic areas are commonly found in
central hypoxic regions of solid tumors. The activation of the caspase-8-GSDMC pathway
by TNF-α derived from macrophages may account at least in part for tumor necrosis in
hypoxic regions, as blocking this signaling pathway drastically reduced areas of necrosis
in cancer xenografts in vivo. Moreover, although various types of chemotherapy drugs
could increase the expression of GSDMC, only antibiotic chemotherapy drugs, including
doxorubicin, daunorubicin, epirubicin, and actinomycin D, induced GSDMC expression
and caspase-8 activation simultaneously, causing GSDMC cleavage followed by pyroptotic
cell death. Hence, it may be speculated whether an anticancer drug induces GSDMC-
mediated pyroptosis or apoptosis is determined by whether it can activate caspase-8.

3.5. GSDMA

The protease that activates GSDMA has not been discovered to date. Mouse GSDMA1
was the first cloned member of the GSDM family and was named for its expression
pattern [84]. GSDMA1 is expressed exclusively in the upper gastrointestinal tract, especially
the stomach and skin. Human GSDMA is expressed in the epithelium of the stomach,
esophagus, mammary gland, and skin, but is frequently silenced in gastric cancer cells [85].
GSDMA seemed to participate in TGF-β induction of gastric epithelial cell apoptosis.
Mouse GSDMA3 is expressed in the hair follicle of skin. Although GSDMA3 appeared
to be dispensable for the development of skin, gain-of-function mutations in this protein
have been shown to cause hair loss and keratosis [86–88]. The gain-of-function mutations
were found to impair the interaction between the N-terminal and C-terminal domains
of GSDMA3, which disrupts the autoinhibition, leading to constitutive activation and
pyroptosis induction without cleavage at the interdomain linker [88]. It was also shown
that active GSDMA3 can promote autophagy and mitochondrial ROS production.

4. Pyroptosis-Elicited Inflammation

Pyroptosis has been considered inflammatory, as cells undergoing pyroptosis release
pro-inflammatory molecules and organelles, such as nucleotides, IL-1 family cytokines,
HMGB1, nucleic acids, mitochondria [5]. The formation of GSDM pores in the plasma
membrane causes the dissipation of ion gradients and release of small cytosolic molecules
that can pass through the pores. Thereafter, GSDM pores cause cell lysis due to water influx,
allowing the release of large cytosolic contents. It is thus likely that DAMPs of different
sizes may be released from pyroptotic cells at different times or stages (Figure 3). In the
following subsections, individual DAMPs released from pyroptotic cells are described.



Int. J. Mol. Sci. 2021, 22, 426 9 of 23
Int. J. Mol. Sci. 2021, 22, x 9 of 24 
 

 

 
Figure 3. Damage-associated molecular patterns (DAMPs) and cytokines released from cells undergoing pyroptosis. The 
formation of GSDM pores in the plasma membrane causes the dissipation of ion gradients and release of small cytosolic 
molecules that can pass through the pores. Thereafter, GSDM pores cause cell lysis due to water influx, allowing the 
release of large cytosolic contents. ATP and mature IL-1α/β can be released through GSDM pores. The release of HMGB1 
appears to require cell lysis. Immunostimulatory forms of (reduced and disulfide) HMGB1 may be released from pyrop-
totic cells. Severe cell membrane rupture can lead to the release of mitochondrial DNA (mtDNA), mitochondria, nuclei, 
and caspase recruitment domain (ASC) specks. Ca2+ influx via GSDM pores results in the activation of calpains, which 
process pro-IL-1α into the mature form. Ca2+-dependent phospholipase A2 (PLA2) also produces free arachidonic acid, 
which is the precursor for other eicosanoids. On the other hand, K+ efflux via GSDMD pores activates the NLRP3 inflam-
masome. 

4.1. ATP 
ATP is small enough to pass through GSDMD pores. ATP release occurred prior to 

cell lysis upon pyroptosis, suggesting that ATP is a DAMP that can be released through 
pores formed by GSDMs [35,89]. Apoptosis has also been described to cause ATP secre-
tion via the hemichannel pannexin-1 [90]. However, pyroptotic cells seemed to release 
ATP more efficiently than apoptotic cells, and AMP rather than ATP was released after 
apoptosis [89,91]. The release of ATP following the activation of caspase-1 largely de-
pended on GSDMD [35]. Although GSDMD-deficient cells underwent apoptosis after 
caspase-1 activation, ATP release was significantly reduced and delayed in the cells as 
compared to GSDMD-sufficient cells that underwent pyroptosis after caspase-1 activa-
tion. In cells with GSDM pores, rapid efflux of nucleotides may lead to depletion of cellu-
lar ATP/dATP and consequently suppress the mitochondrial pathway of apoptosis, which 
requires these nucleotides. Extracellular ATP is sensed by P2X and P2Y purinergic recep-
tors and exerts immunostimulatory effects [92]. ATP acts as a find-me-signal that recruits 
monocytes, macrophages, and DCs [89,90]. ATP also activates the NLRP3 (nucleotide-
binding oligomerization domain-like receptor family, pyrin domain-containing 3) inflam-
masome and induces IL-1β production in a P2X7-dependent manner [32,93]. This signal-
ing pathway has been proposed to play an important role in T cell priming by DCs pulsed 
with dying tumor cells [94]. 

4.2. IL-1β 
Pro-IL-1β is processed into the mature form by caspase-1, although other proteases, 

including caspase-8, neutrophil elastase, and proteinase- 3, have also been suggested to 
proteolytically activate this cytokine [31,33]. Mature IL-1β has a wide spectrum of biolog-
ical activities. For example, it causes fever, activates leukocytes, mediates transmigration 
of leukocytes, and promotes cell survival and proliferation. IL-1β lacks a signal sequence 

Ca2+

Mature IL-1α/β Reduced/Disulfide HMGB1
ASC specks

mtDNA
Mitochondria

ATP

(LDH)

Pro-IL-1α

Activation of;
Calpains
Ca2+-dependent PLA2
NLRP3 inflammasome

K+

Pore formation Water influx  Extrinsic forces

Cell swelling Cell membrane 
rupture

Membrane repair

Eicosanoids

Figure 3. Damage-associated molecular patterns (DAMPs) and cytokines released from cells undergoing pyroptosis. The
formation of GSDM pores in the plasma membrane causes the dissipation of ion gradients and release of small cytosolic
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into the mature form. Ca2+-dependent phospholipase A2 (PLA2) also produces free arachidonic acid, which is the precursor
for other eicosanoids. On the other hand, K+ efflux via GSDMD pores activates the NLRP3 inflammasome.

4.1. ATP

ATP is small enough to pass through GSDMD pores. ATP release occurred prior to
cell lysis upon pyroptosis, suggesting that ATP is a DAMP that can be released through
pores formed by GSDMs [35,89]. Apoptosis has also been described to cause ATP secre-
tion via the hemichannel pannexin-1 [90]. However, pyroptotic cells seemed to release
ATP more efficiently than apoptotic cells, and AMP rather than ATP was released after
apoptosis [89,91]. The release of ATP following the activation of caspase-1 largely de-
pended on GSDMD [35]. Although GSDMD-deficient cells underwent apoptosis after
caspase-1 activation, ATP release was significantly reduced and delayed in the cells as
compared to GSDMD-sufficient cells that underwent pyroptosis after caspase-1 activation.
In cells with GSDM pores, rapid efflux of nucleotides may lead to depletion of cellular
ATP/dATP and consequently suppress the mitochondrial pathway of apoptosis, which
requires these nucleotides. Extracellular ATP is sensed by P2X and P2Y purinergic receptors
and exerts immunostimulatory effects [92]. ATP acts as a find-me-signal that recruits mono-
cytes, macrophages, and DCs [89,90]. ATP also activates the NLRP3 (nucleotide-binding
oligomerization domain-like receptor family, pyrin domain-containing 3) inflammasome
and induces IL-1β production in a P2X7-dependent manner [32,93]. This signaling pathway
has been proposed to play an important role in T cell priming by DCs pulsed with dying
tumor cells [94].

4.2. IL-1β

Pro-IL-1β is processed into the mature form by caspase-1, although other proteases,
including caspase-8, neutrophil elastase, and proteinase- 3, have also been suggested to
proteolytically activate this cytokine [31,33]. Mature IL-1β has a wide spectrum of biological
activities. For example, it causes fever, activates leukocytes, mediates transmigration of
leukocytes, and promotes cell survival and proliferation. IL-1β lacks a signal sequence for
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secretion and is released from cells by unconventional mechanisms. During inflammasome-
induced pyroptosis, IL-1β is released via GSDMD-formed pores without requiring cell
membrane rupture, as inhibition of cell lysis did not affect the release of this cytokine [34].
The size of mature IL-1β fits through a GSDMD pore, possibly enabling the efficient efflux
during pyroptosis. On the other hand, pro-IL-1β seemed to form a molecular complex,
which might retain the unprocessed form of IL-1β inside pyroptotic cells [95].

Moreover, in several cases, mature IL-1β was released from living cells via GSDMD
pores, termed hyperactivation [44,96,97]. For example, peptidoglycan-induced atypical
NLRP3 inflammasome activation was followed by IL-1β release through GSDMD-formed
pores, but not by cell death [97,98]. Oxidized phospholipids, such as oxidized 1-palmitoyl-
2-arachidonoyl-sn-glycero-3-phosphorylcholine, have also been suggested to serve as
hyperactivating ligands for caspase-11 [44]. Hyperactivation led to continuous release of
IL-1β that lasted for several days, which may potentiate adaptive immune responses [96].
In line with this notion, a recent study demonstrated that DCs in the hyperactivation
state induced strong protective immunity against tumors [99]. The abundance of GSDMD
pores formed in hyperactivated cells may be too low to cause pyroptosis. The cellular
mechanisms controlling pyroptosis, such as ESCRT-III-mediated membrane repair, may
also contribute to the hyperactivation state. IL-1β release without cell death was also
observed in macrophages stimulated with mycoplasmal lipoproteins/lipopeptides [100].
Interestingly, in that case, IL-1β release from living macrophages was independent of
GSDMD, but rather through changes in membrane permeability.

In addition to macrophages, neutrophils are also a major source of IL-1β. It has re-
cently been suggested that neutrophils secrete mature IL-1β through a non-lytic, autophagy-
dependent mechanism [39]. Inflammasome-induced IL-1β release from neutrophils was
significantly diminished when the autophagy conjugation enzyme ATG7 was depleted,
whereas the cytokine release was increased by amino acid starvation, a well-described
trigger of autophagy. GSDMD was also required for IL-1β release from neutrophils follow-
ing canonical NLRP3 inflammasome activation. However, even though GSDMD-N was
generated, the activated neutrophils did not undergo pyroptosis. GSDMD-N was localized
to azurophilic granules and autophagosomes rather than the plasma membrane, which
may be the reason why neutrophils are resistant to pyroptosis. It remains unclear how
GSDMD promotes autophagy-dependent IL-1β secretion by neutrophils.

4.3. HMGB1

HMGB1 is a 25 kDa nuclear protein composed of two DNA-binding domains, boxes
A and B, and a negatively charged C-terminal tail [101,102]. HMGB1 is released from
cells in response to inflammatory stimuli and upon cell death. After inflammasome ac-
tivation in vitro, HMGB1 was released in a GSDMD-dependent manner, and cell lysis
was required for the release of HMGB1 from pyroptotic cells, indicating that GSDMD
pores are not sufficient for it [103]. Extracellular HMGB1 has been described to bind to
more than 10 different receptors, including Toll-like receptors (TLRs) and the receptor
for advanced glycation end products (RAGE), to exert chemoattractant and cytokine-like
activities [101,102]. Post-translational modifications of HMGB1 determine its subcellular
localization and pro-inflammatory activities. Nuclear translocation of HMGB1 is pre-
vented by hyperacetylation of lysine residues in nuclear localization sequences, resulting
in cytoplasmic accumulation of hyperacetylated HMGB1. HMGB1 has three cysteine
residues at positions 23, 45, and 106, and their redox state is critical for their immune
activities [104–106]. Fully reduced HMGB1, in which all the cysteine residues are in the
thiol form, forms a hetero-complex with C-X-C motif chemokine ligand 12 (CXCL12),
which has stronger chemotactic activity than CXCL12 alone. On the other hand, HMGB1
with C106 in the thiol form and a disulfide bond between C23 and C45 (disulfide HMGB1)
exerts cytokine-stimulating activity in a TLR4-dependent manner. Furthermore, terminal
oxidation of any of the cysteines to sulfonates abrogates the ability of HMGB1 to induce
cytokine production or chemotaxis [101,102]. It was shown that induction of pyroptosis
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alone caused the release of fully reduced HMGB1, whereas pyroptosis in combination with
TLR2/4 stimulation led to that of both disulfide HMGB1 and fully reduced HMGB1 [107].
During apoptosis, HMGB1 is retained inside cells and exposed to high levels of ROS, lead-
ing to terminal oxidation of the critical cysteines to sulfonates. A study showed that fully
oxidized HMGB1 plays a central role in apoptotic cell-induced immune tolerance [108].
Therefore, it appears that pyroptotic cells can release immunostimulatory forms of HMGB1
more efficiently than apoptotic cells.

Extracellular HMGB1 not only serves as a DAMP with immunomodulatory activ-
ities but also delivers LPS and immune-activating nucleic acids (RNA and DNA) into
the cytoplasm [41,109]. HMGB1 binds with LPS and nucleic acids, and the complexes
are endocytosed through binding to RAGE. After endocytosis, HMGB1 permeabilizes
lysosomal membranes, which enables HMGB1-binding molecules to enter the cytoplasm.
Then, LPS and nucleic acids gain access to their intracellular sensors and induce pyroptosis
and cytokine production, respectively. All isoforms of HMGB1 tested (disulfide, sulfonyl,
and fully reduced forms) were taken up by macrophages [110]. In a previous study, cy-
toplasmic delivery of extracellular LPS by hepatocyte-derived HMGB1 contributed to
pyroptosis-dependent lethality in models of endotoxemia and bacterial sepsis [42].

4.4. Pore-Induced Breakdown of Ion Gradients

GSDMD pores in the plasma membrane allow non-selective flux of ions, such as
K+ and Ca2+. Although caspase-11/4/5 do not process pro-IL-1β and pro-IL-18 directly,
activation of these caspases can result in caspase-1 activation and subsequent maturation of
these cytokines in a GSDMD-dependent manner [8,19]. K+ efflux via GSDMD pores occurs
downstream of caspase-11/4/5, leading to the activation of the NLRP3 inflammsome, in
which caspase-1 is activated [111]. The inflammasome formed by this mode is called the
non-canonical inflammasome.

GSDMD pores cause extracellular Ca2+ influx, which in turn activates calpains. Cal-
pains have been shown to degrade vimentin intermediate filaments in pyroptotic cells [18].
As a consequence of the disruption of the cytoskeleton, pyroptotic cells became suscepti-
ble to rupture by shear stress and compressive force. Severely ruptured pyroptotic cells
could release pro-inflammatory/immunogenic macromolecules and organelles, such as
mitochondrial DNA, mitochondria and nuclei. Apoptosis-associated, speck-like protein
containing a caspase recruitment domain (ASC) is an inflammasome adaptor that forms
highly cross-linked macromolecular protein complexes, called ASC specks, after inflam-
masome activation [31]. ASC specks can be released from pyroptotic cells [112]. Then,
extracellular ASC specks can be taken up by phagocytes, in which the specks can recruit and
activate caspase-1 to sustain and spread inflammasome-induced inflammation. The release
of ASC specks was observed in severely ruptured pyroptotic cells, suggesting a role for
calpains in the propagation of inflammasome responses [18]. IL-1α is a pro-inflammatory
cytokine that shares the same receptor with IL-1β [33]. Although pro-IL-1α has cytokine
activity, proteolytic maturation increases its potency and release from cells [113,114]. It has
been known that IL-1α maturation occurs during inflammasome activation [115]. A recent
study showed that IL-1α maturation induced by non-particulate inflammasome activators
was mediated by Ca2+ influx via GSDMD pores and the resultant calpain activation [116].
Therefore, caspase-1 activation leads to the maturation of both IL-1α and IL-1β through
different mechanisms, GSDMD pore formation and direct processing, respectively. IL-1α
maturation by calpains may also be operative during pyroptosis caused by other GSDMs.

Pyroptosis-induced Ca2+ influx has also been demonstrated to mediate the generation
of the lipid mediator eicosanoids [117]. Pyroptosis activates Ca2+-dependent phospho-
lipase A2, which produces free arachidonic acid, thereby promoting the biosynthesis of
eicosanoids, including prostaglandins (PG) and leukotrienes. Systemic inflammasome
activation led to eicosanoid-dependent lethal inflammation. Eicosanoids are also involved
in neutrophil recruitment to the PITs [118]. On the other hand, a study has suggested that
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PGE2 also serves as an inhibitory DAMP, as this lipid mediator in necrosis cell supernatants
inhibited inflammatory responses to the supernatants [119].

Pyroptosis has been thought to contribute to the pathology of endotoxemia through
the release of DAMPs (Figure 4) [8,19]. Recent studies have suggested that pyroptosis is
also involved in the development of disseminated intravascular coagulation (DIC), which
is associated with microvascular thrombosis, organ damage, and death [120,121]. GSDMD-
dependent pyroptosis led to the release of microvesicles containing tissue factor (TF), a
major initiator of the extrinsic coagulation (Figure 4). GSDMD and TF activity were required
for systemic blood clotting, thrombosis in tissues, and lethality induced by systemic
canonical or non-canonical inflammasome activation [120]. Interestingly, TF was activated
owing to Ca2+ influx via GSDMD pores in pyroptotic cells. GSDMD-mediated Ca2+ influx
was followed by the activation of transmembrane protein 16F (TMEM16F), a calcium-
dependent phospholipid scramblase, resulting in the externalization of phosphatidylserine,
which increases TF activity [121].
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Figure 4. Pyroptosis contributes to the pathology of endotoxemia. Infection with Gram-negative bacteria may result
in the release of lipopolysaccharide (LPS) into the cytoplasm of host cells. Outer membrane vesicles and HMGB1 can
also deliver LPS into the cytoplasm. Cytoplasmic LPS then activates caspase-11/4/5, leading to proteolytic activation of
GSDMD and consequent pyroptosis. DAMPs released from pyroptotic cells are thought to contribute to the pathology of
endotoxemia. In addition, Ca2+ influx via GSDMD pores triggers the activation of tissue factor (TF) through TMEM16F-
mediated phosphatidylserine (PS) exposure. Tissue factor-containing microvesicles (MVs) induce coagulation and play
a critical role in the development of disseminated intravascular coagulation (DIC), which is associated with increased
mortality in septic patients.

5. Pyroptosis and Antitumor Immunity
5.1. Immunogenic Cell Death, Apoptosis, and Pyroptosis

Immunogenic cell death (ICD) is defined as a form of regulated cell death that is
sufficient to activate an adaptive immune response in immunocompetent hosts [1]. Certain
chemotherapeutic drugs, radiotherapy, photodynamic therapy, and oncolytic viruses have
been described to induce traditional ICD [122,123]. Cancer cells killed by ICD-inducing
agents may elicit antigen-specific protective immunity against the cancer cells without any
adjuvant. ICD of cancer cells in tumors may suppress tumor growth by eliciting anticancer
immunity. Antigenicity and adjuvanticity are two key factors of ICD. Tumor-associated
antigens that confer antigenicity may include antigens recognized by self-reactive low-
affinity TCRs or may be derived from proteins with cancer cell-specific post-translational
modifications, viral proteins, and peptides yielded by unconventional translation. Proteins
with point mutations and frameshift mutations may also provide neoantigens that con-
fer antigenicity to cancer cells. Upon ICD, dying cells release or expose DAMPs, which
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confer adjuvanticity, to promote DC maturation, antigen processing, and antigen presenta-
tion [122,123]. Well-studied ICD-associated DAMPs are calreticulin, ATP, HMGB1, nucleic
acids, annexin-1, and type I IFNs produced by dying cells. Calreticulin, an endoplasmic
reticulum (ER) resident protein, is translocated from the ER lumen to the outer surface
of the plasma membrane during ICD [124]. Cell surface-exposed calreticulin functions as
an eat-me-signal to promote phagocytosis by macrophages and DCs, resulting in cross-
presentation of dead cell-associated antigens to CTLs. Calreticulin also signals through
CD91 on immune cells, leading to the production of pro-inflammatory cytokines and Th17
cell priming [125]. Annexin-1 has been suggested to enhance the interaction between dying
cancer cells and tumor-infiltrating DCs expressing formyl peptide receptor 1 (FPR1) [126].
In line with the role of these DAMPs in ICD, chemotherapy-elicited development of anti-
cancer immunity has been demonstrated to require calreticulin, FPR1, P2X7, a receptor for
ATP, and TLR4, a receptor for disulfide HMGB1 [94,124,126,127].

Unlike ICD, apoptosis is generally considered to be a less inflammatory and less
immunogenic cell death process [2]. The low immunogenicity of apoptotic cells may be
attributed to inefficient release of DAMPs and activation of apoptosis-related caspases, espe-
cially the executioner caspase-3 and caspase-7. During apoptosis, cleavage of flippase and
scramblase by caspase-3/7 causes externalization of phosphatidylserine, which functions
as an eat-me-signal to mediate clearance of apoptotic cells by phagocytes without inducing
inflammation [2]. Caspase-3 also degrades cGAS and its downstream signaling molecules
in apoptotic cells, thereby inhibiting type I IFN production induced by mitochondrial DNA
released due to mitochondrial outer membrane permeabilization [128]. Besides, caspase-3
proteolytically activates cytosolic calcium-independent phospholipase A2, which leads to
the production of PGE2, an immunosuppressive lipid product of arachidonic acid. Oxidiza-
tion of HMGB1 may contribute to immune tolerance induced by apoptotic cells [108]. It
was also demonstrated that apoptotic cells release AMP rather than ATP [91]. In that study,
extracellular AMP was metabolized to adenosine, which then stimulated macrophages via
the A2a adenosine receptor to induce the expression of anti-inflammatory genes.

Initially, ICD was thought to be an immunogenic type of apoptosis, since some of
the ICD inducers are also known as inducers of apoptosis [122,123]. So far, regulated cell
death is classified into apoptosis and non-apoptotic cell death, including regulated necro-
sis [1]. Given the pro-inflammatory properties of regulated necrosis, it is worth considering
whether non-apoptotic cell death pathways described recently are involved in traditional
ICD induction. Of note, in a recent study, GSDMC-dependent pyroptosis occurred in
cancer cells after treatment with anthracyclines, such as doxorubicin and epirubicin that
are well-known ICD inducers, but not with most other chemotherapy drugs tested [29].
These anthracyclines induced the expression of GSDMC and activation of caspase-8 simul-
taneously, resulting in proteolytic activation of GSDMC by caspase-8, whereas most other
drugs only induced GSDMC expression. Hence, it is conceivable that cell death by some
traditional ICD inducer may overlap with regulated necrosis. Pyroptosis, like ICD, rapidly
leads to the release of ATP and immunostimulatory forms of HMGB1, but whether it causes
calreticulin externalization is unclear [35,89,107]. Pyroptotic cells were efficiently taken up
by professional and non-professional phagocytes [89,129]. Although phosphatidylserine
was externalized upon pyroptosis, its involvement in phagocytosis of pyroptotic cells is
debatable, as only one of the two phosphatidylserine-blocking proteins suppressed the
phagocytosis [53,89,129]. Further research is needed to clarify the relationship between
traditional ICD and pyroptosis.

5.2. Effects of Pyroptosis on the Tumor Microenvironment

Several recent studies have reported how pyroptosis impacts on the tumor microenvi-
ronment and anticancer immunity (Figure 5). As mentioned above, GSDMB is activated
by granzyme A, while GSDME is activated by granzyme B and caspase-3. Expression
of human GSDMB or GSDME sensitized cancer cells to cytotoxic lymphocyte-induced
pyroptosis in a granzyme-dependent manner [28,30]. Since cell lysis will ensure death of
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target cells, pyroptosis probably enhances killing of cancer cells by cytotoxic lymphocytes.
Moreover, overexpression of GSDME in melanoma and breast cancer cells significantly
inhibited the growth of tumor xenografts in immunocompetent mice, while depletion
of GSDME had the opposite effect [30]. The tumor-suppressive effect of GSDME relied
on host CD8+ T cells, NK cells, and perforin, further supporting the importance of py-
roptosis in lymphocyte cytotoxicity against tumor cells. Of note, it was demonstrated
that tumor cell pyroptosis activates the tumor microenvironment toward an immunos-
timulatory state. Indeed, overexpression of GSDME in cancer cells significantly increased
the number of intra-tumoral NK cells and antigen-specific CD8+ T, the expression of
granzyme B, perforin, IFN-γ, and TNF-α in tumor-infiltrating lymphocytes (TILs), and
phagocytosis of tumor cells by tumor-associated macrophages. Consistent results were
found with melanoma xenografts treated with a molecular-targeted therapy [130]. Also,
vaccination with GSDME-overexpressing cancer cells could confer resistance to subsequent
challenge with the parental cancer cells [30]. Furthermore, Wang et al. showed with a
novel technique (see the next paragraph) that pyroptosis induction in part of tumor cells
led to T cell-dependent tumor regression accompanied with increased T cell, NK cell, M1
macrophage populations and decreased regulatory T cell, M2 macrophage, neutrophil, and
myeloid-derived suppressor cell populations [131]. It is thus suggested that pyroptosis
and cytotoxic lymphocytes can facilitate each other, forming a positive feedback loop in
anticancer immunity. Given that GSDMB expression is upregulated by IFNs and TNF-α,
cytokine production by TILs may also contribute to the positive feedback loop [28]. It is also
noteworthy that IL-1β may play a critical role in pyroptosis-induced microenvironment
activation, but it may depend on the case [30,131]. Cancer cells often express immune
checkpoint molecules, which restrain T cell functions in tumors [132]. One example is
PD-L1 that interacts with PD-1 on T cells to inhibit target recognition. Although neither
blocking the PD-1-PD-L1 pathway nor transient pyroptosis induction inhibited 4T-1 tumor
growth alone, the combination of them strongly suppressed the tumor growth [131]. Also,
expression of human GSDMB in mouse colon carcinoma and melanoma cells did not affect
the growth of tumors in immunocompetent mice. However, it markedly augmented the
suppression of tumor growth achieved by immune checkpoint blockade with an anti-PD-1
antibody [28]. Accordingly, pyroptosis can function as a form of ICD that can synergize
with immune checkpoint inhibition to elicit protective immune responses.

Whether chemotherapy drugs and cytotoxic lymphocytes induce pyroptosis or apop-
tosis in target cancer cells appears to depend on the expression of GSDMs in the target
cells (Figure 2). The expression of GSDME, which acts as a tumor suppressor, is frequently
silenced in cancer cells, most likely due to promoter methylation [63–66]. Thus, treatment
with DNA methyltransferase inhibitors, such as decitabine, may restore GSDME expression,
thereby sensitizing cancer cells to pyroptosis (Figure 6a). In line with this notion, cancer
lines showed elevated GSDME expression upon decitabine treatment, and the cells under-
went pyroptosis after treatment with the combination of decitabine and chemotherapeutics,
including irinotecan, cisplatin, and tumor-targeting nanoliposome loaded with cisplatin
(LipoDDP [65,133]. The combination therapy of decitabine and LipoDDP also inhibited
the growth of 4T-1 xenografts and led to immune activation in the tumor microenviron-
ment. Similar results were shown with decitabine, indocyanine green, and tumor-homing
biomimetic nanoparticles loaded with them [134]. Considering that GSDME mediates
chemotherapy drug-induced toxicity in normal tissues, these drug delivery systems may
help to avoid the detrimental effects of GSDME. Another strategy to induce pyroptosis in
tumor cells is to deliver active GSDM proteins into the cells. For that purpose, Wang et al.
established a bioorthogonal chemical system, in which active GSDMA3 protein is conju-
gated to gold nanoparticles via a silyl ether linker that can be cleaved by desilylation that is
catalyzed by phenylalanine trifluoroborate (Phe-BF3), a cancer-imaging probe (Figure 6b).
Both the nanoparticles and Phe-BF3 selectively accumulate in tumors, enabling controlled
release of active GSDMA3 in tumor cells [131]. In addition, viral vectors may also be
employed to induce pyroptosis selectively in tumor cells. Schwannomas are peripheral
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nerve sheath tumors associated with severe disability. To induce pyroptosis in schwanno-
mas, adeno-associated serotype 1 virus (AAV1)-based vector was engineered to express
GSDMD-N under the control of the schwann-cell-specific promoter, P0 (Figure 6c) [135].
Intratumoral injection of the AAV1 vector expressing GSDMD-N suppressed the growth
of schwannoma tumors and resolved tumor-associated pain without causing neurologic
damage. Furthermore, caspase-1-dependent pyroptosis occurred in INR1G9 tumor cells
upon magnetic intra-lysosomal hyperthermia generated by the combination of targeted
magnetic nanoparticles and an alternating magnetic field through leakage of lysosomal
cathepsins into the cytosol, providing a strategy to induce caspase-1 activation selectively
in tumor cells [136].
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Figure 5. Effects of pyroptosis on the tumor microenvironment. (a) With the aid of perforin (PFN), Granzyme A/B
(GzmA/B) are delivered from cytotoxic lymphocytes into the cytoplasm of target cancer cells. These Gzms activate
GSDMB/E directly or by inducing caspase-3 (Casp3) activation, leading to tumor cell pyroptosis. Pyroptotic tumor cells also
appear to activate the tumor microenvironment toward an immunostimulatory state probably through release of DAMPs
and cytokines, forming a positive feedback loop in antitumor immunity. These effects of pyroptosis may synergize with
immune checkpoint (IC) inhibitors. GSDMB expression is upregulated by IFN-γ. Massive tumor cell pyroptosis induced by
CAR T therapy may cause CRS, which depends on a significant release of ATP and consequent activation of the NLRP3
inflammasome in host macrophages. (b) The expression of GSDMC is increased by hypoxia. Macrophage-derived TNF-α
induces pyroptosis in tumor cells through the caspase-8-GSDMC pathway. This may account for the formation of necrotic
areas found in central hypoxic regions of solid tumors. The sustained induction of pyroptosis in a small population of
tumor cells may also induce chronic inflammation that promote tumor progression.

Pyroptosis in tumors may not always be beneficial. For example, a recent study sug-
gested that GSDME-mediated cancer cell pyroptosis can cause cytokine release syndrome
(CRS), a complication associated with chimeric antigen receptor (CAR) T cell therapy [137].
In a mouse CAR T therapy model, massive B leukemic cell pyroptosis induced by CD19-
recognizing CAR T cells resulted in a significant release of ATP, which in turn activated the
NLRP3 inflammasome in host macrophages, thereby triggering CRS. CAR T-induced CRS
was ameliorated by inhibition of the ATP-P2X7 pathway and caspase-1 activity. Although
expression levels of GSDME and GSDMB were positively correlated with clinical benefit in
several kinds of cancers, increased GSDMB expression was associated with poor clinical
outcome in breast cancer [28,30,64,74,75]. Also, upregulation of GSDMC was observed
in breast cancer, which was correlated with poor survival [29]. That is, GSDMs may also
have pro-tumor effects. One possible explanation for this is that unlike acute pyroptosis
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induction, chronic induction of pyroptosis in tumors may lead to chronic inflammation,
which creates a tumor-promoting microenvironment (Figure 5b). Gradual release of small
amounts of ATP from tumor cells may affect antitumor immunity, as extracellular ATP
can be rapidly broken down to adenosine, an immunosuppressive molecule [92]. Thus, it
may be assumed that inhibition of GSDMs suppresses tumor progression in some cases.
If one expects therapy-induced pyroptosis to improve the tumor microenvironment, it
may be necessary to find the optimal extent of pyroptosis induction that should be neither
too strong nor too weak. However, the possibility that GSDMB/C promote breast cancer
through pyroptosis-independent mechanisms is not ruled out.
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Figure 6. Strategies to induce pyroptosis in tumor cells. (a) GSDME expression is silenced in most
cancer cells, likely attributed to promoter methylation. Treatment with the DNA methyltransferase
inhibitor decitabine (DAC) restores GSDME expression, thereby sensitizing cancer cells to pyroptosis.
The combination of decitabine and chemotherapeutic drugs (CDs) can lead to tumor cell pyroptosis
via the caspase-3-GSDME pathway. Tumor-targeting nanoparticles loaded with decitabine and
chemotherapeutic drugs may be useful to induce pyroptosis in tumors without causing damage
in normal tissues. (b) A bioorthogonal chemical system has been established to induce tumor cell
pyroptosis. In this system, active GSDMA3 protein is conjugated to gold nanoparticles via a silyl
ether linker that can be cleaved by desilylation that is catalyzed by phenylalanine trifluoroborate
(Phe-BF3), a cancer-imaging probe. Both the nanoparticles and Phe-BF3 selectively accumulate
in tumors, enabling controlled release of active GSDMA3 in tumor cells. (c) Viral transduction of
active forms of GSDMs can also lead to pyroptosis. In a previous study, adeno-associated serotype
1 virus (AAV1)-based vector that expresses GSDMD-N under the control of the schwann-cell-specific
promoter P0 was made for the purpose of inducing pyroptosis in schwannomas.
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6. Conclusions

Recent studies have significantly advanced our knowledge of the mechanisms and
pathophysiological roles of pyroptosis. GSDMs are activated by caspases and granzymes
that are involved in the induction of apoptosis and similar cell death, and thus, pyroptosis
and apoptosis seem to be two sides of the same coin (Figure 2). The molecular mechanisms
of pyroptosis are also interesting from an evolutionary perspective, since GSDMs are a
gene family that developed after vertebrates. Pyroptosis may change the tumor microenvi-
ronment from “cold” to “hot”, and the utilization of its effects, especially in combination
with immunotherapy, are promising in terms of cancer treatment. However, the beneficial
and detrimental effects of pyroptosis need to be further evaluated. In particular, the efficacy
and limitations of pyroptosis-associated therapies need to be further investigated in clinical
settings.
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