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Background: Ulcerative colitis (UC) is an inflammatory lesion of the colon 

from various causes. As current therapeutic drugs have adverse effects on 

patients with UC, there is a growing demand for alternative medicines from 

natural and functional foods. Locust bean gum, as a dietary fiber, has a variety 

of physiological effects.

Methods: In the present study, locust bean gum hydrolysate (LBGH) was 

obtained from the acid hydrolysis of locust bean gum. The structure of LBGH 

was characterized by thin-layer chromatography and high performance liquid 

chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry 

(MS)/MS analysis. And we  investigated the therapeutic effect of LBGH on a 

mouse model of dextran sulfate sodium (DSS)-induced colitis.

Results: It was observed that the LBGH consisted of a mixture of 

monosaccharides and oligosaccharides with a degree of polymerization (DP) 

2–7. LBGH treatment dramatically alleviated colonic pathological damage, 

suppressed the overproduction of pro-inflammatory factors and the activation 

of nuclear factor κB (NF-κB), increased the mRNA expression of tight junction 

proteins, and increased the abundance of probiotics such as Lactobacillus and 

Bifidobacterium in the gut.

Conclusion: There is a correlation between these mitigating effects on 

inflammation and the treatment of LBGH. Therefore, LBGH has tremendous 

potential in the treatment of colitis.
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Introduction

Ulcerative colitis (UC) is a chronic autoimmune disease with 
inflammation mainly in the mucosa and submucosa of the colon 
(Yamamoto-Furusho et  al., 2020). In the past decade, over 
1–5 million people in North America and 2 million in Europe 
suffered from this disease. However, in recent years, the incidence 
and prevalence patterns of UC have changed worldwide. An 
increasing trend in the incidence of UC has been reported in Asia 
(Wei et al., 2021). The incidence of colitis in Asia and the Middle 
East has been reported to be 0.15–6.5 per 100,000 person-years in 
recent years (Sharara et al., 2018). The survey proved that the 
recurrence rate of UC patients is 57.69% (Azad et  al., 2011; 
Kaplan, 2015; Ng et al., 2017). Therefore, it is urgent to find some 
natural products as new and safer therapeutic drugs.

Up to now, the pathogenesis of UC is still not quite clear. 
Studies confirmed that NF-κB is a major inflammatory signaling 
pathway (Chen et  al., 2017). Activation of NF-κB induces the 
production of inflammatory cytokines, such as TNF-α, IL-1β, and 
IL-6 (Amirshahrokhi, 2019), which increase the inflammatory  
response.

It is increasingly believed that environmental factors and 
intestinal microbiota also have an important impact on the 
occurrence and development of UC (Jairath and Feagan, 2020; 
Kobayashi et al., 2020). Peng et al. (2013) suggested that the persistent 
inflammatory mechanisms of UC might be  the result of an 
interaction between the gut microbiota, inflammatory signaling, and 
tissue remodeling (Tang et al., 2021). Altered microbial composition 
and function in UC lead to increased immune stimulation, epithelial 
dysfunction, or increased mucosal permeability (Sartor, 2008). Gut 
microbial community with lower diversity and stability is observed 
in UC patients. In particular, Bacteroides and lactobacillus are 
reduced (Zhou and Zhi, 2016). The change of bacteria of composition 
in the intestinal tract leads to changes in metabolites (Wishart et al., 
2018). Short-chain fatty acids (SCFAs), mainly consisting of acetic 
acid, propionic acid, and butyric acid, are the main bacterial 
metabolites (Dabek-Drobny et al., 2022). SCFAs can improve the 
integrity of the intestinal barrier and maintain intestinal homeostasis 
(Silva et al., 2018; Lee et al., 2022). The change of SCFAs may play an 
important role in the pathogenesis of UC.

Modern pharmacological studies have shown that 
oligosaccharides from plants have a variety of biological functions, 
including hypoglycemic, antiviral, hypolipidemia, antitumor, and 
antioxidant (Rastall, 2010; Niu et al., 2021). Fructo-oligosaccharides 
have a low calorific value, help intestinal absorption of ions, reduce 
lipid and cholesterol levels, and stimulate the proliferation of 
Bifidobacteria (Bali et  al., 2015). Konjac oligosaccharide can 
decrease the levels of malondialdehyde, inducible nitric oxide 
synthase, TNF-α, and IL-1β in colonic tissues of rats with colitis, 
and has significant anti-inflammatory effects (Liu et al., 2016). 
Therefore, many oligosaccharides are attracting more and more 
attention as prebiotics functional food ingredients.

Locust bean gum (LBG), can be isolated from the seeds of 
Ceratonia siliqua, commonly found in Mediterranean regions. It 

is composed of a β-1, 4-linked D-mannose framework and an α-1, 
6-linked D-galactose side chain (Barak and Mudgil, 2014). The 
ratio of mannose to galactose is 4:1 (Tamaki et al., 2010). LBG is 
added to infant milk powder as a thickener and is commonly used 
to treat gastroesophageal reflux disease in infants (Alberto 
Gonzalez-Bermudez et al., 2015; Tounian et al., 2020). Several 
studies have demonstrated that LBG enzyme hydrolysate can 
increase the content of beneficial bacteria, inhibit the proliferation 
of harmful bacteria, and maintain the balance of microecology 
(Srivastava et al., 2017; Xie et al., 2020; Song et al., 2021). Therefore, 
we hypothesized that oligosaccharides from LBG could improve 
dextran sodium sulfate (DSS)-induced colitis by modulating the 
composition of the intestinal flora. However, enzymatic hydrolysis 
is limited due to its low efficiency and high cost.

Taken together, in the present study, we  attempted to 
characterize the structural characteristics of the novel hydrolysate 
from locust bean gum hydrolysate (LBGH) by trifluoroacetic acid 
(TFA) and to investigate its therapeutic effect in DSS-induced 
colitis mice. In this study, LBGH structure was determined by 
thin-layer chromatography (TLC) and high performance liquid 
chromatography (HPLC) and electrospray ionization (ESI) mass 
spectrometry (MS). Subsequently, we used the DSS-induced colitis 
model to evaluate changes in body weight and DAI scores, as well 
as to evaluate histological morphology, the secretion of cytokines, 
and the expression of tight junction protein genes and NF-κB P65 
protein, the levels of SCFAs, and the composition of intestinal 
microbiota in C57BL/6 mice before and after LBGH treatment.

Materials and methods

Degradable and purification of 
oligosaccharide

Locust bean gum was purchased from Henan Wanbang Industry 
Co., Ltd. (China). LBG (5 mg) was hydrolyzed in 100 ml of 0.3 M 
TFA at 80°C for 2 h (Mao et al., 2021). At the end of the reaction, the 
precipitate was removed by centrifugation (3,000 g, 10 min), The 
supernatant was dried to solidify in a vacuum oven (XMTD-8222, 
Jinghong, China) at 15 kPa and 60°C. The solid sample was dissolved 
by adding 10 ml of methanol and dried again under a vacuum. The 
above process was repeated 3–5 times to remove TFA. The solid 
sample obtained was dissolved in 10 ml of distilled water and 
pre-frozen at −80°C for 12 h, and then freeze-dried in a lyophilizer 
(Gizs-1, Kaizheng, China) at −30°C and 4 Pa vacuum level for 48 h. 
Finally, the LBGH was obtained and stored at 4°C until use.

Chemical and structural characterization 
of LBGH

The LBGH was analyzed by TLC (Dhalwal et al., 2008). LBGH 
solution (20 mg/ml) were loaded onto a 50 mm × 100 mm silica gel 
plate (GF 254, Haiyang, China) and unfolded at room temperature 
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with a solvent system consisting of n-butanol: acetic acid: water 
(2:2:1, v/v/v). After unfolding, the plate was passed through a 
color developer (2 ml aniline, 2 g diphenylamine, 10 ml 85% 
phosphoric acid, and 1 ml hydrochloric acid, dissolved in 100 ml 
acetone) and heated at 100°C, until the bands were visible.

Structural analysis was performed by HPLC-ESI/MS (Liu 
et  al., 2005) with 1-phenyl-3-methyl-5-pyrazolone (PMP) 
derivatization (Palanisamy et al., 2017). The LBGH solution was 
prepared by dissolving 5 mg LBGH into 5 ml distilled water. Then, 
the 100 μl solution was mixed with 0.3 M NaOH (100 μl) and 0.5 M 
methanol solution (100 μl) of PMP. The mixture was allowed to 
react for 1 h at 70°C, then cooled to room temperature, and 
neutralized with 100 μl 0.3 M hydrochloric acid (HCl). Then, 
chloroform (700 μl) was added and the mixture was shaken. The 
chloroform layer was discarded and the extraction process was 
repeated three times until the chloroform was colorless. The 
aqueous phase liquid was collected over a 0.22 μm filter membrane 
(Millex-GP, Merck, Germany) and used for analysis. A Waters 
Alliance 2487 liquid chromatograph-mass spectrometer (Waters 
Corporation, United States) equipped with an Agilent 5 HC-C18 
(2) column (250 mm × 4.6 mm × 5 μm) and an electrospray 
detector (ESI) was used. Typical operating conditions were as 
follows: electrospray voltage was 4 kV; capillary temperature was 
350°C; capillary voltage was 48 V; ion lens voltage was 250 V, and 
the spectra were acquired in the positive mode.

Animal experiments

Twenty 7-week-old specific pathogen-free (SPF) male 
C57BL/6J mice were supplied by Charles River Laboratory Animal 
Technology (Beijing, China) and housed under autoregulated 
temperature (25 ± 3°C) and humidity (50 ± 5%) in a 12 h light/dark 

cycle room. After 1 week of adaptive feeding, 20 mice were divided 
randomly into four groups named NOR, DSS, LBGH-L, and 
LBGH-H, respectively. The DSS and LBGH-L, LBGH-H groups 
were supplied with 2.5% (w/v) dextran sulfate sodium (DSS, 
36,000–50,000 Da) in the drinking water for 1 week, while the 
NOR group drank water freely. The next week, both NOR and DSS 
groups were given distilled water by gavage, while LBGH-L and 
LBGH-H were given LBGH aqueous solution with 2 and 4 g/kg/
day by gavage, respectively (Figure 1; Mahler et al., 1998). The 
body weight, food intake, stool characteristics, and bloody feces 
were measured daily. The disease activity index (DAI) was used to 
monitor the mice status during the experiment. At the end of the 
experiment, the mice were sacrificed, blood was collected and 
centrifuged at 80 g for 10 min, and then the serum was obtained. 
The contents of the cecum and colon, colon tissues, and internal 
organs, such as the heart, liver, spleen, lungs, stomach, and kidneys 
were also collected from all animals, and stored at −80°C for 
further study.

Histological analysis

Distal colon tissues were fixed in an optimal cutting 
temperature compound (OCT) embedding medium (Tissue-Tek), 
frozen at −20°C for 12 h and then cut into 10 μm sections using a 
frozen sectioning machine (CM1950, Leica, Nussloch, Germany) 
and stained with hematoxylin and eosin (H&E). In brief, the 
staining was carried out by the following steps: first, the sections 
were soaked in 4% formaldehyde fixative for 5 min, in distilled 
water for 5 min, then sequentially stained with hematoxylin 
solution for 2 min, soaked in differentiation solution for 5 s, in 
revertant blue solution for 30 s, stained with eosin solution for 30 s, 
and rinsed with distilled water for 30 s. The obtained sections were 

FIGURE 1

Diagram illustrating the experimental design employed in this study. The concentration of LBGH-L: 2 mg/kg/day; The concentration of LBGH-H: 
4 mg/kg/day.
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then sequentially dehydrated in graded alcohol (75, 85, 95, and 
100%) for 2 s and soaked in xylene for 1 min. Finally, the sections 
were covered with coverslips and sealed with rhamsan gum. These 
reagents were purchased from Solarbio Science & Technology Co., 
Ltd. (Beijing, China). The sections were observed under an 
upright microscope (Eclipse E200, Nikon, Japan) and 
photographed using ImageView (Pooher, Shanghai, China). The 
histologic scores were evaluated as described previously (Guo 
et al., 2021), a score of 0–4 was given depending on the number of 
lesions in the colon and their severity.

Measurement of cytokines

Colonic tissue (100 mg) was mixed with 500 μl pre-cooled 
RIPA lysis buffer (Beyotime Biotechnology, China) and later 
ground into a homogenate by a tissue grinder (Wonbio-48P, 
Shanghai Onebio Biotech Co., Ltd., China). The homogenate was 
lysed on ice for 20 min and then centrifuged at 14,000 g for 5 min 
at 4°C. The supernatant was collected and stored at −80°C. The 
protein concentration of the supernatant was determined using a 
bicinchoninic acid (BCA) protein assay kit (Beyotime 
Biotechnology, China). The expression levels of cytokines IL-1β, 
IL-6, and TNF-α in the serum and the colon tissue of mice were 
analyzed by ELISA kits (Dakewe Biotechnology, Beijing, China) 
according to the manufacturer’s protocols. For tissues, cytokine 
levels were determined by dividing the cytokine results (pg/ml) by 
the measured tissue protein concentration (mg/ml).

Assessment of tight junction-related 
gene expression

Total RNA from colon tissues was extracted using TRIzol 
reagent (Sigma-Aldrich, United  States). The purity and 
concentration of the isolated RNA were determined using 
NanoDrop  1000 (NanoDrop Technologies; Thermo Fisher 
Scientific, Inc.). Then, RNA was reverse-transcribed using 
ABScript II RT Mix for qPCR with gDNA Remover (ABclonal 
RK20403, China). Real-time quantitative PCR amplification and 
detection were performed on 2X Universal SYBR Green Fast 
qPCR Mix (ABclonal RK21203, China) with the specific primers. 
To normalize mRNA expression, we measured the expression of 
the glycerol-3-phosphate dehydrogenase (GAPDH). The cDNAs 
were subjected to qPCR using the following primers (purchased 
from Sangon Biotech Co., Ltd.): ZO-1 forward, 
5′-GCGAACAGAAGGAGCGAGAAGAG-3′ and reverse, 5′-GC 
TTTGCGGGCTGACTGGAG-3′; Occludin forward, 5′-TGG 
CTATGGAGGCGGCTATGG-3′ and reverse, 5′-AAGGAAG 
CGATGAAGCAGAAGGC′; and GAPDH forward, 5′-TGTGTCC 
GTCGTGGATCTGA-3′ and reverse, 5′-TTGCTGTTGAAG 
TCGCAGGAG-3′. The following thermocycling conditions were 
used for qPCR: 95°C for 30 s; 40 cycles at 58°C for 30 s and at 72°C 
for 30 s; and a final cycle at 72°C for 5 min. The relative expression 

levels of tight junction-related genes were measured by the 2−

ΔΔCT method.

Assessment of NF-κB p65 protein 
expression

The frozen colon tissues (100 mg) were added to 500 μl 
pre-cooled RIPA lysis buffer (Beyotime Biotechnology, China), 
and then ground thoroughly to obtain mouse colon 
homogenate. All the homogenate was lysed on ice for 20 min 
and then centrifuged at 14,000 g for 5 min at 4°C. The 
supernatant was collected and stored at −80°C. The protein 
concentration of the supernatant was determined using a BCA 
protein assay kit (Beyotime Biotechnology, China). 15 μg 
proteins were separated by electrophoresis 12% SDS-PAGE gel 
and transferred onto a polyvinylidene fluoride (PVDF) 
membrane. The membrane was blocked with 5% skim milk for 
1 h at room temperature and washed with Tris-Buffered Saline 
Tween-20 (TBST) three times. The PVDF membrane was 
incubated overnight at 4°C with the primary antibody including 
β-actin (1:5,000, ABclonal), NF-κB p65 (1:1500, ABclonal). 
After washed with TBST three times, and incubated with 
horseradish peroxidase (HRP)-conjugated anti-rabbit 
immunoglobulin IgG (1:2, 000, ABclonal) for 1 h at 4°C,  
and washed with TBST three times. The enhanced 
chemiluminescence (ECL) reagent was used for signal detection 
(GE Amersham Imager 600, United States). The gray value was 
analyzed with Image J software (US National Institutes of 
Health, Bethesda). The relative protein expression levels were 
normalized by the results of β-actin.

Quantitative analysis of SCFAs

The short-chain fatty acids (SCFAs) concentration in colon 
contents was determined by Gas Chromatography-Mass 
Spectrometer (GC–MS, Agilent J&W DB-FFAP), an Agilent 
VF-WAXms 30 m × 0.25 mm × 0.25 μm column was used. The 
appropriate amount of colon contents was mixed with five times 
the volume of water by vortexing and the mixture was centrifuged 
at 13,000 g for 10 min at 4°C. The resulting supernatant of 200 μl 
was mixed with 20 μl of 2-ethylbutyric acid (internal standard), 
500 μl HCl (37%), and 2 ml diethyl ether and vortexed for 3 min. 
The supernatant was transferred to a sterile centrifuge tube, 
anhydrous sodium sulfate (Na2SO4) was added and vortexed for 
2 min. After standing for 5 min, the supernatant was taken and 
filtered through a 0.22 μm membrane. Typical operating 
conditions were as follows: the temperatures of the inlet, ion 
source, and transfer line were set to 240°C. The column 
temperature was set to an initial temperature of 100°C for 0.5 min, 
held for 2 min from 8°C/min to 200°C, and held for 1 min from 
10°C/min to 240°C. The energy of electron ionization was set 
to 70 eV.

https://doi.org/10.3389/fmicb.2022.985725
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Jiang et al. 10.3389/fmicb.2022.985725

Frontiers in Microbiology 05 frontiersin.org

Gut microbiota analysis

Total genome DNA from cecum contents was extracted using 
the CTAB method. DNA concentration and purity were 
monitored on 1% agarose gels. According to the concentration, 
DNA was diluted to 1 ng/μl using sterile water. The V3–V4 region 
of the 16S rRNA gene was amplified by PCR with barcode specific 
primer (338F: 5′-ACTCCTACGGGAGGCAGCAG-3′ and 806R: 
5′-GGACTACHVGGGTWTCTAAT-3′) using Phusion® High-
Fidelity PCR Master Mix (New England Biolabs). PCR products 
were purified with Qiagen Gel Extraction Kit (Qiagen, Germany) 
and DNA libraries were constructed using TruSeq® DNA 
PCR-Free Sample Preparation Kit (Illumina, San Diego, 
United States). The library quality was assessed on the Qubit@ 2.0 
Fluorometer (Thermo Scientific). At last, the library was 
sequenced on an Illumina NovaSeq platform and 250 bp 
paired-end reads were generated. Raw data were analyzed using 
the QIIME2 platform. Sequencing service and data analysis 
service were provided by Wekemo Tech Group Co., Ltd. 
(Shenzhen China).

Statistical analysis

All the experimental data (n = 5 per group) were shown as the 
mean ± SD. SPSS (Version 11.5, IBM, United States) was used to 
perform all the statistical analyses. GraphPad Prism 7 software 
(GraphPad Software, San Diego, CA, United States) was used for 
graphical processing. Using Tukey’s t-test for comparison or 
one-way ANOVA for multiple comparisons to measure the value 
of p of the difference between groups. There is a significant 
difference when p < 0.05.

Results

Chemical structure of LBGH

Thin-layer chromatography (TLC) results showed that LBG 
was degraded to oligosaccharides and monosaccharides with a 
lower DP (Figure 2A). To figure out the compositional information 
including the DP of individual oligosaccharides and type of 
constituent monosaccharides, LBGH was analyzed by HPLC-ESI/
MS after PMP derivatization. There were eight main peaks in the 
HPLC chromatograms of LBGH (Figure 2B). Their structure was 
illustrated further by ESI-MS analysis. Figure 2C shows the mass 
spectra of the ion peaks obtained from the analysis of each 
component in positive ion mode.

All [M + 2PMP - H2O] ions identified in this spectrum and 
their relative abundance are displayed in Figure 2C. The peaks 
m/z 499 and 337 in Figure 2C– a correspond to the [M2 + 2PMP - 
H2O + H]+ consecutive loss of a galactosyl residue and a PMP 
group. Figures 2C-b–g show the ions observed at m/z 511, 672, 
835, 997, 1,159, 1,321, and 1,483 can be summarized as a series 

of derivatives from monosaccharide to heptasaccharide with 
PMP [M1-7 + 2PMP−H2O + H]+. Corresponding sodium addition 
is observed for the ion at m/z 695 ([M2 + 2PMP−H2O + Na]+) in 
Figure 2C-c. The dimer (Figure 2C-h) is present as a sodium 
adduct and is oxidized to aldehyde or ketone (m/z 363; Ponzini 
et al., 2019). In summary, we suggested that the acid digestion 
products of LBG consisted of a mixture of monosaccharides and 
oligosaccharides with DP 2–7, of which monosaccharides and 
disaccharides accounted for the majority. The results of the ESI/
MS were consistent with those of the TLC experiments.

LBGH ameliorated colitis symptoms in 
DSS-treated mice

The experimental design of the mouse feeding test is shown in 
Figure 1. Changes in body weight, DAI and colonic length in mice 
are shown in Figures 3A,B. Over the experiment, the weight of the 
NOR mice showed a gradual upward trend. In contrast, on the 6th 
day of the experiment, mice began to lose weight due to the 
intervention of DSS (Figure 3A). On the 11th day, the mice in DSS 
group recovered to their normal diet and the weight gained slowly, 
while the LBGH groups began to gain weight on the 10th day.

The DAI in the DSS and LBGH groups increased continuously 
from day 3 to day 10 and began to decrease after day 11 
(Figure 3B). Treatment with LBGH improved weight in mice and 
ameliorated diarrhea and bloody stools.

In DSS-induced colitis, the length of colon can be used as an 
indicator to reflect the severity of inflammation. The colon 
length in the DSS group was significantly shorter than that in 
the NOR group (p < 0.05). However, LBGH alleviated this 
situation, with no significant difference in colonic length 
compared to the NOR group (Figures  3C,D). These results 
showed that LBGH improved the symptoms of colitis, but there 
was no significant difference in the treatment effect between 
high and low dose.

LBGH reduced the histological injury of 
colon

Histologically, the intervention of the DSS significantly 
distorted the structure of the crypt, causing irregularities in the 
surface of the villi and marked inflammatory cell infiltration 
(Figure  3F). However, LBGH reduced the infiltration of 
inflammatory cells and the damage to the crypt. This was 
confirmed by the histological score (Figure 3E).

LBGH inhibited inflammatory cytokine 
secretion

To further assess the effect of LBGH on DSS-induced colitis in 
mice, we  measured the levels of pro-inflammatory cytokines 
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including IL-1β, IL-6, and TNF-α in serum as well as in colonic 
tissue through ELISA kits. DSS intervention significantly increased 
the levels of pro-inflammatory cytokines compared with the NOR 
group both in serum and colonic tissue (p < 0.0001). The 
pro-inflammatory cytokines decreased significantly in mice after 
being treated with LBGH (Figures 4A–F; p < 0.0001). These results 
demonstrated that LBGH attenuated the inflammation of 
DSS-induced colitis in mice.

LBGH regulates the expression of tight 
junction-related proteins

To investigate the effect of LBGH on intestinal tight junctions, 
gene expression levels of ZO-1 and Occludin were measured in 

colonic tissue. The expression of ZO-1 and Occludin protein was 
significantly decreased in the DSS group compared to the NOR 
group (p < 0.001; Figures 5A,B). While the use of LBGH (low dose 
and high dose) significantly reversed the levels of ZO-1 and 
Occludin (p < 0.0001).

LBGH suppressed the activation of NF-κB 
(p65)

We further analyzed the inflammatory signaling pathway 
by Western blot and the intensity of the bands was quantified 
by Image J. Compared to the NOR group, NF-κB (p65) was 
activated in mice treated by DSS, whereas it was significantly 
inhibited by LBGH (Figures 5C,D). In particular, the expression 
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FIGURE 2

Chemical structure of locust bean gum hydrolysate (LBGH). (A) Thin-layer chromatography (TLC) analysis of LBGH; (B) High performance liquid 
chromatography (HPLC)-UV chromatogram of LBGH; (C) Positive mode electrospray ionization (ESI)-mass spectrometry (MS) analysis of partially 
collected components (a–h) by HPLC (B). (a) m/z 337: [M2 + 2PMP - H2O + H] + − Gal–PMP; m/z 499: [M2 + PMP-H2O + H] + -PMP; (b) m/z 511, 835, 
997, 1,159, 1,321, and 1,483: [M1,3–7 + 2PMP-H2O + H]+; m/z 672: [M2 + 2PMP-H2O]+; (c) m/z 511, 673: [M1-2 + 2PMP-H2O + H]+; m/z 695: 
[M + 2PMP-H2O + Na]+; (d) m/z 511: [M1 + 2PMP-H2O + H]+; (e) m/z 511, 835: [M1,3 + 2PMP-H2O + H]+; (f) m/z 511, 673: [M1,2 + 2PMP-H2O + H]+;  
(g) m/z 511: [M1 + 2PMP-H2O + H]+; and (h) m/z 363: The dimer is present as a sodium adduct and is oxidized to aldehyde or ketone.
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of NF-κB (p65) protein was significantly decreased in the 
LBGH-H group compared to the DSS group (p < 0.01). The 
available data suggested that LBGH could alleviate 
inflammation which encouraged us to find the underlying  
mechanism.

LBGH promoted the production of SCFAs

Short-chain fatty acids are products of intestinal bacterial 
metabolism and include mainly acetic acid, propionic acid, and 
butyric acid (Peng et al., 2013; Venegas et al., 2019). The amount 

A B

C D E

F

FIGURE 3

LBGH ameliorates dextran sulfate sodium (DSS)-induced colitis in mice. (A) Daily body weight changes following DSS treatment. (B) Disease 
activity index changes following DSS treatment. (C) The lengths of the colon from each group. (D) The representative picture of the colon. 
(E) Histologic score. (F) Representative hematoxylin and eosin (H&E)-stained distal colon sections. The highlights are the inflammatory infiltrate 
(red circle), the villi surface (red arrow), and the crypt (black arrow). *p < 0.05, **p < 0.01, and ****p < 0.001 compared with the DSS group. (n = 5 per 
group).
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of SCFAs in the colon of each group was determined by GC–MS 
(Figure  6). The content of acetic acid and propionic acid was 
significantly lower in the DSS group compared to the NOR group 
(p < 0.05). In addition, after treatment with the LBGH, the 
contents of acetic acid and propionic acid were significantly 
increased compared with those of the DSS group (p < 0.05). Our 
results indicated that LBGH promoted the levels of SCFAs, which 
was beneficial for alleviating intestinal inflammation.

LBGH regulated gut microbiota

We investigated whether LBGH altered the composition of the 
gut microbiota of mice with DSS-induced colitis by 16S rDNA 
high-throughput sequencing. The Chao1, Shannon, Faith_pd, 
Simpson, and Observed OTUs indexes were used to estimate the 
alpha diversity among each group. The results showed that the 
intervention of LBGH-H significantly improved the alpha 
diversity of mice with colitis (Figure 7A). Principal coordinate 
analysis (PCoA) using Bray Curtis distances and Partial Least 
Squares Discriminant Analysis (PLS-DA) were performed to 
assess beta diversity. As shown in Figures  7B,C, there was a 
distinct separation on the beta diversity of gut microbial 
communities between any two groups. These results displayed that 
LBGH significantly altered the alpha and beta diversity.

To determine the species composition of the gut microbial 
community, we analyzed differences in the gut microbiota at the 
level of phylum and genus. At the phylum level, 17 phyla are 
identified in all samples as shown in Figure  8A. The DSS 
supplementation significantly increased the Verrucomicrobia 
but decreased the Bacteroidetes by comparison with the NOR 
group. Interestingly, high dose of LBGH effectively reduced the 
level of Verrucomicrobia in contrast to DSS-induced colitis 
mice, and increased the Firmicutes. Figures 8B,C showed the gut 
microbiota compositions at the genus level in each group of 
mice. The high dose of LBGH significantly increased the relative 
abundance of Bifidobacterium and Lactobacillus compared to 
the DSS and NOR groups (p < 0.01). The relative abundance of 
Prevotellaceae_Prevotella, Akkermansia in the DSS group was 
significantly increased compared to the NOR group, whereas 
high dose of LBGH treatment reduced the relative abundance 
to a level close to that seen in the NOR group. The low dose of 
LBGH significantly increased the relative abundance of Blautia 
compared to the DSS group (p  < 0.05). Thus, these results 
suggested that LBGH alleviated gut microbiota dysbiosis and 
profoundly modulated gut microbiota composition in mice with 
DSS-induced colitis.

The linear discriminant analysis (LDA) effect size (LEfSe) 
was used to identify statistically significant biomarkers and 
reveal the dominant microorganisms in each group 

A B C

D E F

FIGURE 4

LBGH inhibits inflammatory cytokine secretion. (A–C) Inflammatory cytokines including IL-1β, IL-6, and TNF-α in serum of mice. (D–F) 
Inflammatory cytokines including IL-1β, IL-6, and TNF-α in the colon tissue of mice. ***p < 0.001 and ****p < 0.0001 compared with the DSS group. 
(n = 5 per group).
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(Figure 8D). We found that nine bacterial genera including 
Lactobacillus were enriched in the LBGH-H group, and seven 
bacterial genera including Akkermansia were enriched in the 
DSS only group. Prevotella was the dominant taxa in the 
NOR group.

Correlations between significantly altered taxa in the gut 
microbiome and colitis-related indexes were investigated using 
Spearman correlation analysis. Twelve different bacterial genera 

of Firmicutes and Proteobacteria showed a significant positive 
correlation (p < 0.05) with the concentration of pro-inflammatory 
mediators in serum and colon (Figure  9). Akkermansia and 
Prevotellaceae-Prevotella were positively correlated with the 
Occludin level (p < 0.05). Moreover, the SCFAs level showed a 
significantly positive correlation with the abundance of Blautia 
(p < 0.01), but it presented a significantly negative correlation 
with Proteobacteria (p < 0.05).

A

B

C

D

FIGURE 5

LBGH regulates the expression of tight junction-related proteins and LBGH activates NF-κB pathway. (A) The gene transcription levels of Occludin. 
(B) The gene transcription levels of ZO-1. (C,D) The level of NF-κB (p65) protein is normalized relative to that of β-actin and the phosphorylation 
levels are quantified by Image J. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 compared with the DSS group. (n = 5 per group).

A B C

FIGURE 6

LBGH promotes the production of short-chain fatty acids (SCFAs). (A) Concentrations of fecal acetic acid. (B) Concentrations of fecal propionic 
acid. (C) Concentrations of fecal butyric acid. *p < 0.05, **p < 0.01, and ***p < 0.001 compared with the DSS group. (n = 5 per group).
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Discussion

In recent years, the degraded galactomannan has attracted 
great interest because of its various biological activities. It has been 
demonstrated that incomplete degradation products of 
galactomannans can improve antioxidant function by increasing 
antioxidant content, and modulate immune responses by 
increasing the secretion of immunoglobulin and cytokines (Tao 
et  al., 2021). Galactomannan is the main component of LBG 

(Williams and Phillips, 2009). In this study, LBG was degraded by 
TFA to obtain LBGH, which was composed of monosaccharides 
and oligosaccharides with DP of 2–7. Therefore, based on the 
structural characteristics and relevant studies, we further explored 
the biological activities of the LBGH in mice. Our results 
demonstrated that LBGH attenuated colonic inflammation and 
modulated intestinal flora in mice with DSS-induced colitis.

Cytokines play a key role in the intestinal immune response 
(Moldoveanu et al., 2015; Marafini et al., 2019). Overproduction 
of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, 

A

B C

FIGURE 7

LBGH regulates gut microbiota diversity. (A) The alpha diversity (Chao1, Shannon, Faith_pd, Observed OTUs, and Simpson species indexes) in 
different groups. (B) The beta diversity by principal coordinate analysis (PCoA) plot of Bray Curtis distances and Partial Least Squares Discriminant 
Analysis (PLS-DA). Significant differences are indicated as *p < 0.05 and **p < 0.01. (n = 5 per group).
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FIGURE 8

LBGH regulates gut microbiota in DSS-induced colitis mice. (A,B) Gut microbiota composition at phylum level and genus level. (C) Changes in the 
composition of the intestinal microbiota at the genus level. Significant differences are indicated as *p < 0.05 and **p < 0.01. (D) Histogram of LDA 
value distribution of the differential microbial community (LDA score threshold of >4). (n = 5 per group).
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is the typical feature of the DSS-induced colitis mouse model 
(Randhawa et al., 2014; Wang et al., 2018). In the present study, 
LBGH treatment significantly inhibited the overproduction of 
pro-inflammatory cytokines in DSS-induced colitis mice. 
Compared with the NOR group, the serum levels of TNF-α, IL-6, 
and IL-1β were increased by 71.58, 89.11, and 64.67%, 
respectively, in the mice of the DSS group. And after LBGH 
intervention, the levels of TNF-α, IL-6, and IL-1β were reduced 
by 73.51, 73.78, and 49.47%, respectively, in the low-dose LBGH 
group, compared to the DSS group. We also found that the levels 
of TNF-α, IL-6, and IL-1β in mouse colonic tissue showed the 
same trend. These data indicated that serious inflammatory 
response had happened in mice colon and tissue damage might 
come out simultaneously. Therefore, administration of the LBGH 
at different doses could ameliorate the inflammation by 
inhibiting the production of pro-inflammatory cytokines in the 
DSS group.

The expression of the transcription factor NF-κB is often 
accompanied by increased production of interleukin (IL-1β and 
IL-6) and TNF-α (Neurath et al., 1998). We also discovered that 
DSS activated the signaling pathway NF-κB and increased IL-1β, 

IL-6, and TNF-α in DSS-induced colitis mice. The intervention of 
LBGH inhibited the signaling pathway NF-κB and reversed the 
levels of the interleukin and TNF-α. Therefore, we speculated that 
the regulation of IL-1β, IL-6, and TNF-α by LBGH was associated 
with the NF-κB signaling pathway.

The intestinal barrier is an important part of maintaining 
intestinal health (Johansson et al., 2013). Tight junction complex 
proteins including ZO-1(Kuo et  al., 2021), and Occludin 
(Cummins, 2012) are important components of the intestinal 
mechanical barrier. In the present study, the mRNA expression of 
Occludin and ZO-1 proteins in DSS-induced colitis mice was 
reduced by 53.73 and 86.46%, respectively. However, high-dose 
LBGH treatment increased the relative expression levels of both 
by 66.03 and 73.65%, and they showed an increasing trend in a 
dose-dependent manner in the oligosaccharide-treated group. In 
addition, the integrity of the intestinal barrier was considerably 
better in LBGH group than in the DSS group according to H&E 
staining of colonic tissue.

There is a general and persistent hypothesis that a large number 
of lactic acid bacteria species form a stable and important part of the 
human gut and that damage to the intestinal barrier can be prevented 

FIGURE 9

Heat map representation of Spearman’s correlation coefficient between bacterial taxa and colitis-related index. The red color denotes a positive 
correlation, while the blue color denotes a negative correlation. Significant differences are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001 (n = 5 
per group).
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by regulating the distribution and expression of tight junction 
proteins (Siew-Wai et al., 2010; Vemuri et al., 2017). In our study, it 
is worth noting that LBGH had a positive effect on increasing the 
abundance of Lactobacillus and Bifidobacterium (p < 0.01). Both the 
abundance of Lactobacillus and the levels of ZO-1 and Occludin 
were increased by LBGH in DSS-induced colitis mice, which meant 
LBGH was beneficial for the intestinal tight junctions.

The gut microbiota can use indigestible carbohydrates to 
produce SCFAs, which are the main energy source of the colonic 
epithelium (Arpaia et al., 2013). It has also been reported that 
SCFAs are closely associated with inflammation. They protect the 
integrity of the intestinal epithelium and promote the intestinal 
immune response, thereby protecting the intestinal wall and 
reducing the incidence of intestinal inflammation (Liu et  al., 
2021). It has been demonstrated that SCFAs can effectively inhibit 
the inflammatory response of Caco-2 cells and maintain the tight 
junctions of intestinal mucosal epithelial cells (Xi et al., 2022). Li 
et al. reported that supplementation of the basal diet with SCFAs 
could protect the zebrafish against pathogenic bacteria, modulate 
the gut microbiota, and enhance the immune response in the host 
(Li et  al., 2022). In the DSS group, the levels of acetic acid, 
propionic acid, and butyric acid were 61.38, 64.82, and 12.10% 
lower than in the NOR group. However, low dose of LBGH 
increased its levels by 3.62, 3.09, and 1.09 times, respectively. 
We also found that low dose of LBGH increased the abundance of 
Blautia by 7.08 times. The fermentation products of Blautia such 
as acetic acid, propionic acid, and butyric acid have an excellent 
anti-inflammatory effect in mice with colitis (Guo and Li, 2019). 
LBGH had increased the content of acetic acid, propionic acid, 
and butyric acid, which is consistent with the increased abundance 
of some SCFAs-producing bacteria, like Blautia in LBGH groups.

The relative abundance of Verrucomicrobia was significantly 
increased in the DSS group in this study, mainly due to the 
prevalence of Akkermansia-Muciniphila. Akkermansia-
muciniphila is a commensal bacterium of the mucous layer that 
degrades mucin as its sole source of energy (Zhai et al., 2019). Wu 
et  al. found that the relative abundance of Akkermansia is 
positively correlated with the production of SCFAs (Wu et al., 
2021). It has been shown that cranberry extract improves insulin 
resistance in diet-induced obese mice by increasing the 
abundance of Akkermansia, which reduces intestinal permeability 
and LPS leakage (Anhe et al., 2015). These studies all suggested 
that Akkermansia has beneficial effects on intestinal 
inflammation. Interestingly, Cai et  al. reported an abnormal 
amount of Akkermansia in the DSS group, possibly due to 
DSS-induced lesions in the mucus layer (Cai et  al., 2019). In 
addition, it has been reported that treatment with flaxseed 
oligosaccharides can inhibit the over-proliferation of 
Akkermansia in DSS-induced colitis mice (Xu et al., 2020). These 
observations were consistent with the fact that decreased 
abundance of Akkermansia was observed in mice with colitis 
treated by high dose of LBGH.

Therefore, the beneficial effect observed in this study may 
be  due to that LBGH can increase the number of beneficial 
bacteria and maintain the balance of the intestinal flora.

Conclusion

This is a new study focusing on the structure of LBGH and its 
anti-inflammatory activity in vivo. Our results indicate that the 
LBGH inhibited the production of proinflammatory factors and 
suppressed the activation of the NF-κB pathway, enhanced the 
expression of tight junction proteins (Occludin, ZO-1) and the 
concentration of SCFAs. Furthermore, LBGH modulated the gut 
microbiota, enriched intestinal microbial diversity, and 
significantly increased the abundance of Lactobacillus and 
Bifidobacterium. In conclusion, LBGH has shown the ability to 
relieve DSS-induced colitis.
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