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Adipocyte-derived vascular endothelial growth factor-A
(VEGF-A) plays a crucial role in angiogenesis and contrib-
utes to adipocyte function and systemic metabolism, such
as insulin resistance, chronic inflammation, and beiging
of subcutaneous adipose tissue. Using a doxycycline-
inducible adipocyte-specific VEGF-A-overexpressing
mouse model, we investigated the dynamics of local
VEGF-A effects on tissue beiging of adipose tissue trans-
plants. VEGF-A overexpression in adipocytes triggers
angiogenesis. We also observed a rapid appearance of
beige fat cells in subcutaneous white adipose tissue as
early as 2 days postinduction of VEGF-A. In contrast to
conventional cold-induced beiging, VEGF-A-induced
beiging is independent of interleukin-4. We subjected
metabolically healthy VEGF-A-overexpressing adipose
tissue to autologous transplantation. Transfer of subcuta-
neous adipose tissues taken from VEGF-A-overexpressing
mice into diet-induced obese mice resulted in systemic
metabolic benefits, associated with improved survival of
adipocytes and a concomitant reduced inflammatory re-
sponse. These effects of VEGF-A are tissue autonomous,
inducing white adipose tissue beiging and angiogenesis
within the transplanted tissue. Our findings indicate that
manipulation of adipocyte functions with a bona fide an-
giogenic factor, such as VEGF-A, significantly improves
the survival and volume retention of fat grafts and can
convey metabolically favorable properties on the recipient
on the basis of beiging.

Adipose tissue in the adult organism undergoes periods of
dynamic expansion and reduction under different metabolic
conditions, depending on the energy needs of the host (1).
To support the remodeling of adipose tissue, the plasticity
of the embedded vasculature in adipose tissues is crucial to
maintain appropriate access of oxygen and nutrients to the
tissue (2). Although white adipose tissue (WAT) is vascular-
ized, brown adipose tissue (BAT) is particularly highly vas-
cularized, and the interaction between adipocytes and
vascular capillaries is essential for adipocyte homeostasis
under physiological and pathological conditions (1,2).
Vascular endothelial growth factor-A (VEGF-A) is
classically known to be involved in vascular development
during embryogenesis (vasculogenesis), as well as blood
vessel formation (angiogenesis) and tissue remodeling in
the adult organism (3). Recent findings highlight the roles
of adipose tissue VEGF-A in the control of adipose tissue
function and systemic energy metabolism through the
modulation of the adipose vasculature (4,5). VEGF-A over-
expression in WAT facilitates angiogenesis and thereby
causes a ‘beiging effect” in subcutaneous WAT (sWAT),
altogether resulting in a healthier expansion of WAT as
well as protection against genetically and diet-induced obe-
sity and metabolic dysfunction (4). Furthermore, VEGF-A
overexpression in BAT augments vascularization and ther-
mogenesis during chronic cold exposure and protects against
systemic metabolic dysfunction induced by a high-fat
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diet (HFD) challenge (5). VEGF-A therefore exerts a crucial
role in adipose tissue homeostasis and adaptation to altered
nutrient and environmental conditions through a number of
different mechanisms (2). The kinetics and extent to which
the VEGF-A-induced beiging of subcutaneous fat resembles
mechanistically the process induced by cold are not dlear.

In the area of tissue regeneration and plastic surgery,
adipose tissue is commonly used for autologous trans-
plantation (6). However, poor survival and a high ab-
sorption rate of transplanted adipose tissue are likely
caused by ischemia and insufficient adipogenic differen-
tiation. The lack of sufficient proangiogenic activity im-
mediately posttransplantation is the main drawback of
adipose cell transplants. To overcome these issues, sev-
eral attempts have been made through the modulation of
the methods used to harvest the tissue, the approach used
for injection, and the choice of the injection site as well as
combination with adipose-derived regenerative cells, extra-
cellular scaffolds, and embedding of angiogenic cytokines
such as VEGF and epidermal growth factor (7-13). These
approaches were only partially successful, and proper
vascularization of implanted adipose tissue remains a
big challenge. We have previously described a unique
mouse model that allows us to inducibly express VEGF-A
specifically in the adipocyte with very high spatial reso-
lution (4). We examined whether VEGF-A-induced vas-
culature and metabolic changes in adipocytes are cell
autonomous and further investigated if a metabolically
healthy VEGF-A-overexpressing adipose tissue can be used
for cell/tissue therapy to improve metabolic homeostasis in
transplant recipients in vivo. For these studies, we used an
adipose tissue-specific, doxycycline (dox)-inducible, VEGE-
A-overexpressing transgenic (VEGF-Tg) mouse model (4)
and used the mice as donors for fat pad implantation in
normal and metabolically challenged recipients.

RESEARCH DESIGN AND METHODS

Animals

To generate a mouse model with dox-inducible VEGF-A
overexpression in adipocytes, tetracycline-responsive ele-
ment (TRE)-VEGF-A Tg mice were bred with adiponectin
promoter—driven rtTA-Tg mice (Apn-rtTA), as previously
described (4). Animals used in this study were all in a pure
C57BL/6 background (The Jackson Laboratory). All exper-
iments were conducted using littermate-controlled male
mice and started when these mice were 7 weeks old. Mice
were housed in cages with a 12-h dark/light cycle with
free access to water and regular chow diet (5080; LabDiet,
Frenchtown, NJ). For the HFD challenge experiments,
mice were fed with a diet containing 60% calories from
fat (D12492; Research Diets, Inc., New Brunswick, NJ).
For low dosage of dox treatment in combination with
HFD experiments, all mice (including controls) were fed
with the HFD paste (Research Diets, Inc.) mixed with dox
powder (Sigma-Aldrich) to a final concentration of 60 mg/kg.
For the normal dox diet, a 600 mg/kg diet (54107; Bio-Serv,
Flemington, NJ) was used. All animal experiments were
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approved by the Institutional Animal Care and Research
Advisory Committee at the University of Texas South-
western Medical Center.

Fat Tissue Transplantation

Subcutaneous adipose tissues were taken from the inguinal
fat pads of 7-week-old male mice. Following washing of the
pads in PBS, 200-mg tissue pieces were surgically implanted
into interscapular area of isogenic C57/BL6J male wild-type
mice. The fat grafts were retrieved at the indicated time
points for further analysis.

Quantitative PCR

Adipose tissues were harvested and homogenized in TRIzol
(Invitrogen, Carlsbad, CA) using a MagNA Lyser (Roche,
Basel, Switzerland) and ceramic beads. For both cell culture
(stromal cells) and adipose tissue, total RNAs were lyzed in
TRIzol (Invitrogen) and isolated using the RNeasy RNA
extraction kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The cDNAs were prepared by
reverse transcription with 1 pg total RNA and Maloney
murine leukemia virus (Invitrogen). Quantitative real-time
PCRs were performed with TagMan or SYBR gene-specific
primers on an ABI Prism 7900 HT sequence detection sys-
tem (Applied Biosystems, Foster City, CA). Primer sequences
are listed in Supplementary Table 1. The relative amounts of
all mRNAs were calculated, and GAPDH and 35-microglobulin
mRNA levels were used for the internal controls.

Histological Analysis

Tissues were fixed with 10% formalin and embedded in
paraffin for histological analysis. Deparaffinized tissue
slides were stained with primary antibodies for uncou-
pling protein-1 (UCP1) (1:200; ab23841; Abcam, Cambridge,
MA), CBP/p300-interacting transactivator 1 (CITED1) (1:300;
ab15096; Abcam), MAC-2 (1:500; CL8942AP; Cedarlane
Laboratories), and endomucin (1:200; sc-65495; Santa
Cruz Biotechnology). Biotin-labeled secondary antibodies
were used. The reaction was visualized by the DAB
Chromogen A system (DakoCytomation, Carpinteria, CA)
and counterstained with hematoxylin. Images were ac-
quired using a Coolscope (Nikon, Tokyo, Japan). Hema-
toxylin and eosin (H&E) staining and Masson’s Trichrome
C staining were performed by Dr. John Shelton at the
University of Texas Southwestern Medical Center Histol-
ogy Core.

Immunofluorescence Staining

Formalin-fixed, paraffin-embedded slides were used.
Deparaffinized slides were stained with primary antibodies
for MAC-2 (1:500; CL8942AP; Cedarlane Laboratories) and
perilipin (20R-PP004; Fitzgerald Industries International).
Fluorescence-labeled secondary antibodies were used and
counterstained with DAPI. Images were acquired using the
Leica confocal microscope (Leica Microsystems) and ana-
lyzed with ImageJ software (National Institutes of Health).

Systemic Metabolic Tests
Fasting glucose levels were determined after 3 h of fasting,
and serum samples were collected from tail-vein blood


http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1081/-/DC1

diabetes.diabetesjournals.org

samples. For the oral glucose tolerance tests (OGTTSs), mice
were fasted for 5 h prior to administration of glucose (2.5
g/kg body weight by gastric gavage). At each of the indicated
time points, serum samples were collected from tail veins.
Glucose concentrations were measured using an oxidase-
peroxidase assay (Sigma-Aldrich). Serum triglycerides (TGs),
cholesterol (Infinity TG or cholesterol kit; Thermo Fisher
Scientific, Waltham, MA), and free fatty acid (FFA) (NEFA-HR
[2]; Wako Diagnostics, Tokyo, Japan) levels were measured by
the kits following the manufacturer’s instructions. The exam-
ination of serum adiponectin and insulin levels was done by
ELISA (ALPCO, Salem, NH).

Collagen Content Assay

Tissue collagen content was measured by assessing
4-hydroxyproline levels with a kit from BioVision (Milpitas,
CA). Briefly, 50 mg fat tissue was homogenized in distilled
water and then mixed with 6 N HCl at 120°C for 6 h.
Supernatants were dried and further incubated with chlora-
mine-T at 25°C for 10 min, and then DMAB was added to
each well and incubated at 90°C for 60 min. The absorbance
was measured at 560 nm using a microplate reader as sug-
gested by the manufacturer.

Circulating VEGF-A Measurements

Serum VEGEF-A levels were measured by ELISA. Mouse
whole blood was collected and serum prepared. Sera were
assessed by a mouse-specific VEGF-A ELISA kit (Abcam)
and analyzed according to the manufacturer’s instructions.

Statistical Analysis

All results are provided as means *= SEM. All statistical
analyses were performed using Prism software (GraphPad
Software, La Jolla, CA). Differences between the two groups
over time were determined by a two-way ANOVA for re-
peated measures. For comparisons between two indepen-
dent groups, a Student t test was used. Significance was
accepted as P < 0.05.

RESULTS

Adipocyte-Specific VEGF-A Overexpression Triggers
Rapid Beiging of SWAT

Previous reports have suggested a potential role of VEGEF-A
in adipose tissue function and systemic energy metabo-
lism, in part through VEGEF-A’s effects on stimulation of
angiogenesis, macrophage M2-subtype inflammation,
and BAT differentiation and its function (4). To address
more directly what the kinetics of VEGF-A action on
adipose tissue are, we took advantage of the high tem-
poral resolution that our genetic approach offers. We
used the adipose tissue-specific dox-inducible VEGE-A
Tg mouse model. This model is a combination of two
Tg mouse lines, the TRE-driven VEGF-A Tg mice (TRE-
VEGF) and the adipose tissue—specific tetracycline on
(Tet-on) Apn-rtTA mice. In this model, the TRE can be
activated by the rtTA transcription factor in the presence of
dox (4). Notably, expression of the transgene in this induc-
ible system is strictly limited to the mature adipocyte and is
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not present in other cell types, such as adipogenic precursor
cells and macrophages. In our previous studies, chronic
overexpression of VEGF-A in adipose tissue under an
HFD challenge for 8 weeks triggered beige adipose tissue-
like properties in SWAT and decreased the expression of
inflammatory factors such as interleukin-6 (IL-6), F4/80,
and tumor necrosis factor-a in epididymal WAT (4) com-
pared with wild-type mice. A reduction of these inflamma-
tory markers is frequently seen in metabolically healthy
adipose tissue (14,15). The new class of adipocytes ob-
served in SWAT under these conditions is referred to as
“beige” adipocytes, which emerge in sWAT and are charac-
terized by displaying elevated levels of proteins character-
istic of BAT, such as expression of UCP1 and an elevated
respiratory rate (16).

To further connect elevated local VEGF-A expression to
the beiging effects observed in WAT, we analyzed sWAT
histologically during a time-course experiment after expos-
ing mice to dox (Fig. 1). Histological examination of sSWAT
in VEGF-Tg mice revealed that within 2 days of VEGF-A
exposure, widespread beiging is apparent. Smaller adipo-
cyte size and multilocular appearance can be seen, which
became even more evident at 6 days post-VEGF-A induc-
tion by H&E staining (Fig. 1A). We further confirmed this
phenotypic change in sSWAT by immunohistochemically
assessing UCP1 expression and additional beige adipocyte
cell markers, such as CITED1 (Fig. 1B, C, and E) and the
endothelial cell maker endomucin. Within 2 days post-
dox-diet exposure, beige adipocyte markers and endomu-
cin are apparent in VEGF-A-expressing mice. There was
very limited macrophage accumulation present in areas
with pronounced beiging as determined by immunostain-
ing with the macrophage marker MAC-2 (Fig. 1D). These
results indicate that the rate of appearance of beige adi-
pocytes induced by VEGE-A in sWAT occurs with rapid
kinetics, within as short as 2 days after VEGF-A exposure,
leading to a widespread beiging phenotype in sSWAT within
6 days of induction. Importantly, although there was a tran-
sient increase in macrophage infiltration on day 2, this sig-
nal was lost as time went on. To achieve a better temporal
resolution that would allow us to address the relationship
of vascularization per se versus beiging, we performed an
experiment within an even shorter time course. The result
clearly suggests that the increased vascularization precedes
the bulk of the UCP1 induction, as judged by the apparent
endomucin stain that only overlaps at the 36-h time point
with the emerging UCP1 stain (Fig. 1F-I).

VEGF-A-Induced Phenotypic Changes in sWAT

Are Tissue-Autonomous Effects: Short-term
Transplantation of Adipose Tissue for 1 Week

sWAT and BAT were collected after 2 days of dox ex-
posure and assayed by Western blot analysis for UCP1
expression (Fig. 2A). To assess whether VEGF-A-induced
phenotypic changes in sSWAT are tissue autonomous, we
performed adipose tissue transplantations. SWAT taken
from either VEGF-Tg mice or wild-type mice given a dox
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Figure 1—Time course of adipocyte-specific VEGF-A expression. VEGF-Tg mice were fed with a chow diet containing dox (60 mg/kg). At
the indicated time points (days 0, 1, 2, and 6 or 0, 12, 24, and 36 h), as indicated after initiation of dox-diet feeding, mice were sacrificed,
and sWAT was collected for histological analysis (n = 3 mice/each time point). A and F: H&E stain. B and G: Anti-UCP1 stain. C: Anti-
CITED1 stain. D: Anti-MAC-2 stain in sSWAT. E and H: Antiendomucin. /: Double label with endomucin and UCP1. Scale bars = 50 pm.

diet for 7 days prior to tissue harvest were subcutaneously sWAT grafts appeared darker in color, and more blood
implanted into isogenic C57/BL6J wild-type mice and vessels were generated compared with control sWAT trans-
maintained on a dox diet (Fig. 2B). Gross examination of plants (Fig. 2B). H&E-stained tissues also showed increased
fat grafts 7 days after implantation revealed that VEGF"  vascularization and a multilocular appearance of VEGF" sWAT
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Figure 2—VEGF-A induces beiging effects in SWAT in a tissue-autonomous manner. A: sSWAT and BAT were collected after 2 days of dox
exposure and assayed by Western blot analysis for UCP1 expression. A-VEGF, Apn-VEGF. B: Schematic diagram of sWAT transplants.
VEGF-Tg and wild-type mice were fed with a chow diet containing dox (60 mg/kg) for 7 days. SWAT donor tissues were harvested from either
wild-type or VEGF-Tg mice and subcutaneously implanted into left flank (SWAT from wild-type mice [Control]) and right side (SWAT from
VEGF-Tg mice [VEGF* sWAT]) of intrascapular area of isogenic C57/BL6J male mice (n = 3). Recipient mice were exposed to a chow diet
containing dox (60 mg/kg) for 7 days. Fat transplants from recipient mice were harvested and examined by histological analysis. H&E staining
(C), anti-UCP1 staining (D), and antiendomucin staining (E) were performed for VEGF-A* fat grafts and compared with control fat transplants.
Scale bars = 200 um. F: Stromal vascular cells (SVF) were harvested from the donors, in vitro differentiated into adipocytes, and induced with
dox. Quantitative PCR analysis was performed on Vegfa, Ucp1, Cidea, and Ebf3. **P < 0.01. All data are presented as mean + SEM.

compared with control tissues (Fig. 2C). Immunostaining for
UCP1 confirmed that BAT-like phenotypic changes in VEGF*
sWAT grafts were still intact in the setting of 7 days after
implantation (Fig. 2D). Furthermore, the Tg transplants were
significantly better vascularized, as judged by the much
denser endomucin stain seen in the transplanted fat pads
expressing VEGF-A (Fig. 2E). These results indicate that
VEGF-A-induced phenotypic changes in sSWAT reflect tissue-
autonomous effects, and these are sustained for at least
1 week postimplantation.

However, if stromal vascular cells are harvested from
the donor and in vitro-differentiated into adipocytes,
there is no difference with respect to the induction of
any of the beige marker genes in the continued presence
of VEGF-A induction during differentiation in vitro (Fig.
2F), indicating that the effects are not adipocyte autono-
mous, consistent with our previous report demonstrating
that in vitro treatment of mature adipocytes with exoge-
nous VEGF-A did not result in an induction of a beiging
program (17).

VEGF* sWAT Grafts Can Convey Systemic Metabolic
Improvements to the Host After Prolonged Transplant
In our previous study, we found that VEGF-A overexpres-
sion in SWAT ameliorates hypoxia, fibrosis, and proinflam-
matory responses induced by an HFD challenge (4). To test
whether exogenously implanted VEGE-A" fat tissues can
contribute to systemic metabolism of HFD-challenged
host mice, either control or VEGF-A" sWAT pads were

taken from wild-type or VEGF-Tg mice 1 week after dox-diet
exposure, respectively, and subsequently implanted into
isogenic wild-type mice. Following sWAT implantation,
these mice were fed with an HFD combined with dox for
3 weeks (Fig. 3A). Fasting glucose levels in circulation were
not significantly different in VEGF-A" fat-implanted mice
compared with control fat-implanted mice at the end of
this period (Fig. 3B). Body weight changes were also com-
parable in both groups (data not shown). To provide an
additional carbohydrate challenge, we performed OGTTs
on mice carrying for VEGF-A" or wild-type fat implants.
Mice carrying VEGF-A" fat transplants showed enhanced
glucose tolerance compared with mice receiving control
transplants (Fig. 3B). VEGF-A—expressing transplanted fat
pads can therefore exert a significant positive impact on
metabolic homeostasis of recipient mice. Extracts of the
transplanted fat pads were analyzed at the end of the study
period for a number of parameters. There were signifi-
cantly higher levels of VEGF-A mRNA seen in the Tg versus
wild-type fat transplants (Fig. 3C). As expected, higher Ucpl
mRNA levels were observed in the VEGF' transplants (Fig.
3D). VEGF-A action also translated into the expected higher
vascular density as judged by the higher levels of Cd31
mRNA (Fig. 3E). There were significant lower levels of in-
flammatory markers found in the VEGF-A" fat pads. Re-
duced F4/80 levels along with reduced serum amyloid
A3 and lower tumor necrosis factor-o mRNA were ob-
served, whereas Il6 levels seemed unchanged (Fig. 3F).
These reduced inflammatory markers reflect an overall
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Figure 3—VEGF* fat transplants improve glucose tolerance upon an HFD challenge. A: Schematic diagram of SWAT transplantation. Wild-
type controls and VEGF-Tg mice were fed with a chow diet containing dox (60 mg/ kg) for 1 week. SWAT from either control mice or mice
expressing VEGF* was harvested and subsequently implanted into C57/BL6J wild-type hosts. The recipient mice were fed with an HFD
containing a low dose of dox (60 mg/ kg) for 3 weeks. B: Glucose levels were determined during an OGTT 3 weeks posttransplantion after
continued HFD feeding. The difference at each time point was analyzed by Student ¢ test. *P < 0.05 (n = 5/group). All data are represented as
mean + SEM. Transplanted adipose tissues were harvested after 3 weeks, and quantitative PCR (QPCR) analysis was performed for VEGF-A
(C), UCP1 (D), and CD31 (E). F: Inflammatory markers were analyzed by qPCR. G: Fibrosis markers were analyzed by gPCR. Results were
analyzed by Student t test. P < 0.05, **P < 0.01 vs. control (n = 5/group). H: 4-Hydroxyproline levels of adipose tissue implants. /: Serum
VEGF-A levels. J: Adiponectin. K: Cholesterol. L: TGs. M. FFAs. N: Insulin. *P < 0.05. All data are presented as mean = SEM.

healthier fat pad, and consistent with these improve-
ments, there is significantly less fibrosis seen in the
VEGF-A" fat pad, as judged by gene expression of ex-
tracellular matrix proteins and total collagen levels in
the transplanted tissue (Fig. 3G and H). To address
systemic effects of transplantation with VEGF-A" fat
tissue, we measured serum VEGE-A levels of the host
animals. The effects of VEGF-A production in the trans-
planted fat pads seem to be restricted to the local mi-
croenvironment, as there is no significant difference in
circulating VEGE-A levels compared with mice receiving
wild-type transplants (Fig. 3I). In addition, there was
no evidence suggesting that the transplantation of
VEGF-A" fat pads led to beiging of WAT of the host
(Supplementary Fig. 1). The VEGF-A" fat transplants
led to significant improvements in systemic parame-
ters as well, beyond the improvements in the OGTT.

Adiponectin levels were increased in circulation (Fig.
3J). Although circulating cholesterol levels were unaf-
fected, significant improvements in circulating TGs, non-
esterified FFAs, and insulin were observed (Fig. 3K-N).

VEGF-A Overexpression in Adipocytes Promotes Cell
Survival and Functionality in Transplants

A qualitative histological examination of fat grafts after
the HFD challenge revealed that VEGF-A" fat grafts are
histologically quite distinct from control transplants (Fig.
4A). Enhanced vascularization was further confirmed with
endothelial markers, such as an antiendomucin stain (Fig.
4B). UCP1 staining for VEGF" fat grafts further reflects
extensive browning of sWAT compared with control (Fig.
4C). These results revealed that VEGF-A-induced angio-
genesis and beiging effects in SWAT remain intact in fat
grafts even 3 weeks after implantation.
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Figure 4—The survival rate of adipocytes in VEGF* fat grafts is increased compared with wild-type fat transplants. Control and VEGF-A* fat
implants were taken from the host 3 weeks after the HFD challenge containing a low dose of dox (60 mg/kg). SWAT fat grafts from both
groups (wild type, left panels; Tg, right panels) were subjected to histological analysis (n = 5/group). Two representative fields are shown for
each condition. A: H&E stain. Scale bars = 50 um. B: Antiendomucin stain. Scale bars = 50 pm. C: Anti-UCP1 stain. Scale bars = 200 pm.
D: Immunofluorescence stain for MAC-2 (macrophage marker, green) and perilipin (live adipocyte marker, red). Costain with DAPI (nuclei,
blue). Scale bars = 100 wm. Wild-type controls in top panel; Tg in the bottom panel. E: The ratio of perilipin* and MAC-2* cell populations

was calculated.

Adipose vasculature and beiging effects are associated
with metabolic benefits to adipose tissues. To see if these
properties confer better survival posttransplantation,
VEGF-A" fat grafts were stained with the adipocyte
marker perilipin (Fig. 4D, red). Only live adipocytes retain

a perilipin-positive stain on their lipid droplets. The mac-
rophage marker MAC-2 was used in parallel to monitor the
degree of local inflammation (Fig. 4D, green). The survival
rate of adipocytes was dramatically increased in VEGF-A"
fat grafts with reduced macrophage infiltration relative to
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control fat grafts (Fig. 4D and E). These results suggest that
VEGF-A overexpression in adipocyte increases the survival
of adipocytes in fat grafts, thereby explaining the reduced
levels of inflammatory markers as well as the reduced fi-
brotic response seen in Fig. 3.

VEGF-A Overexpression in Adipocytes Promotes
Beiging in an IL-4- and Adiponectin-Independent
Manner

Previous work suggested that both adiponectin and IL-4 are
important components in the context of beiging of sWAT.
Adiponectin overexpression leads to enhanced levels of
beiging (18,19), whereas cold-induced beiging and browning
were postulated to involve IL-4. Genetic loss of IL-4 signaling
impairs cold-induced biogenesis of beige fat (20). We wanted
to test whether the VEGF-A-induced beiging process has
similar requirements as the cold-induced beiging, or whether
we can highlight mechanistic differences. We were therefore
breeding the adipocyte-specific inducible VEGE-A mice into
the IL-4- and adiponectin-null backgrounds. Histologically, it
did not make a difference whether the VEGF-A induction
was done in a wild type (not shown), an IL-4-heterozygous
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state, or in an IL-4-null background (Fig. 5A). Comparable
areas of UCP1 induction were seen independent of IL-4 ge-
notype (Fig. 5B). We confirmed that IL-4 is indeed absent in
the IL-4-null background (Fig. 5C), whereas the degrees of
Ucpl mRNA induction were comparable even in the IL-4-
null background (Fig. 5D). Similarly, the beiging process was
completely independent of the presence or absence of adipo-
nectin (Fig. 5E-H). When we tested the requirement of IL-4
for cold-induced beiging, we saw indeed that both BAT and
sWAT were visibly less “dark,” potentially reflecting reduced
induction of the mitochondrial program (Fig. 6A). Post-cold
exposure, the entire beiging and browning program in BAT
was reduced (Fig. 6B and C), and this was further confirmed
histologically by H&E stains and anti-UCP1 immunostains
(Fig. 6D-F), confirming in our hands the previously estab-
lished findings that the process of beiging and browning
critically relies on IL-4.

The Beiging Effect in sSWAT Is Rapidly Lost After
VEGF-A Elimination

We exposed wild-type and VEGF-A Tg mice to dox for
3 days to fully induce the beiging program. We then
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removed the dox from the food and analyzed the sWAT
after 7 and 12 days of VEGF-A washout (Fig. 7A). Dox is
usually washed out within 12-16 h after its removal
(21,22). The sWAT from the Tg mice looks visibly browner
after 3 days of induction of VEGF-A with dox. The color of
the sWAT appears paler and reaches normal after 12 days
of dox washout (Fig. 7A). Histologically, the characteristic
multilocular appearance disappears within the same time
frame, as judged by H&E stains (Fig. 7B). These observations
are further confirmed at the gene expression level (Fig. 7C
and D). UCP1 and VEGF-A reach levels of controls after
7 days and in fact fall even below normal levels in the controls
by day 12, likely because of a compensatory response to the
previous elevation of the levels during dox exposure.

DISCUSSION

Angiogenesis is an important component of adipose
tissue remodeling under both normal and pathophysio-
logical conditions (1). Proper adipose tissue vascularization
is essential to maintain normal tissue homeostasis. Im-
provements in adipose tissue angiogenesis offer a po-
tential therapeutic avenue for metabolic diseases (23).
Various cytokines secreted from adipocyte, such as leptin,
adiponectin, hepatocyte growth factor, fibroblast growth
factor, platelet-derived growth factor, transforming growth
factor-B3, and VEGF as well as the butyric acid derivative

monobutyrin, exert established angiogenic activities in ad-
ipose tissue (2). Particularly, a host of recent studies have
suggested that adipose tissue-derived VEGF, a bona fide
endothelial growth factor, plays a crucial role in adipose
tissue plasticity and, secondary to that, in systemic metab-
olism (4,5,24,25). In this study, we focused on the tempo-
ral aspects of VEGF-A action in adipocytes and the
advantages this confers upon transplanting the tissue. To
our surprise, local overexpression of VEGF-A in adipose
tissue very rapidly triggers angiogenesis and browning of
sWAT, with initial signs apparent as early as 2 days after
exposure to higher levels of VEGF-A. We were particu-
larly surprised how quickly the transformation of sWAT
occurred, and this happens with VEGEF-A levels well within
the physiological range, because massive overexpression
of VEGF-A can lead to edema formation and needs to be
avoided (4). As such, VEGF-A is probably one of the most
potent “beiging” factors described to date or minimally, the
only one for which such a refined time course of action
is being described. Our previous data (26) have shown
that either cold-induced or B3-adrenergic agonist-medi-
ated beiging of sWAT is primarily because of de novo
recruitment of precursor cells. Whether a similar mechanism
is in place for VEGF-A-mediated beiging is difficult to
address, as two parallel inducible systems would be re-
quired to do the traditional pulse/chase experiments.
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However, because mature adipocytes do not express
VEGEF-A receptors, and the addition of VEGF-A in tissue
culture does not cause any degree of browning (4), it seems
unlikely that a simple “trans-differentiation” mechanism is
in place despite the unexpectedly rapid kinetics observed in
this study. Interesting recent data also point toward an
intracrine-signaling mechanism of VEGF. VEGF can control
differentiation in mesenchymal stem cells that are osteo-
genic precursors by acting through the activation of the
transcription factors RUNX2 and peroxisome proliferator—
activated receptor y2 as well as through interactions with
the nudlear envelope proteins lamin A/C. This intracrine sig-
naling mechanism is distinct from the role of secreted VEGF-
A and its receptors (27). We cannot exclude that such a
mechanism is in place in this study as well. What is, however,
quite clear is that the expansion of the vasculature precedes
the appearance of UCP1-positive cells, highlighting an inter-
esting temporal relationship between the two processes. Fu-
ture experiments will have to highlight whether the mere
expansion of the vasculature is sufficient for the process of
beiging or whether there is an additional VEGF-A-dependent
component to the process. Also quite apparent but less sur-
prising is the observation that the beige adipocytes induced
by VEGEF-A require the continued presence of VEGF-A. Loss
of ectopic expression of VEGF-A results in the disappearance
of the beige adipocytes within 7 to 12 days, presumably
through conversion to white adipocytes.

We chose adipose tissue transplantation as a model
system to probe for adipose tissue health and survival

benefits induced by VEGF. Fat implantation is a common
technique for the repair of tissue defects in plastic and
reconstructive surgery. However, the survival rates of adipo-
cytes in fat grafts are varying depending on numerous
conditions during surgery (28-30). Therefore, establish-
ment of stable and optimized conditions to sustain
adipocyte health and survival is critical for a successful
surgical fat implantation. In this study, we show that
VEGEF-overexpressing adipose tissue confers enhanced adipo-
cyte survival with reduced chronic inflammation, leading to
improvements in systemic metabolic parameters in diet-
challenged obese hosts. The experiments demonstrate that
the original phenotype of the adipose tissue from the donor
is maintained in the host over prolonged periods and can
convey significant metabolic benefits to the host. Similar
results have been reported by Min et al. (31) for human
beige fat transplants, commented on by Wang and Scherer
(32). These authors demonstrated that they can differenti-
ate human beige precursors in vitro into beige adipocytes.
These cells can be transplanted into nude mice, in which
they can positively affect systemic glucose homeostasis. The
findings we report in this study with Tg VEGF-A are very
much in line with the results reported by Wang and Scherer
(32) and Min et al. (31), highlighting how small patches of
transplanted fat can cause significant improvements in met-
abolic homeostasis.

Finally, we also studied this model with an eye on
deeper mechanistic events leading to the beiging process.
In particular, Qiu et al. (20) described an efferent beige fat
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thermogenic circuit that consists of eosinophils, the type
2 cytokines IL-4/13, and alternatively activated macro-
phages. In this model, macrophages are recruited to
cold-stressed subcutaneous adipose tissue, undergo alter-
native activation, and induce tyrosine hydroxylase activ-
ity along with catecholamine production, factors critical
for the beiging process. We tested whether the VEGF-A-
mediated beiging process has similar requirements by
breeding the inducible adipocyte-specific VEGF-A system
into the IL-4-null background. IL-4-null mice indeed
showed a reduced propensity toward beiging and brown-
ing in the cold. However, the VEGF-A-mediated beiging
was unaffected by the absence of IL-4. This is the first
example in which the beiging process has been studied out-
side the scope of cold exposure with respect to the pos-
tulated involvement of macrophages and the associated
catecholamine production. During the time course, we in-
deed observe a transient infiltration of macrophages after
24 h, which subsequently rapidly dissipates. Altogether,
this hints at important differences between classic cold-
mediated effects and at least VEGF-A-induced beiging.
Similar results held true for VEGF-A effects in adiponectin
null mice.

As additional beiging factors are being described in the
literature, it will be interesting to see what commonalities
and distinctions can be found regarding the mechanisms
driving the beiging process among the different factors
and the cold-induced beiging process.
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