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Traumatic central nervous system (CNS) injury, which includes both traumatic brain injury
(TBI) and spinal cord injury (SCI), is associated with irreversible loss of neurological
function and high medical care costs. Currently, no effective treatment exists to improve
the prognosis of patients. Astrocytes comprise the largest population of glial cells in the
CNS and, with the advancements in the field of neurology, are increasingly recognized as
having key functions in both the brain and the spinal cord. When stimulated by disease
or injury, astrocytes become activated and undergo a series of changes, including
alterations in gene expression, hypertrophy, the loss of inherent functions, and the
acquisition of new ones. Studies have shown that astrocytes are highly heterogeneous
with respect to their gene expression profiles, and this heterogeneity accounts for
their observed context-dependent phenotypic diversity. In the inured CNS, activated
astrocytes play a dual role both as regulators of neuroinflammation and in scar formation.
Identifying the subpopulations of reactive astrocytes that exert beneficial or harmful
effects will aid in deciphering the pathological mechanisms underlying CNS injuries and
ultimately provide a theoretical basis for the development of effective strategies for the
treatment of associated conditions. Following CNS injury, as the disease progresses,
astrocyte phenotypes undergo continuous changes. Although current research methods
do not allow a comprehensive and accurate classification of astrocyte subpopulations in
complex pathological contexts, they can nonetheless aid in understanding the roles of
astrocytes in disease. In this review, after a brief introduction to the pathology of CNS
injury, we summarize current knowledge regarding astrocyte activation following CNS
injury, including: (a) the regulatory factors involved in this process; (b) the functions of
different astrocyte subgroups based on the existing classification of astrocytes; and (c)
attempts at astrocyte-targeted therapy.

Keywords: traumatic brain injury, spinal cord injury, reactive astrocytes, scar-forming astrocytes, astrocyte-
targeted therapy

INTRODUCTION

In 1856, Rudolf Virchow described for the first time a type of cell with neuron-supportive functions
(Virchow, 1856). Then, in 1895, MV Lenhossék proposed the name astrocyte (‘‘Astrocyten’’) for
this type of neuron-supporting cell (Lenhossék, 1893). Cortical astrocytes originate from radial
glia derived from the neuroepithelial cells, radial glial cells originate from the cortical ventricular
zone and are characterized by a long basal process that extends from the cortical ventricular zone
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to the pial surface (Arellano et al., 2021). During embryonic
development, radial glial cells generate intermediate glial
progenitors via asymmetric division, and these progenitors then
migrate, proliferate, and finally transform into astrocytes in
nerve tissue. After birth, astrocytes are primarily generated
through the direct transformation of radial glial cells in the
ventricular zone, the migration and development of postnatal
progenitors in the subventricular zone, and the symmetrical
division of differentiated astrocytes (Levison andGoldman, 1993;
Ge et al., 2012; Verkhratsky and Nedergaard, 2018; Abdeladim
et al., 2019). NG2 glial cells comprise another possible source
of astrocytes (Nishiyama et al., 2016). Here, astrocytes undergo
limited migration along with radial glial processes (Jacobsen and
Miller, 2003). Astrocytes of different origins are phenotypically
diverse, which is a partial manifestation of the heterogeneity of
astrocyte morphology and function (Magavi et al., 2012; Tsai
et al., 2012; Molofsky and Deneen, 2015). A combination of
heredity, development, and phenotype renders astrocytes a truly
opportunistic cell with lifelong adaptive plasticity.

Under physiological conditions, astrocytes perform a variety
of functions primarily associated with the maintenance of
CNS homeostasis, including the formation and maintenance of
the blood–brain barrier (BBB) and blood–spinal cord barrier
(BSCB), signal transmission across synapses, the maintenance
of neuronal function, and metabolic regulation (Molofsky
and Deneen, 2015). In a pathological background, however,
astrocytes can become activated. The lifelong adaptive plasticity
of these cells and the complexity of the disease background
determine the diversity of astrocyte subpopulations after injury
(Verkhratsky and Nedergaard, 2018). Following CNS insult,
activated astrocytes can sequentially display two different
histological phenotypes over time, first becoming reactive
astrocytes (RAs), and then scar-forming astrocytes (SAs; Hara
et al., 2017). This sequential phenotypic change from the resting
state to the activated state is referred to as reactive astrogliosis
(Zamanian et al., 2012). However, this histological classification
method fails to clearly define RAs and SAs as it is neither
objective nor quantitative.

In 2017, Hara et al. (2017) were the first to define several
RA- and SA-specific marker genes in the mouse. Plaur,
Mmp2, Mmp13, Axin2, Nes, and Ctnnb1 were classified as
RA marker genes, while SA markers included Cdh2, Sox9,
and chondroitin sulfate proteoglycan (CSPG)-related genes,
such as Xylt1, Csgalnact1, Chst11, Pcan, Acan, and Slit2.
Nevertheless, RAs and SAs both display high expression levels
of several proteins, including GFAP, nestin, β-catenin, N-
cadherin, and SOX9. As the disease progresses, there is an
overlap of RA subpopulations and RAs interact with Col1 and
are converted into SAs via the integrin/N-cadherin pathway
(Hara et al., 2017; Li X. et al., 2020). This research is of great
significance to the understanding of SAs, but due to the
lack of further research, the function of SA is not yet clear.
Recently, Escartin et al. (2021) redefined RAs as ‘astrocytes that
undergo molecular, morphological, and functional changes in
response to pathological stimuli from surrounding tissue, such as
CNS disease, injury, and deleterious experimental manipulation,
among others. High GFAP expression levels and cell hypertrophy

are considered the minimum criteria for defining RAs
(Liddelow et al., 2017).

In addition to the above classification of astrocytes (RAs and
SAs), RAs are also divided into different astrocyte subgroups.
In 2012, Zamanian et al. undertook a genomic analysis using
two mouse injury models (inflammation and cerebral ischemia
models) to profile RA phenotypes. The authors found that the
RA phenotype was dependent on the type of inducing injury,
and identified high Lcn2 and Serpina3n expression levels as
strong markers of RA phenotype (Zamanian et al., 2012). In
2017, Liddelow et al. found that neurotoxic RAs, which they
named A1 astrocytes, were induced by cytokines (TNF-α, IL-
1α, and complement component C1q) secreted by activated
microglia, whereas neuroprotective RAs, termed A2 astrocytes,
were induced under ischemic and hypoxic conditions. As
shown in Figure 1. The neurotoxic effect of complement
component 3 (C3), a strong marker of A1 astrocytes, has
been confirmed in a variety of CNS diseases, especially the
interaction between the C3 cleavage fragment, C3a, and its
receptor, C3aR, on neurons (Guo et al., 2010; Lian et al.,
2015; Li J. et al., 2020; Yadav et al., 2021). However, the
A1 and A2 phenotypes were not proposed to be universal or
all-encompassing, they were widely misinterpreted as evidence
for a binary polarization of reactive astrocytes in either
neurotoxic or neuroprotective states, which could be readily
identified in any CNS disease, acute or chronic, like the
once-popular, but now discarded, Th1–Th2 lymphocyte and
M1–M2microglia polarization theories. Any binary classification
method cannot show the diversity of astrocytes across diseases.
More importantly, in mouse models of CNS damage, a RA subset
was usually a mixture of A1 and A2 or pan-reactive transcripts
(Das et al., 2020). So, Escartin et al. (2021) recommend moving
beyond the A1–A2 labels and the misuse of their marker
genes. In fact, the latest works of the original authors who
studied these subtypes no longer use A1/A2. Guttenplan et al.
(2021) used the induction conditions of A1 astrocytes but
called the induction results neurotoxic reactive astrocytes. Hasel
et al. (2021) used the term neuroinflammatory astrocyte, and
used the pattern of ‘‘Y-zone X-positive astrocytes showing
Z phenomenon’’ to describe the neuroinflammatory astrocyte
subgroups he discovered. Based on existing knowledge, this is an
ideal way of naming. However, the A1/A2 classification of RAs is
still widely used.

In our opinion, under certain conditions, neurotoxic reactive
astrocytes, neuroinflammatory astrocytes, and A1 astrocytes
are almost the same. In vitro, neurotoxic reactive astrocytes
and A1 astrocytes are induced in the same way. In the
brain of LPS-induced systemic inflammation mouse model,
Liddelow et al proposed the concept of A1 astrocytes, and
Hasel et al. proposed various neuroinflammatory astrocyte
subtypes, A1 astrocytes can be regarded as a subgroup of
neuroinflammatory astrocytes. Neurotoxic reactive astrocytes
emphasized function, while neuroinflammatory astrocytes
emphasized background, both concepts include A1 astrocytes.
At present, users of the A1/A2 concept all regard A1 as
the representative of neurotoxic astrocytes and A2 as the
representative of neuroprotective astrocytes. However,
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FIGURE 1 | Under the stimulation of injury and disease, (A) naive astrocytes are activated into functionally heterogeneous reactive astrocytes (RAs); this
heterogeneity is determined by the background of the astrocytes. The Plaur, Mmp2, Mmp13, Axin2, Nes, and Ctnnb1 genes are markers of RAs. In an inflammatory
background, (B) A1 astrocytes are proposed to be a subpopulation of neurotoxic RAs and are marked by C3 expression. (C) A2 astrocytes are induced by ischemia
and hypoxia and are indicated to play a neuroprotective role in injury and disease. A2 astrocytes can be distinguished by the expression of S100A10. C3+

A1 astrocytes have long dendrites, while S100a10+ A2 astrocytes have hypertrophic cell bodies with few dendrites. There are other as yet unidentified
subpopulations of RAs that also play an important role in disease, such as (D) and (E). As the disease progresses, there is an overlap of RA subpopulations and
chondroitin sulfate proteoglycan (CSPG) deposits, which together induce the conversion of RAs to SAs (F). Cdh2, Sox9, and CSPG-related genes (Csgalnact1,
Chst11, Pcan, Acan, and Slit2) are markers of scar-forming astrocytes (SAs).

considering their functional heterogeneity, it is likely that
not all neurotoxic RAs are A1 astrocytes, and neither are
A2 astrocytes. In the background that current knowledge
does not allow objective classification of astrocytes, the
use of a binary description of reactive astrocytes (A1/A2,
neurotoxicity/neuroprotective), seems unavoidable. Recently,
Escartin et al. (2021) reached a consensus that the field
should move beyond binary descriptors and embrace objective
classification based on their increasingly complex functional
heterogeneity. And the work by Liddelow and Hasel supports
this view (Hasel et al., 2021).

Astrocytes are key factors in secondary neuronal damage
and repair inhibition largely due to their dual role in the
regulation of neuroinflammation and glial scar formation after
CNS injury (Liddelow and Barres, 2017; Adams and Gallo, 2018).
This dual role requires the accurate classification of astrocyte
subpopulations. In this review, we will focus on the heterogeneity
of astrocytes and astrocyte targeted therapy strategies after CNS
injuries (TBI and traumatic SCI) to help the development of
targeted therapy strategies based on these precise classification
of astrocytes.

TRAUMATIC CNS INJURY

Owing to the preventability of most CNS injuries and the
complex and expensive medical care they require, TBI and SCI
are increasingly recognized as global health priorities. In 2016,

approximately 27.08 million new cases of TBI and 0.93 million
new cases of SCI were diagnosed. The age-standardized incidence
rate was reported to be 369 per 100,000 population for TBI
and 13 per 100,000 for SCI (GBD 2016 Traumatic Brain Injury
and Spinal Cord Injury Collaborators, 2019). TBI alone caused
annual global economic losses of $US400 billion (Maas et al.,
2017). From 1990 to 2016, the age-standardized prevalence of
TBI increased by 8.4%, whereas that of SCI did not change
significantly. However, given the increase in population density,
population aging, and the increased use of motor vehicles, the
number of people with SCI is expected to increase. TBI has
a higher mortality rate (higher acute injury-related mortality),
while TSCI is characterized by a higher standardized mortality
rate (shorter long-term life expectancy for SCI survivors;
Badhiwala et al., 2019). Public health initiatives to prevent
injuries, such as the use of bicycle helmets, fall prevention,
policy changes affecting the impact of sports, and other public
safety measures, are very effective in reducing the morbidity
and mortality associated with TBI and SCI (Taylor et al., 2017).
The focus of clinical management involves reducing intracranial
pressure, medullary cavity pressure, and cerebral edema, as
well as systemic supportive treatment (Maas et al., 2021). In
most cases, the effects of these interventions on patients are
disappointing (Maas et al., 2017). The burden of disability due
to CNS injury can also have a devastating effect on the families
of patients because it prevents them from engaging in economic
activities.
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TBI is divided into focal tissue damage and diffuse tissue
damage. Focal injuries are caused by direct impact and
include scalp injuries, skull fractures, brain contusions, cerebral
hemorrhage, and stroke, which form focal TBI lesions that
can vary greatly in size (Gaetz, 2004). Diffuse injury is caused
by acceleration–deceleration forces, including hypoxia–ischemic
injury, meningitis, and vascular injury (Gaetz, 2004). However,
tissue damage after TBI is rarely purely focal or diffuse, and
a single case usually involves multiple focal and diffuse lesions
(Skandsen et al., 2010). TBI-related tissue pathology and its
functional consequences are heterogeneous and determined
largely by: (a) the mechanical properties of the injury; (b) the
degree of injury severity (mild, moderate, or severe); and (c)
the anatomical location of the injury (Burda et al., 2016). The
spinal cord has a unique anatomical structure and the impact
of scars on the function of the spinal cord at later stages of
SCI can be devastating. Consequently, greater attention is given
to pathological changes occurring over time. Several key time
points are worth noting, such as the 3rd day after injury when
inflammation peaks.

Traumatic injury in the CNS is characterized by transient
mechanical damage and subsequent delayed non-mechanical
damage (Burda et al., 2016). Primary injury in the brain is caused
by mechanical force, which immediately leads to contusion and
bleeding in the affected area. In the spinal cord, injury usually
relates to vertebral fracture or dislocation (Oyinbo, 2011). The
secondary injury occurs hours, days, months, or even years
after the initial injury, and is characterized by the expansion
of tissue damage from the center of the disease. According to
the research in the rodent model of TBI, secondary injury can
be simply divided into two parts. The first is inflammation,
which peaks on the 3rd day after injury (Susarla et al., 2014).
Under the stimulation of a wide variety of pro-inflammatory
factors produced as a result of the primary injury, microglia and
astrocytes are activated, peripheral immune cells are recruited,
and the inflammation cascade is initiated. These effects are
accompanied by the destruction of the neurovascular unit,
glutamate accumulation, oxidative stress, axonal damage, and
neuronal death (Gyoneva and Ransohoff, 2015). The second
part involves scar formation, in which glial scars begin to form
on day 7 post-injury (Villapol et al., 2014). The glial scar
surrounds the site of injury and limits the spread of a strong
inflammatory response (Burda and Sofroniew, 2014); however,
glial scars secrete a variety of cytokines and proteoglycans
that promote neurotoxicity and inhibit axon regeneration,
respectively (Silver and Miller, 2004). The outcome of glial
scarring is the development of a fibrotic scar, which creates a
physical and chemical barrier to axon regeneration and nerve
function recovery after injury (O’Shea et al., 2017).

The role of an astrocyte is determined by its subgroup status
and the surrounding environment. This diversity of astrocyte
function directly affects the inflammatory response and glial scar
formation after injury. After an injury, astrocytes interact with
surrounding cells, such as neurons, microglia, and endothelial
cells, that together constitute the post-injury microenvironment,
which plays a pivotal role in disease development (Abbott et al.,
2006; Valori et al., 2019).

Although primary CNS injuries cannot be treated, secondary
injuries provide a therapeutic window for the treatment of
the resulting diseases (Wang et al., 2014). Accordingly, to
identify effective treatment strategies, research attention has
increasingly focused on the role of astrocytes in the pathology of
CNS damage.

ASTROCYTE ACTIVATION AFTER INJURY

In response to CNS damage, naïve astrocytes are activated and
transform into RAs. This transformation involves changes in
morphology, increased expression of the intermediate filament
proteins GFAP and vimentin, as well as increased proliferation
and secretion of inflammatory mediators and growth factors
(Karve et al., 2016). After TBI in mouse, astrocytes react within
24 h and reach a peak of approximately 3–7 dpi, showing a
continuous reactive state (Susarla et al., 2014). A recent study
conducted using a mouse CCI (chronic constriction injury)
model reported the occurrence of astrocyte hypertrophy in the
lesion site and surrounding area at 3 days post-injury (dpi). At
7 dpi, the morphological changes became long-lasting, and glial
scars began to form (Villapol et al., 2014). In this model, reactive
gliosis persisted for up to 60 dpi, indicative of a continuous
response of astrocytes to brain injury (Villapol et al., 2014). In
another study, after sensorimotor cortex aspiration in adult rats,
astrocyte activation lasted for 16 weeks (Basiri and Doucette,
2010).

Primary Mechanical Stress
In traumatic CNS injury, mechanical stress can cause neuronal
membrane instability and cytoskeleton disintegration (LaPlaca
et al., 2009). Astrocytes are activated through plasma membrane
stretching. The results of a study using astrocytes cultured
on deformable membranes indicated that mechanical strain
led to AKT activation in astrocytes via the stimulation of
P2 receptors and promoted ATP release; this, in turn, activated
extracellular signal-regulated protein kinase (ERK; Neary et al.,
2005). Additionally, the knockout of the Cav1.2 subunit of L-type
voltage-operated calcium channels attenuated the migratory
and proliferative abilities of astrocytes, indicating that these
channels contribute to astrocyte activation, at least in vitro
(Cheli et al., 2016). In a mouse model of nerve demyelination,
reducing voltage-gated Ca2+ influx in astrocytes during brain
demyelination significantly attenuated brain inflammation and
astrocyte reactivity (Zamora et al., 2020). Indeed, calcium is
required for ERK activation in astrocytes, and inhibiting these
Ca2+ channels may be an effective means of preventing astrocyte
activation and proliferation. In recent research, Hlavac et al
showed rat primary astrocytes exposed to high-rate overpressure
were mechanically activated, involving changes in structure
and junctional proteins (Hlavac and VandeVord, 2019). Their
further study indicated that both extracellular adhesion (via
FAK activation) and cationic conductance (via ion channels)
contribute to this progress (Hlavac et al., 2020). Wakida et al.
(2020) showed astrocyte phagocytosis was a mechanosensitive
response, and astrocytes exposed to fluid shear stress initiated
phagocytosis at a faster rate than cells observed under static
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conditions. Liu J. et al. (2021) proposed Piezo1(mechanosensing
channel) in astrocytes was involved in the mechanical activation
of astrocytes caused by mechanical stretching.

Secondary Pathological Process
During the secondary pathological process, the release of
intracellular components by the cells injured by primary
mechanical stress; activation of microglia and astrocytes at
the injured site; production of cytokines and chemokines;
and recruitment of peripheral immune cells into CNS, these
processes influence each other and produce complex interaction.
Peripheral cells released signal factors to recruit extra cells from
the periphery and maintain the activation of microglia and
astrocytes, leading to excessive activation of astrocytes, which
further damaged surrounding tissues and neurons (Gyoneva and
Ransohoff, 2015). Additionally, secondary inflammation after
CNS injury is the body’s reactive inflammation to the injury,
which is different from primary neuroinflammation, such as
AD, which is caused by the disorder of normal growth and
metabolism in cells (Cao et al., 2021).

In the context of post-injury inflammation, the combination
of DAMP (HMGB1, Hsp72, HA, ATP) and TLRs drove the
complex inflammation network and astrocyte effector events
(Struve et al., 2005; Sun et al., 2017; Sun L. et al., 2019; Du
et al., 2021; Li et al., 2021b; Michinaga and Koyama, 2021).
Cytokines IL-1β, IL-6, TNF-α activated astrocytes by activating
the corresponding receptors and downstream signaling pathways
(NFκB, MAPK, NO synthase), and led to the secretion of
inflammatory substances (HMGB1, NO, ROS) which further
promoted the activation cascade of astrocytes (Swanson et al.,
2004; Sun et al., 2017; Sun L. et al., 2019; Patil et al., 2021;
Qian et al., 2021). Human spinal cord astrocytes induced by IL-
1β showed up-regulation of chemokines and axon permissive
factors (including FGF2, BDNF, and NGF) expression, and
down-regulation of most genes that regulate axon suppression
molecules, including ROBO1 and ROBO2 (Teh et al., 2017).
After the injury, the EGFR of astrocytes is up-regulated,
and mTOR pathway is up-regulated after combining with
EGF. The use of EGFR inhibitors effectively reduced reactive
astrogliosis (Codeluppi et al., 2009; Li Z. W. et al., 2014).
You et al. (2017) proposed that IL-17-JAK/STAT-VEGF axis
was involved in the activation of astrocytes after SCI. As
a clear target of MIF, the CD74 receptor on the astrocyte
membrane binded to MIF, leading to excessive activation
of astrocytes, and this process was significantly blocked by
c-Jun N-terminal kinase inhibitors (Zhou et al., 2018). But in
gecko astrocytes, the combination of MIF and CD74 could
not cause obvious inflammation. Du et al. (2021) proved that
Vav1 was the key mediator of this phenomenon. In addition,
lncRNAPVT1/miR-186–5p/CXCL13/CXCR5 axis and lncRNA
H19/miR-1–3p/CCL2 axis were involved in the activation of
astrocytes after SCI (Li P. et al., 2020; Zhang P. et al., 2021).
MiR-21 regulated the proliferation, secretion, and activation
of astrocytes through the PI3K/Akt/mTOR signaling pathway
mediated by PTEN, as a positive factor for the recovery
of acute SCI (Liu et al., 2018). MiR-17–5p may specifically
regulate the proliferation of RAs triggered by LIF through the

JAK/STAT3 pathway (Hong et al., 2014). miR-379 (A et al.,
2019), miR-124 (Jiang et al., 2020), miR-145 (Wang et al., 2015),
and miR-140 (Tu et al., 2017) negatively regulated astrocyte
activation and improved the prognosis of the disease. The
transcription factors OLIG2 and SP1, as well as FGF, FGFR,
and PDGFRβ have all been implicated in glial scar formation
(Kang et al., 2014; Koyama, 2014; Pei et al., 2017; Table 1). These
experimental results obtained in ideal places under different
conditions emphasized the heterogeneity of reactive astrocytes
at the morphological, functional, biochemical, metabolic, and
transcriptome levels. In the complex environment inside the
body, they will be covered up.

REACTIVE ASTROCYTES

RAs are astrocytes that undergo molecular, morphological, and
functional changes in response to pathological stimuli from
surrounding tissue, such as CNS disease, injury, and deleterious
experimental manipulation, among others. As mentioned before,
the lifelong adaptive plasticity of astrocytes and the complexity
of the disease background determine the diversity of astrocyte
subpopulations after injury. In animal models of TBI, P2Y (1)R
stimulation was shown to reduce the severity of brain edema
and cytotoxic swelling (Talley Watts et al., 2013). However, the
results of another study suggested that microglia could convert
astrocytes into neurons by mediating the downregulation of P2Y
(1)R (Shinozaki et al., 2017). Early et al. (2020) proposed that
astrocytes exhibited age-related progressive reactive astrocyte
response by the models of TBI in mice of different ages. Recently,
Hasel et al. (2021) successfully demonstrated the heterogeneity
of RAs in the brain of LPS-induced mouse models. They used
single-cell sequencing combined with spatial transcriptomics
and in situ hybridization techniques to show that RAs were
transcriptome and spatially heterogeneous under inflammatory
conditions; and clarified the highly expressed genes and possible
functions of RA subtypes in different anatomical locations (Hasel
et al., 2021). Combined, the findings of all these studies have
highlighted the high heterogeneity of RAs, which can lead to
both neuroprotective and toxic effects after CNS injury (Miller,
2018). Differences in in vitro induction conditions; species used
in animal models; injury type, degree, and location; and time
passed after the injury have all contributed to the contrasting
results obtained in different studies. All these make the precise
typing of RAs more difficult.

Debris Clearance
The timely removal of dead cells after CNS injury helps limit
secondary tissue damage. Phagocytosis is normally carried out by
professional phagocytes. However, several electron microscopy-
based studies as early as the 1970s showed that astrocytes could
swallow small fragments, such as axons or myelin fragments
(Ronnevi, 1978). Later, it was discovered that astrocytes were
involved in the removal of myelin debris during Wallerian
degeneration in the goldfish visual system (Colavincenzo and
Levine, 2000). Subsequent studies showed that after CNS injury,
astrocytes participate in the removal of axons and myelin
fragments, even entire dead cells, thereby protecting injured
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TABLE 1 | Molecules and signaling pathways that involved in the activation of astrocytes.

Etiology category Activation factor

Primary mechanical force Plasma membrane stretching (Neary et al., 2003, 2005), Cav1.2 voltage-gated Ca2+ channels (Cheli et al., 2016;
Zamora et al., 2020), high-rate overpressure (Hlavac and VandeVord, 2019; Hlavac et al., 2020), fluid shear stress
(Wakida et al., 2020).

Cytokines and growth
factors

IL-1β (Teh et al., 2017), IL-6 (Patil et al., 2021), IFN-γ, CNTF, EGF (Li Z. W. et al., 2014), IL-17 (You et al., 2017), TNF-α
(Gayen et al., 2020; Patil et al., 2021), LIF (Kerr and Patterson, 2004; Goodus et al., 2016), VEGF (Gao et al., 2015), MIF
(Du et al., 2021), FGF (Kang et al., 2014), CTGF (Lu M. et al., 2019).

Chemokines MCP-1 (Gwak et al., 2012; Joy et al., 2019; Liraz-Zaltsman et al., 2021).

Signal transducers STAT3, NF-κB, JAK2 (Oliva et al., 2012; You et al., 2017; Li X. et al., 2020), mTOR (Codeluppi et al., 2009), Notch1
(Ribeiro et al., 2021), MAPK (Zhang X. et al., 2021), ERK (Sticozzi et al., 2013; Li et al., 2021a), PKC (Chao et al., 2018),
SOX9 (Liu W. et al., 2021).

Receptors p75NTR (Chen et al., 2020), CB2R (Jing et al., 2020), ETBR (Koyama, 2021), EGFR (Li Z. W. et al., 2014), TLRs (Kigerl
et al., 2014; Rosciszewski et al., 2018), purine receptor (Li et al., 2021b), FGFR (Kang et al., 2014), PDGFRβ (Pei et al.,
2017), CD36 (Bao et al., 2012), CD44 (Bourguignon et al., 2007), CD74 (Su et al., 2017).

Chaperone proteins Sig-1R, Hsp72, PDIs (Michinaga and Koyama, 2021).

Hormones Neuron-derived estrogen (Lu Y. et al., 2020), noradrenalin (Smith et al., 2005; Bekar et al., 2008).

Oxidative stress molecules NO (Swanson et al., 2004), ROS (Qian et al., 2021).

Non-coding RNA lncRNAPVT1/miR-186–5p (Zhang P. et al., 2021), lncRNA H19/miR-1–3p (Li P. et al., 2020), miR-21 (Liu et al., 2018),
miR-145 (Wang et al., 2015), miR-140 (Tu et al., 2017), miR-17 (Hong et al., 2014), miR-379 (A et al., 2019), miR-124
(Jiang et al., 2020).

Transcription factor Olig2, Sp1 (Koyama, 2014).

Protease uPA (Diaz et al., 2021), USP18 (Liu W. et al., 2021).

Proteins HMGB1 (Sun et al., 2017; Sun L. et al., 2019), ICAM-1 (Gwak et al., 2012), Galectin-3 (Ribeiro et al., 2021).

Peptides ET-1 (Goodwin and Grizzle, 1994; Michinaga et al., 2018, 2020a).

Others HA (Struve et al., 2005), Glutamate (Gwak et al., 2012), ATP, Ca2+ (Li et al., 2021b), NG2 (Huang et al., 2016), Cr (Ma
et al., 2017).

neurons from contact-induced cell death (Basiri and Doucette,
2010; Lööv et al., 2012). Morizawa et al. (2017) reported
that following brain ischemia, RAs could become phagocytic
in a limited spatiotemporal pattern and engulf debris via
upregulating the phagocytosis-related ABCA1 pathway. Wang
et al. showed that astrocytes directly cleared myelin debris
through endocytosis after SCI (Wang S. et al., 2020).

Glutamate Excitotoxicity
A sharp increase in extracellular glutamate levels has been
detected in both CNS injury models and human patients,
and this increase represents the cumulative effect of several
pathological events that lead to the overstimulation of glutamate
receptors and the occurrence of large cation fluxes (Lima et al.,
2021). Glutamate excitotoxicity plays an important role in the
development of secondary CNS injury. It can lead to neuronal
death, followed by prolonged depolarization and subsequent ion
imbalance, ATP depletion, increased intracellular free calcium
levels, and, ultimately, more serious tissue damage (Jamjoom
et al., 2021).

The glutamate transporters GLAST and GLT-1 are mainly
expressed in astrocytes and are downregulated following TBI,
which leads to enhanced excitotoxicity (Beitchman et al.,
2020). Astrocytic excitatory amino acid transporters (EAATs)
can protect against neuronal death induced by microglia-
derived glutamate, whereas microglial EAATs exert neither
neurotoxic nor neuroprotective effects (Liang et al., 2008). These
observations indicate that astrocytic glutamate transporters are

key for limiting the development of excitotoxic conditions by
reducing the concentration of interstitial glutamate. In vitro,
oxygen–glucose deprivation/reoxygenation insult can reportedly
activate the HMGB1/TLR4 axis and reduce glutamate clearance
by inhibiting GLAST expression in primary astrocytes (Lin et al.,
2020). Similarly, the downregulation of GLT-1 expression in RAs
leads to worse functional and histological outcomes following
SCI (Lepore et al., 2011a,b). In addition, during cerebral
hemorrhage, astrocytic volume-regulated anion channels release
glutamate, further aggravating the damage (Yang J. et al.,
2019). Interestingly, Li et al. illustrated that the overexpression
of the astrocytic glutamate transporter GLT1 exacerbated
phrenic motor neuron degeneration, diaphragm impairment,
and forelimb motor dysfunction post cervical contusion SCI,
while the transplantation of glial progenitors that overexpress
the glutamate transporter GLT1 could overcome the diaphragm
dysfunction (Li K. et al., 2014; Li et al., 2015).

Cytotoxic Edema
After CNS injury, the brain and spinal cord tissues undergo
edema, leading to intracranial or medullary cavity hypertension,
secondary to more serious tissue damage that may lead to
fatal brain injury or hernia (Liang et al., 2007). Many studies
have shown that the degree of cerebral and spinal cord edema
is associated with the severity of trauma and subsequent
motor dysfunctions (Miyanji et al., 2007). Cytotoxic edema is
characterized by the swelling of all cell types due to excessive
water retention. In contrast, astrocytes are the main cause of
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brain swelling in brain edema (Liang et al., 2007). AQP-4,
expressed in the brain (perivascular and subpial membrane
domain) and spinal cord astrocytes, is the most abundant
aquaporin in the CNS and represents a major pathway for the
entry of excess water into damaged tissue (Nesic et al., 2006;
Tait et al., 2008; Saadoun and Papadopoulos, 2010). Astrocytic
AQP-4 is primarily responsible for cytotoxic edema after CNS
injury (Amiry-Moghaddam et al., 2003).

In animal models of CNS injury, AQP-4 mRNA and protein
expression levels are significantly upregulated in activated
astrocytes (Finnie et al., 2011; Hemley et al., 2013). Various
mechanisms are involved in this process in astrocytes, such as
IL-6/NF-κB pathway activation, HMGB1/TLR4/MyD88/NF-κB
signaling pathway activation, FOXO3A nuclear translocation,
and ERK1/2 phosphorylation (Ito et al., 2006; Kapoor et al.,
2013; Sun et al., 2017; Sun L. et al., 2019; Zhang et al., 2019a;
Li et al., 2021a). Experiments conducted using AQP-4-deficient
mice showed that AQP-4 promotes the formation of cytotoxic
edema, whereas the absence of AQP-4 reduces edema severity
after acute water intoxication, ischemic stroke, and SCI (Manley
et al., 2000; Saadoun et al., 2008). In the rat model of TBI,
AQP-4 knockdown reportedly reduces the extent of cytotoxic
and post-traumatic brain edema (Lu H. et al., 2020). Kitchen
et al. suggested that brain or spinal cord swelling was not only
related to the total expression of AQP-4, but also the subcellular
translocation of AQP-4 to the BSCB. Their data showed that
calmodulin could directly bind to the carboxyl terminus of
AQP-4, resulting in specific conformational changes and AQP-4
cell-surface localization. In rat SCI models, trifluoperazine-
mediated calmodulin inhibition suppressed AQP-4 localization
to the BSCB, led to the ablation of CNS edema, and resulted in
accelerated functional recovery relative to that seen in untreated
animals (Kitchen et al., 2020). As shown in Figure 2. As
AQP-4 cell surface localization is controlled by calcium/protein
kinase A/calmodulin in astrocytes, targeting calmodulinmay also
represent a novel treatmentmethod for cytotoxic edema (Kitchen
et al., 2015, 2020). In addition to AQP-4, other functional
molecules in astrocytes, such as NKCC1, Sur1/Trpm4, AQP-1,
and vasopressin are also considered to be initiators of cytotoxic
edema formation (Nesic et al., 2008; Jayakumar et al., 2011; Jia
et al., 2016; Gerzanich et al., 2019).

BBB/BSCB: Disruption or Recovery
CNS damage can lead to the loss of BBB/BSCB integrity.
Astrocytes regulate BBB/BSCB homeostasis through end-feet
processes that surround endothelial cells. A series of factors
derived from RAs after an injury have opposing effects on the
BBB/BSCB (Michinaga and Koyama, 2019; Table 2).

Nitric oxide (NO) and excess glutamate derived from RAs
after an injury can damage the BBB and the BSCB (Saha
and Pahan, 2006; András et al., 2007; Lu L. et al., 2019;
Sharma et al., 2019). In animal models of TBI and SCI, the
expression of VEGF and MMP-9, both factors that promote
BBB permeability, increases in RAs, and inhibiting them
reduces BBB/BSCB-related damage after injury (Noble et al.,
2002; Gao et al., 2015; You et al., 2017; Michinaga et al.,
2018; Liu et al., 2020). Astrocyte-derived ET-1 was shown to

induce the upregulation of ICAM-1 and VCAM-1 expression
in human brain microvascular endothelial cells and aggravate
the destruction of the BBB. ET receptor antagonists such as
bosentan, BQ788, and S-0139 can alleviate the loss of BBB
integrity in TBI model mice (McCarron et al., 1993; Matsuo
et al., 2001; Michinaga et al., 2018, 2020a). Interestingly, studies
on mice have highlighted that the APOE E4 variant (APOE4) is
a risk factor for poor outcomes in CCI. However, APOE is an
important modulator of spontaneous BBB stabilization following
TBI (Main et al., 2018; Montagne et al., 2020). Astrocyte-derived
neurotrophic factor (MANF) can inhibit inflammation and
promote angiogenesis and BBB repair (Li et al., 2018). Astrocyte
ablation results in the failure of BSCB repair, local tissue
destruction, severe demyelination, and the death of neurons and
oligodendrocytes following SCI (Faulkner et al., 2004). After
CNS injury, the expression of Shh is increased in astrocytes. The
administration of exogenous Shh attenuates BBB destruction,
while the application of the Shh inhibitor jervine exerts the
opposite effects in mice with TBI (Xing et al., 2020; Michinaga
et al., 2021). In the mouse SCI model, Shh/Gli1 signaling is
induced in RAs and plays an important role in the permeability
of BSCB and locomotor recovery after SCI (Yue et al., 2020). The
expression of ANG-1 in astrocytes is decreased after CNS injury,
while the administration of recombinant ANG-1 can alleviate
the destruction of the BBB/BSCB (Sabirzhanov et al., 2019;
Michinaga et al., 2020b). Astrocyte-derived FABP7 enhances
BBB integrity through the caveolin-1/MMP signaling pathway
after TBI, and displays neuroprotective properties after SCI (Rui
et al., 2019; Senbokuya et al., 2019). In addition, astrocyte-
derived retinoic acid and IGF-1 have also been shown to
participate in BBB/BSCB maintenance and vascular protection
(Kong et al., 2015; Bake et al., 2016; Zhou et al., 2016; Li
H. et al., 2020). Notably, Shh and MMP-9 can restore or disrupt
the BBB or BSCB through multiple mechanisms, and both
proteins have the potential to serve as therapeutic targets for
CNS injury.

Inflammation: Basic Protective Function
and the Consequences of Overactivation
Inflammation represents a physiological protective response
to injury; however, extreme inflammation, which is inevitable
following CNS injury, results in additional tissue damage
(Popovich and Jones, 2003; Förstner et al., 2018). RAs
promote inflammation after CNS injury by secreting cytokines,
chemokines, reactive oxygen species (ROS), NO, and damage-
associated molecular patterns, all factors that are involved in
the activation of microglia and the recruitment of peripheral
immune cells, thereby maintaining and even further aggravating
neuroinflammation (Wicher et al., 2017; Linnerbauer et al.,
2020). The NF-kB signaling pathway in RAs is a key regulator
of inflammation in the CNS (O’Neill and Kaltschmidt, 1997).
In animal models of CNS injury, NF-κB is highly activated
and the expression of NF-kB-dependent genes is upregulated
(Schneider et al., 1999). Inhibiting NF-κB signaling dampens
astrocyte responses to brain injury, resulting in neuroprotective
effects (Acarin et al., 2001; Brambilla et al., 2005). An
in vitro study showed that ATP-stimulated human astrocytes
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FIGURE 2 | After CNS injury, an increase in the levels of (A) IL-1β and (B) IL-6 leads to the upregulation of AQP-4 expression through the NF-κB pathway. (C)
HMGB1 upregulates AQP-4 expression via the HMGB1/TLR4/MyD88/NF-κB axis independently of IL-6. (D) FOXO3A undergoes nuclear translocation, binds to the
AQP4 promoter, and upregulates AQP-4 expression. (E) SCI-induced upregulation on of AQP-4 expression was down-regulated by PD98059 (ERK blocking agent)
and TGN-020 (aquaporin-4, AQP4, blocking agent). In addition, (F) AQP-4 undergoes a conformational change after binding to calmodulin, after which it localizes to
the BSCB, leading to an increase in the amount of water entering astrocytes. ERK, extracellular signal-regulated protein kinase; BSCB, blood–spinal cord barrier.

TABLE 2 | Factors destroy or recover BBB/BSCB.

BBB/BSCB destruction BBB/BSCB recovery

NO (Sharma et al., 2005, 2019; Saha and Pahan, 2006; Buskila et al., 2007; Gu
et al., 2012; Jiang et al., 2014)

MANF (Li et al., 2018)

Excess glutamate (András et al., 2007; Liu et al., 2010; Sulejczak et al., 2016;
Lu L. et al., 2019)

Shh (Xia et al., 2013; Xing et al., 2020; Yue et al., 2020; Michinaga et al., 2021)

VEGF (Gao et al., 2015; You et al., 2017) Ang-1 (Xia et al., 2013; Sabirzhanov et al., 2019; Sun J. D. et al., 2019; Michinaga et al.,
2020b)

MMP-9 (Noble et al., 2002; Michinaga et al., 2018; Liu et al., 2020) fatty acid-binding protein 7 (Rui et al., 2019)

ET-1 (Michinaga et al., 2018, 2020a, 2021) RA (Mizee et al., 2014; Kong et al., 2015; Zhou et al., 2016)

APOE4 variant (Main et al., 2018; Montagne et al., 2020) IGF-1 (Bake et al., 2016, 2019; Pitt et al., 2017; Li H. et al., 2020)

APOE4 (Main et al., 2018)

activated NLRP2 inflammasomes, while the knockdown of
NLRP2 significantly reduced the inflammatory response in
human astrocytes (Minkiewicz et al., 2013). Many other
pro-inflammatory molecules have been associated with astrocyte
reactivity, such asS100β, ICAM-1, PrPc, TrkB, D-dopachrome
tautomerase, and MIF (Kabadi et al., 2015; Zhang et al., 2019b;
Charkviani et al., 2020; Ji et al., 2021; Sulimai et al., 2021).
However, using a mouse model of TBI, Myer et al showed
that RA ablation aggravated cortical degeneration after moderate
CCI, but did not affect cortical degeneration following severe
CCI, which suggested that RAs also have a basic protective

role in inflammation after injury (Myer et al., 2006). Similar
results were obtained with astrocyte ablation after SCI (Faulkner
et al., 2004). Long et al. (2020) showed that astrocyte-derived
exosomes enriched with miR-873a-5p can inhibit the NF-κB
signaling pathway and promote the transformation of protective
M2 microglia, thereby inhibiting excessive neuroinflammation.
Additionally, Zaheer et al. (2001) showed that activation of
the NF-κB signaling pathway resulted in the synthesis of
neurotrophic factors (nerve growth factor and brain-derived
neurotrophic factor), which is essential for neuronal survival
after injury.
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RA SUBGROUP WITH NEUROTOXICITY

As early as 2012, Zamanian et al. (2012) discovered a potentially
harmful subgroup of RAs. Subsequently, Liddelow et al. (2017)
proposed a neurotoxic RA with C3 as a molecular marker
and named it A1 astrocytes. A1 astrocytes were induced by
cytokines (TNF-α, IL-1α, and complement component C1q)
secreted by activated microglia. Although the concept of A1 is
not relevant in this field, many previous research results of
A1 neurotoxic astrocytes can help subsequent research on the
neurotoxic subpopulations of RAs. A1 astrocytes lose many
basic functions and gain harmful ones when compared with
normal astrocytes. Namely, A1 astrocytes have fewer synapses
and a weaker ability for synapse induction; impaired myelin
scavenging ability; they can inhibit oligodendrocyte maturation;
exhibit stronger neurotoxicity; and kill CNS neurons that have
severed axons (Liddelow et al., 2017; Li X. et al., 2020).
A1 astrocytes have a significantly different morphology: long
dendrites (Zou et al., 2019). This suggests that the morphology
of RAs may be changeable. Adding morphological features
to the subgroup division can make the typing more specific
and accurate. A1 astrocytes are found in a variety of CNS
injuries and neurodegenerative diseases but are also present
during the normal aging process (Clarke et al., 2018; Yun
et al., 2018; Zheng et al., 2021). Alawieh et al. showed that
a significant increase in C3 levels after CNS injury triggers
continuous microglia degeneration and astrocyte activation,
reduces dendrite and synapse density, and ultimately leads to the
loss of neurons (Alawieh et al., 2018; Clark et al., 2019). After
SCI, mice with C3 deficiency have reduced inflammation and
secondary damage and better nerve regeneration and functional
recovery after injury compared with that for normal mice
(Guo et al., 2010). However, mice with C3aR deficiency show
abnormal neurodevelopment that persists into adulthood, and is
characterized by locomotive hyperactivity and altered cognitive
functions (Pozo-Rodrigálvarez et al., 2021). Wang et al. (2021)
proposed a more radical possibility, namely, that A1 astrocytes
could directly kill neurons by secreting neurotoxic C3. Several
studies have reported that C3 is closely related to the onset of

multiple neurodegenerative diseases (Lian et al., 2015; Litvinchuk
et al., 2018). These observations suggest that the basic C3 level
is necessary for the maintenance of a normal physiological
environment in the CNS, whereas excessive C3 availability
produces neurotoxic effects after injury. However, it must be
acknowledged that the expression of a singular marker ‘‘C3’’ is
not a definitive marker that identifies A1 astrocytes. The work
of Boisvert et al. (2018) showed that C3 was upregulated on
astrocytes in the condition of aging, and did not necessarily,
or categorically, indicate A1 astrocytes. Therefore, it is neither
accurate nor objective that C3 is used as a singular marker of
A1 astrocytes in injury and diseases in humans and other models.
Recently, Guttenplan et al. (2021) proposed that saturated
lipids contained in APOE and APOJ lipid particles mediated
the neurotoxicity of RAs. Astrocytes specifically knock out
saturated lipid synthase ELOVL1 to eliminate the formation of
long-chain saturated lipids, which reduced astrocyte-mediated
toxicity.

In CNS injury, a variety of substances and intracellular signal
pathways are involved in the induction and transformation
of the functions of RAs (neurotoxicity and neuroprotection;
Table 3). For instance, the activation of the NF-κB and Notch
signal pathways promotes A1 transformation, while exposure
to mesenchymal stem cell (MSC)-derived exosomes, which
play anti-inflammatory and neuroprotective roles after SCI,
suppresses A1 astrocyte numbers by inhibiting the NF-κB
signaling pathway (Wang et al., 2018; Liu et al., 2019; Qian
et al., 2019). Additionally, activating the FGF2/FGFR1 pathway
can reverse the increase in C3 expression levels in astrocytes
following ultrasound exposure (Zou et al., 2019). After SCI,
the application of electrospun fiber was reported to promote
the expression of A1-specific markers, but electrospun fiber-
containing TGF elicited the opposite effect (Gottipati et al.,
2020). In comparison, in an IL-1β-induced neonatal rat model
of white matter injury, astrocytes showed A2 reactivity (Shiow
et al., 2017). After TBI, neuron-derived prokineticin 2 and
astrocyte-derived estrogen activated STAT3 signaling pathway
in astrocytes, leading to the upregulation of A2 astrocytes
(Neal et al., 2018; Ma et al., 2020; Wang J. et al., 2020).

TABLE 3 | Neurotoxic astrocyte-related substances and signal pathways.

Effect Inductive molecule Signal path Reference

Reduce neurotoxicity MSC-exo NF-κ (-) Wang et al. (2018) and Liu et al. (2019)

HSF1 NF-κB (-) MAPKs (-) Li L. et al. (2021)

– Notch (-) Qian et al. (2019)

– FGF2/FGFR1 (+) Zou et al. (2019)

TGF-β3 – Gottipati et al. (2020)

Induce neuroprotection IL-1β – Shiow et al. (2017)

Astrocyte-Derived Estrogen JAK-STAT3 (+) Wang J. et al. (2020)

PK2 STAT3 (+) Neal et al. (2018) and Ma et al. (2020)

Reduce neurotoxicity and Induce neuroprotection miR-21 STAT3 (+) Su et al. (2019)

MFG-E8 PI3K-Akt (+) & NF-κB (-) Xu et al. (2018)

MSC-EVs – Kaminski et al. (2020)

Wnt-3a Wnt/β-catenin signaling pathway (+) Zhang D. et al. (2019)

Trkβ – Miyamoto et al. (2020)
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We have previously shown that miR-21, a regulator of the
STAT3 pathway, can transform neurotoxic (A1) RAs into
an A2 phenotype (Su et al., 2019). MFG-E8, MSC-derived
extracellular vesicles (EVs), Wnt-3a, and Trkβ have also been
shown to be involved in A1/A2 transformation (Xu et al.,
2018; Zhang D. et al., 2019; Kaminski et al., 2020; Miyamoto
et al., 2020). Interestingly, FGF2 can inhibit the TGF-β1-induced
increase in GFAP expression in astrocytes (Tran et al., 2018). The
antagonism between different molecules that induce the same
phenotype further underlines the need for the development of
a more precise method for typing RAs.

GLIAL SCARS AND SAS

Following CNS injury, naive astrocytes transform into RAs,
and then eventually SAs, leading to impaired axon regeneration
and functional recovery. This continuous phenotypic change
is a manifestation of astrocyte reactivity, which was once
considered to be a unidirectional and irreversible process
(Hara et al., 2017). Diseases and injuries of the CNS are
usually accompanied by a certain degree of scar formation,
although scar formation differs according to disease and injury
(Smith et al., 2015). Glial scars are mainly involved in the
repair process after CNS injury. After SCI, damage repair
efficiency is low and the resulting pathological changes cannot be
overcome. Consequently, here, we focus on astrocyte-mediated
scar formation after SCI (Bradbury and Burnside, 2019). SCI
lesions exhibit three compartments: a non-neural (stromal)
lesion core, astrocyte scar borders, and spared but reactive
neural tissue. SAs participate in the formation of astrocyte scar
borders (Sofroniew, 2018). The scarring process begins on day 7
post-injury and involves the misalignment of activated astrocytes
and the deposition of inhibitory CSPGs. SAs can be identified
from 14 dpi (Hara et al., 2017).

Various mediators are involved in glial scar formation,
including TGF-β1/2, IFN-γ, FGF, MMP-9, fibrinogen, and
STAT3 (Moon and Fawcett, 2001; Herrmann et al., 2008; Hsu
et al., 2008; Schachtrup et al., 2010). The glial scar represents
a physical barrier that enwraps damaged tissues and restricts
the migration of inflammatory cells from the non-neural lesion
core to the CNS parenchyma (Voskuhl et al., 2009; Sofroniew,
2015). Glial scars fill the interstitial spaces and induce the
formation of new capillaries (Rolls et al., 2009). RA ablation
impairs glial scar formation, leading to extensive infiltration
of inflammatory cells and loss of neurons (Gu et al., 2019).
Importantly, however, RA ablation also exerts an unwelcome
inhibitory effect on axon regeneration (Anderson et al., 2016).
CSPGs deposited in glial scars inhibit oligodendrocyte precursor
cell differentiation and remyelination, the two most important
processes underlying axon regeneration. CSPG inhibition or
inactivation effectively improves motor function (Bradbury
et al., 2002; Silver and Miller, 2004; Siebert et al., 2011; Lang
et al., 2015; Tran et al., 2018). Wallerian degeneration of
damaged axon protrusions leads to continuous extracellular
deposition of axons and myelin debris. Myelin-related molecules
(MAG, Nogo, OMGP), in conjunction with CSPGs, inhibit
neuronal regeneration and neural plasticity (Sofroniew, 2018).

However, the deletion of CSPG-related genes or CSPG receptor
blockade only enhances synaptic remodeling and cannot directly
overcome the protective effects of the astrocyte scar and lesion
cores of non-neural tissue to produce meaningful spontaneous
axonal regeneration (Hossain-Ibrahim et al., 2007; García-Alías
et al., 2009). A combination of TGF-β1/2 antibodies reduced CNS
scar formation in an adult rat model of brain injury; however,
this was not accompanied by an increase in axon regeneration
(Moon and Fawcett, 2001). GFAP−/−vim−/− mice show normal
scar formation after TBI or SCI, but the scar density is low and
accompanied by bleeding (Pekny et al., 1999). Three genetically
targeted loss-of-function interventions—preventing astrocyte
scar formation, attenuating scar-forming astrocytes, and ablating
chronic astrocytic scars—all failed to promote spontaneous axon
regrowth. However, exogenous administration of axon-specific
growth factors, coupled with growth-activating priming injuries,
stimulated axon regeneration, which was reversed by glial scar
ablation (Anderson et al., 2016).

Glial scars transform into fibrous scars 14 dpi, and SAs
are produced at the same time. SAs are known to originate
from the interaction between RAs and type I collagen via
the integrin/N-cadherin pathway. Antibodies targeting collagen-
binding integrin and N-cadherin neutralizing antibodies both
inhibited this process (Hara et al., 2017). Immunofluorescence
analysis identified the presence of SOX9-positive nuclei in
astrocytes of a wild-type brain scar 30 days after the cortical
puncture. In contrast, SOX9 expression was strictly limited
to the cytoplasm in the DBN−/− brain. DBN may also
participate in the transformation of RAs into SAs (Schiweck et al.,
2021). Inhibiting the RA/SA conversion may represent an ideal
treatment for CNS injury. For this, the restrictive effect of RAs
on inflammation should not be affected, only the formation of
the glial scar boundary should be inhibited so as to alleviate
the inhibitory effect of the surrounding environment on axon
regeneration.

In summary, the dual role of the glial scar in axon
regeneration may result from the low inherent regeneration
potential of neurons. The growth-activating effect of the glial
scar cannot bridge the gap between the neuronal regeneration
potential and the physical hindrance represented by glial scars;
when a glial scar is ablated, neurons cannot regenerate axons on
their own without the growth-activating effect of the glial scar.
Han et al. (2020) proposed to increase the intrinsic regenerative
power of neurons by restoring cellular energy, and successfully
promoted the germination and regeneration of axons after SCI
by enhancing mitochondrial transport and energy metabolism.
Therefore, in the case of preserving glial scars, enhancing
the regeneration potential of neurons may also be a feasible
treatment option.

STRATEGIES FOR
ASTROCYTE-TARGETED THERAPY

Based on the dual role of astrocytes in CNS injury, multiple
attempts have been undertaken to enhance the beneficial
effects of astrocytes or reduce their harmful effects. Here, we
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TABLE 4 | Diverse astrocyte targeted therapy strategies.

Target Treatment Model Mechanism Curative effect Reference

Inhibit excessive
activation of astrocytes

MP In vivo
In vitro

Down-regulate astrocyte
activation and inhibit CSPG
expression

Improve neuron repair and
promote neurite outgrowth
after excitotoxic injury

Liu et al. (2008)

Melatonin In vivo Inhibit astrocyte activation Reduce neuronal apoptosis Babaee et al. (2015)
PPR In vivo Down-regulate TNF-α,

IL-1β, reduce GFAP+
astrocyte cells

Reduce the degree of
cerebral edema and
seizures

Song Y. et al. (2020)

TBHQ In vivo Reduce the production of
M1 microglia and
inflammatory cytokines,
significantly reduce the
excessive activation of
astrocytes

Reduce neuronal death and
lesion volume, improve
motor function and
cognitive deficits

Zhang et al. (2020)

AS-IV In vitro AS-IV reduces the
activation of the
CXCR4/JNK pathway and
ultimately up-regulates the
Keap1-Nrf2 signaling

Prevent OGD/R-induced
astrocyte apoptosis

Yang J. et al. (2021)

Simvastatin In vivo
In vitro

Simvastatin manipulates
the caveolin-1 expression in
lipid rafts in the astrocyte
cell membrane, reduces
EGFR phosphorylation, and
finally reduces IL-1
production and astrocyte
activation

Protect neurons Li et al. (2009) and Wu
et al. (2010)

ONO-2506 In vivo Inhibit the production of
S100B by astrocytes to
inhibit the activation of
astrocytes

Reduce neuropathic pain
after SCI

Ishiguro et al. (2019)

Edaravone In vivo Reduce astrocyte
proliferation in a rat model
of propofol-induced brain
injury through the
BDNF/TrkB pathway.

Reduce inflammation Yang Y. et al. (2021)

Reduce Edema Functionalized
Phenylbenzamides

In vivo
In vitro

Reduce AQP-4-mediated
water Permeability

Reduce brain edema and
improve prognosis

Farr et al. (2019)

TGN-020 In vivo Inhibit the expression of
AQP-4, GFAP, PCNA

Reduce spinal cord edema
and promote axon
regeneration

Li et al. (2019)

Atorvastatin In vivo Inhibit
p38MAPK-dependent
pathway to down-regulate
the expression of AQP4

Reduce ischemic brain
edema

Cheng et al. (2018)

Goreisan In vivo Decrease AQP-4expression
level

Reduce brain water
content, alleviate motor
deficits

Nakano et al. (2018)

Trifluoperazine In vivo
In vitro

Prevent calmodulin from
directly binding to the
carboxyl terminus of
AQP-4, which inhibit AQP-4
localization BSCB

Relieve CNS edema and
accelerate functional
recovery

Kitchen et al. (2020)

Bosentan In vivo
In vitro

Decrease the expression
levels of MMP-9, VEGF-A,
and Ang-1 in the brain after
injury

Reduce BBB dysfunction
and cerebral edema

Michinaga et al. (2020a)

BQ788 In vivo Reduce GFAP-positive
astrocytes and their
products: VEGF-A and
MMP9

Promote the recovery of
BBB function and reduce
cerebral edema

Michinaga et al. (2018)

(Continued)
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TABLE 4 | Continued

Target Treatment Model Mechanism Curative effect Reference

Ulinastatin In vivo Decrease the activation of
ET-1 and inhibit the
expression of
pro-inflammatory VEGF and
MMP-9

Reduce brain edema after
TBI

Liu T. et al. (2021)

EP/GL In vivo Inhibit the activation of
astrocytes, reduce the
expression of AQP4, and
inhibit the activation of the
TLR4/NF-κB signaling
pathway

Improve motor function and
reduce early spinal cord
edema

Sun et al. (2017) and
Sun L. et al. (2019)

Astrocyte
reprogramming

OCT4, NANOG In vitro Astrocytes are
reprogrammed into the
generation of cells
expressing neural
stem/precursor markers

Corti et al. (2012)

SOX2 In vivo Resident astrocytes are
reprogrammed into
proliferating neuroblasts

Niu et al. (2013)

Zfp521 In vivo
In vitro

Astrocytes are
reprogrammed into iNSCs
or neurons

Su et al. (2014) and
Zarei-Kheirabadi et al.
(2019a,b)

Transcription
factors PAX6,
NGN2 and ASCL1

In vitro Reprogramming of
astrocytes into neurons

Heins et al. (2002) and
Berninger et al. (2007)

Combination of
transcription factors
Brn-2a, MyT1L,
and ASCL1

In vivo Reprogramming of
astrocytes into neurons

Torper et al. (2013)

Transcription
factors NeuroD1

In vivo Reprogramming of
astrocytes into neurons

Puls et al. (2020)

Reduce the toxicity of
RAs and protect
neurons

Drug-Loaded
Nano-Structured
Gel

In vivo
In vitro

Down-regulate
A1 astrocytes, reduce iNOS
and Lcn2

Improve early exercise
ability of injury and protect
neurons

Vismara et al. (2020)

Ponesimod In vivo
In vitro

Reduce A1 astrocyte
polarization by activating
the STAT3 signaling
pathway

Prevent neuronal death
from early brain injury after
subarachnoid hemorrhage

Zhang L. et al. (2021)

Epidermal Growth
Factor Hydrogels

In vitro Down-regulate negative
A1-like genes (Fbln5 and
Rt1-S3) and up-regulate
potentially beneficial A2-like
genes (Clcf1, Tgm1, and
Ptgs2)

Enhance neuroprotection
and neuroplasticity

Chan et al. (2019)

RTMS In vivo
In vitro

Reduce the production of
inflammatory mediators,
promote HIF-1α signaling,
transform A2 astrocytes
into A1 astrocytes

Reduce neuronal
apoptosis, promote blood
vessel repair, and improve
cognitive function.

Zong et al. (2020)

Physical exercise In vivo Down-regulate the
expression of IL-1α, C1q,
and TNF, up-regulate the
release of TGFβ, and
promote the conversion of
A1astrocytes to
A2 astrocytes

Promote white matter repair
and cognitive improvement

Jiang et al. (2021)

RvD1 In vivo
In vitro

Induces higher levels of
mitochondrial autophagy in
astrocytes to protect the
mitochondrial morphology
and membrane potential of
the astrocytes

Reduce cognitive
impairment and brain
edema, improve the neuron
survival rate after TBI

Ren et al. (2020)

(Continued)
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TABLE 4 | Continued

Target Treatment Model Mechanism Curative effect Reference

Baicalin In vivo
In vitro

Inactivate SDH to inhibit
ROS production and
reduce the loss of GS
protein in astrocytes after
injury

Reduce excitotoxicity and
protect neurons

Song X. et al. (2020)

LEC In vivo Reduce lipid peroxidation of
astrocytes and increase
their glutamate uptake

Reduce excitotoxicity and
protect neurons and
oligodendrocytes

Lima et al. (2021)

Agathisflavone In vitro Increase the expression of
neurotrophic factors,
reduce the expression of
GFAP and hypertrophy of
astrocytes

Protect neurons and
promote neurite growth

de Amorim et al. (2020)

Ganglioside GM1 In vivo
In vitro

GM stimulates the
expression of genes related
to glucose metabolism and
enhances glycolysis in
astrocytes

Protect neurons Finsterwald et al. (2021)

Others Sodium
houttuyfonate

In vivo
In vitro

Reduce
NLRP3 inflammasome
activation, TLR4 activity,
phosphorylation of ERK
and NF-κB

Reduce inflammation and
promote angiogenesis

Yao et al. (2021)

Ferrostatin-1 In vitro Suppress the ROS levels
and activate the
Nrf2/HO-1 signaling
pathway

Alleviate astrocytes
inflammation and
ferroptosis

Li S. et al. (2021)

mainly review the existing attempts at astrocyte-targeted therapy
(Table 4).

Inhibit Excessive Activation of Astrocytes
In the inflammatory phase after CNS injury, excessive activation
of astrocytes aggravates the inflammatory cascade and has a
negative impact on the prognosis of the disease (Johnson et al.,
2013). Methylprednisolone (MP) is a typical representative of
an RA-targeting molecule that has already been used in the
clinic. MP can reduce astrocyte activation and downregulate
the expression of CSPG, thereby promoting the growth of
neurites after injury (Liu et al., 2008). Melatonin can exert
similar effects (Babaee et al., 2015). PPR, TBHQ, AS-IV, and
simvastatin can all reduce the production of inflammatory
mediators and inhibit excessive astrocyte activation, thereby
protecting neurons and improving prognosis (Li et al., 2009;
Wu et al., 2010; Song Y. et al., 2020; Zhang et al., 2020;
Yang J. et al., 2021). ONO-2506 can also attenuate astrocyte
activation, thus minimizing secondary damage and relieving
neuropathic pain after SCI (Ishiguro et al., 2019). As a
variety of free radical scavengers, edaravone alleviated astrocyte
proliferation and inflammation in a rat model of propofol-
induced brain injury (Yang Y. et al., 2021). The selective
inhibitor of D-dopachrome tautomerase, a close homolog of MIF
protein, effectively attenuated the inflammatory activation of
astrocytes after SCI and improves motor function, which helps
to develop the application of anti-inflammatory drugs in CNS
injuries (Ji et al., 2021). In fact, anti-inflammatory drugs have

been used in the clinical treatment of CNS injuries for a long
time.

Reduce Edema
AQP-4 is the best-characterized astrocyte-related molecule.
Functionalized phenylbenzamide, TGN-020, atorvastatin, and
goreisan all target AQP-4, improving post-injury edema and
prognosis (Cheng et al., 2018; Nakano et al., 2018; Farr
et al., 2019; Li et al., 2019). Using a rat model of SCI,
Kitchen et al administered trifluoperazine to inhibit the
direct binding of calmodulin to the carboxyl terminus of
AQP-4, which inhibited its localization to the BSCB. This
effect relieved CNS edema and accelerated functional recovery
relative to untreated animals (Kitchen et al., 2020; Figure 2).
However, in a review by Nesic et al. (2010), the authors
proposed that the therapeutic effect of AQP-4 depends not
only on the time interval after SCI or the animal model
but also on the balance between the protective effect of
increased AQP-4 levels on hypoxia and the harmful effects
associated with sustained astrocyte swelling. ET-1 has also
received widespread attention as a putative therapeutic target.
Both bosentan (an ETA/ETB antagonist) and BQ788 (an ETB
antagonist) effectively attenuated BBB disruption and cerebral
edema in both patients and mice with TBI, whereas the
ETA antagonists ambrisentan and FR139317 elicited no effect
(Michinaga et al., 2018, 2020a; Liu T. et al., 2021). This
suggests that the deleterious effect of ET-I following CNS injury
mainly depends on ETBR. Additionally, EP/GL inhibited the
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activation of astrocytes, reduced the expression of AQP4 and
early spinal cord edema (Sun et al., 2017; Sun L. et al.,
2019).

Reduce the Toxicity of RAs and Protect
Neurons
A drug-loaded nano-structured gel and ponesimod were shown
to improve motor performance in the early stages after
injury and protect neurons by suppressing the activation
of the neurotoxic phenotype of RAs (Vismara et al., 2020;
Zhang L. et al., 2021). Epidermal growth factor-containing
hydrogels can reportedly alter astrocyte behavior, i.e., they
downregulate the expression of deleterious neurotoxicity-related
genes (Fbln5 and Rt1-S3) while upregulating that of potentially
beneficial neuroprotective phenotype-associated genes (Clcf1,
Tgm1, and Ptgs2), thereby indirectly enhancing neuroprotection
and neuroplasticity (Chan et al., 2019). RTMS, HSF1, and
physical exercise also lead to the conversion of the neurotoxic
phenotype into the neuroprotective phenotype, which promotes
functional recovery after injury (Zong et al., 2020; Jiang
et al., 2021; Li L. et al., 2021). Mitochondria may also play
a role in A1 polarization. Incubation with cobalt chloride
(CoCl2) converted astrocytes from an A2 to an A1 state,
concomitant with a reduction in mitochondrial migration.
Trkβ agonists can convert A1 astrocytes to an A2 phenotype
via reducing mitochondria migration (Miyamoto et al., 2020).
Mitochondrial transplantation after CNS injury decreases the
release of inflammatory factors such as IL-1β and TNF-α
and significantly suppresses astrocyte and microglia activation,
thus protecting neurons and promoting functional recovery
(Zhang Z. et al., 2019). Resolvin D1 protected mitochondrial
morphology and membrane potential in astrocytes, removed
damaged mitochondria and thereby enhanced the survival of
neurons (Ren et al., 2020). This prompts us to pay attention
to the impact of the energy status of RAs on their function in
the context of disease. A better understanding of the changes
occurring in mitochondrial morphology and function after CNS
insult may yield novel strategies for the treatment of CNS
injuries. Baicalin and LECwere shown to stabilize astrocytes after
injury and increase their glutamate uptake, effects that can reduce
excitotoxicity and protect both neurons and oligodendrocytes
(Song X. et al., 2020; Lima et al., 2021). Agathisflavone
and ganglioside GM1 promoted the neuroprotective effect
of astrocytes (de Amorim et al., 2020; Finsterwald et al.,
2021).

Astrocyte Reprogramming
Astrocytes retain limited neural stem cell potential and can be
reprogrammed into a stem cell-like state to replenish neurons lost
after injury (Kriegstein and Alvarez-Buylla, 2009; Verkhratsky
and Nedergaard, 2018). The transcription factors OCT4,
SOX2, NANOG, and zinc-finger nuclear protein Zfp521 can
individually reprogram mature astrocytes into neural stem cells
(Corti et al., 2012; Niu et al., 2013; Su et al., 2014; Yang H. et al.,
2019; Zarei-Kheirabadi et al., 2019b). The transcription factors
PAX6, NGN2, and ASCL1, participate in the transformation of
astrocytes into neurons in vitro (Heins et al., 2002; Berninger

et al., 2007), similar to that seen with the combination of
three nerve conversion factors (ASCL1, Brn-2a, and MyT1L)
in vivo (Torper et al., 2013). Noristani et al. (2016) showed that
more than 10% of autologous astrocytes were transdifferentiated
and expressed classic neural stem cell markers after SCI.
Decreased Notch signaling due to stroke was shown to be
necessary for astrocyte neurogenesis (Magnusson et al., 2014).
The transcription factors NeuroD1, SOX2, and ZFP521 can
all be used to reprogram astrocytes into neurons or neural
stem cells after SCI (Zarei-Kheirabadi et al., 2019a; Puls et al.,
2020).

Others
Sodium houttuyfonate effectively inhibited the activation of
microglia cells while promoting the activation of astrocytes and
angiogenesis (Yao et al., 2021). Ferrostatin-1 alleviated astrocytes
inflammation and ferroptosis by suppressing the ROS levels
and activating the Nrf2/HO-1 signaling pathway (Li S. et al.,
2021). Additionally, many other molecules, such as USP18 (Liu
W. et al., 2021), p-ERK1/2 (Li et al., 2021a), CREB (Pardo
et al., 2016), HSPA12B (Xia et al., 2016), CCR5 (Joy et al.,
2019), also represent potential therapeutic targets that merit
further investigation.

Although attention has bright prospects, the difficulty in
obtaining human CNS tissue and the substantial differences
between rodents and human astrocytes (Zhang et al., 2016)
represent unavoidable obstacles to the identification or
development of strategies for the treatment of CNS injury,
that is, how to translate research results from animal studies to
humans. Although astrocytes induced by human pluripotent
stem cells provide a possible cell model, these astrocytes differ
from astrocytes under normal physiological conditions, at least
partially. How to transfer research results from animal models to
human patients will likely also be the focus of research attention
in the future.

CONCLUSIONS

The importance of astrocytes in CNS disease and injury is
widely recognized; however, our understanding of astrocyte
functions is still in its infancy. The continuous development
and breakthrough of instruments and technologies provide
conditions for accurate typing of astrocytes. The combination
of single-cell and spatial transcriptome sequencing shows
promise as a means of determining astrocyte heterogeneity
after injury. Through the sequencing of several key times
after injury, the time and space distribution of each astrocyte
subpopulation can be determined. For example, astrocyte
subpopulation D appears on the 7th day after SCI, mainly
distributed in the core of injury. Further investigations to
determine the temporal and spatial specificity of different
astrocyte subpopulations with their specific genetic markers,
thereby revealing their respective roles in injury, will provide
a more precise indication to allow the targeting of specific
astrocyte subpopulations for the treatment of CNS injuries.
Such as the study of Hasel et al. (2021), in the mouse
inflammationmodel, they divided astrocyte subgroups according
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to the difference between transcriptome and anatomical
location and found that Cluster 8 is widely present in
inflamed brains, but few in normal brains. In subsequent
studies, treatment attempts can be made against Cluster
8 to inhibit the production of Cluster 8, or convert Cluster
8 into a neuroprotective or even neutral RAs subgroup to
reduce inflammation. Although they have been proposed to
express unique marker genes, little is known regarding the
process involved in the transformation between RAs and
SAs given that research attention has primarily focused on
inflammation and glial scar formation after injury. In the
absence of theoretical support, there is no way to talk about
the treatment of targeted SA. As detailed in this review,
clarifying how SAs are generated may provide ideal treatment
and management options for CNS injuries. Based on the
precise type of astrocytes, targeting harmful RA subgroups
in the early stage of injury to reduce neuronal death and
tissue destruction, and changing the extracellular matrix and
reducing scar formation through the regulation of SA in
the later stage to weaken the external inhibitory factors of
nerve regeneration. This kind of treatment is worth looking
forward to.
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