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Altered connectivity within neuronal networks is often observed in Alzheimer’s disease. However, delineating pro-cognitive com-

pensatory changes from pathological network decline relies on characterizing network and task effects together. In this study, we

interrogated the dynamics of occipito-temporo-frontal brain networks responsible for implicit and explicit memory processes using

high-density EEG and dynamic causal modelling. We examined source-localized network activity from patients with Alzheimer’s

disease (n¼21) and healthy controls (n¼21), while they performed both visual recognition (explicit memory) and implicit priming

tasks. Parametric empirical Bayes analyses identified significant reductions in temporo-frontal connectivity and in subcortical visual

input in patients, specifically in the left hemisphere during the recognition task. There was also slowing in frontal left hemisphere

signal transmission during the implicit priming task, with significantly more distinct dropout in connectivity during the recognition

task, suggesting that these network drop-out effects are affected by task difficulty. Furthermore, during the implicit memory task,

increased right frontal activity was correlated with improved task performance in patients only, suggesting that right-hemisphere

compensatory mechanisms may be employed to mitigate left-lateralized network dropout in Alzheimer’s disease. Taken together,

these findings suggest that Alzheimer’s disease is associated with lateralized memory circuit dropout and potential compensation

from the right hemisphere, at least for simpler memory tasks.
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Introduction
Alzheimer’s disease is the most prevalent cause of demen-

tia in older adults, accounting for approximately two-

thirds of dementia cases (Zhang et al., 2016). Key histo-

pathological hallmarks of Alzheimer’s disease, including

extracellular amyloid-beta (Ab) aggregates and intracellu-

lar hyperphosphorylated tau neurofibrillary tangles

(Buckner et al., 2005), have distinct deposition patterns

that may relate to aberrant patterns of network connect-

ivity in the brains of Alzheimer’s patients. Tau pathology

is most prominent in the entorhinal cortex of the medial

temporal lobes in early Alzheimer’s disease stages, then

progresses outwards, with hippocampal hyper- and hypo-

connections both reported features of disease progression

(Marks et al., 2017; Pasquini et al., 2019). Ab, distrib-

uted more broadly, may relate to effects in the default

mode network (Sperling et al., 2009; Palmqvist et al.,

2017), where both enhanced and reduced functional con-

nections have been reported in resting-state imaging stud-

ies (Hedden et al., 2009; Chang et al., 2018). However,

despite clear evidence for widespread disruption of neural

connectivity, there are limited consistent reports of com-

pensatory connections (Gould et al., 2006). By identifying

functional connections that support cognition, the devel-

opment of interventions that target and bolster these re-

gional interactions could potentially delay or ameliorate

disease progression.

Recent studies have reported increased right-lateralized

activity as a putative compensatory mechanism in at-risk

allele carriers who have not yet developed symptoms of

dementia (Han et al., 2007). The putative role of right-

lateralized activations as a compensatory network is sup-

ported by findings showing early asymmetric alterations

in Alzheimer’s disease pathology, where cortical atrophy

and deposition of Ab have been shown to be more pro-

nounced in left medial temporal regions (Derflinger et al.,

2011; Frings et al., 2015). Similarly, in patients with

mild cognitive impairment, left-lateralized abnormalities

may predominate. For example, functional imaging

markers of novelty responses in the left hippocampal for-

mation showed a positive predictive association with sub-

sequent cognitive decline in mild cognitive impairment

patients (Miller et al., 2007). Also, a recent study by

Weise et al. (2018) examined cerebral glucose metabolism

in Ab-positive subjects with mild cognitive impairment,

and showed asymmetric declines in the left medial tem-

poral lobe compared to Ab-negative controls, with evi-

dence of reduced asymmetry once the disease progressed

to dementia (Weise et al., 2018). A recent study by

Penny et al. (2018) used dynamic causal modelling

(DCM) to investigate effective connectivity during a se-

mantic naming task in carriers of the PSEN1 mutation,

which results in early-onset familial Alzheimer’s disease,

with carriers scanned pre-symptomatically and followed

for over a decade. It was found that increased effective

connectivity from left medial temporal to right inferotem-

poral sources predicted a subsequent decline in mini-men-

tal state examination score (Penny et al., 2018).

DCM is a computational method well-suited for study-

ing putative compensatory mechanisms, as it estimates ef-

fective connectivity both within and between sources of

activity, meaning that connections are examined in the

context of regional activity changes. Moreover, with

DCM one can derive the way in which experimental con-

ditions or manipulations, such as cognitive tasks, recruit

specific connections. Compensatory connections have

been observed using DCM for EEG in healthy older

adults (Gilbert and Moran, 2016). In a study of implicit

(repetition priming) memory, older adults were found to
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recruit prefrontal-sourced top-down connections, contrast-

ing with younger subjects who recruited a more tradition-

al bottom-up connectivity hierarchy with feedforward

input from the early visual cortex only. During this task,

the bilateral visual cortex, temporal and parietal regions,

and inferior frontal cortex were included as sources of

activation in the DCMs. Here, we use both an implicit

memory task as well as an explicit memory task to

examine changes in connectivity within this network in

patients with Alzheimer’s disease. medial temporal lobe -

dependent explicit (recognition) memory has been shown

to be impaired in early Alzheimer’s disease (Wang et al.,

2014), whereas implicit memory processing has been

shown to be preserved, allowing for a range of perform-

ance metrics in patients (Golby et al., 2005).

In this study, we used DCM and group-level parametric

empirical Bayes (PEB) analyses to investigate how inter-re-

gional connectivity and within-region dynamics during im-

plicit and explicit memory tasks are affected in Alzheimer’s

disease. We hypothesized that hierarchical left hemisphere-

specific connections may be weakened in the Alzheimer’s

patient cohort compared to healthy controls. We also aimed

to measure whether connections in the right hemisphere

provided compensation during these memory tasks. High-

density EEG and behavioural data were collected from

Alzheimer’s disease patients and healthy controls. Based on

our findings in the PEB analysis, we focused on the left

and right-hemisphere connectivity, examining putative left-

hemisphere circuit dropout and right-hemisphere compensa-

tion in Alzheimer’s disease.

Materials and methods

Participants

Twenty-three Alzheimer’s disease patients and 21 healthy

controls (patients: mean age ¼ 80 years, range ¼ 68–

89 years, 13 females; controls: mean age ¼ 74 years, range

¼ 66–91 years, 12 females) were asked to complete two

mnemonic tasks while 64-channel EEG recordings were col-

lected, preceded by a behavioural encoding phase completed

prior to recording. Two patients (both females) were

excluded from all analyses described below as the patients

were not able to key-press independently during data collec-

tion. All control participants were free from neurological or

psychiatric disorders. Patients were recruited from out-

patient clinics at the Carilion Centre for Healthy Aging.

Patients had a presumed diagnosis that met the diagnostic

and statistical manual of mental disorders criteria for clinic-

al Alzheimer’s disease. Study protocols were approved by

the Carilion Clinic Institutional Review Board and the

Virginia Polytechnic and State University.

Tasks

Two separate tasks were collected during the test phase, pre-

ceded by a single encoding phase (Fig. 1B). During the encoding

phase, EEG recordings were not taken. A total of 200 full-col-

our images were used, comprising nameable objects from well-

known categories including a mix of both living and non-living

stimuli (84 animals, 74 foods, 32 plants and 10 body parts).

Images were presented centrally on a 1024� 768 pixel viewing

screen, were 17.8 cm� 19.1 cm (7 inch� 7.5 inch) in size, sub-

tending a visual angle of 5�, with the longest dimension cover-

ing 300 pixels. Participants were seated �101.6 cm (40 inch)

from the screen. In the encoding phase, participants were shown

100 images. Participants were asked to covertly name each item

as quickly as possible and press the spacebar on a computer

keyboard as they named each item to record reaction time (RT).

Each image was presented for 2 s with a variable 1.5–2.5 s inter-

stimulus interval in which a fixation cross was presented. After

a delay period (following EEG system set-up), participants per-

formed the priming and recognition tasks. Task order (priming

versus recognition tasks) was randomized across participants.

During both the priming and recognition tasks, task timing was

identical to that in the encoding phase.

During the priming task, participants covertly named

the 100 objects presented as quickly as possible while

concurrently key-pressing to measure RT. Fifty images

had not been seen before (novel) and 50 were repeated

from the encoding phase (repeated), with image order

randomized across participants. In line with task designs

from previous picture-naming studies, covert naming was

used to reduce EEG artefacts (Kan and Thompson-Schill,

2004; Gilbert et al., 2010). During the recognition task,

participants were again shown 100 objects, with 50

repeated from the encoding phase (but not the same

repeated images used in the priming task) and 50 novel

images. Participants were instructed to indicate which

objects were not seen previously (novel items) and which

were presented earlier (repeated items) by pressing one of

two keyboard keys as quickly as possible, which were

randomized across participants (Fig. 1B).

Behavioural data analyses

During both tasks, RTs were recorded, and accuracy

scores were calculated for the recognition task. Accuracy

was calculated as the percentage of correct key presses

(i.e. correctly identifying if the image shown was novel or

repeated and pressing the correct corresponding key) of

the total number of key presses in the task; missed trials

were not counted towards the accuracy score.

A selection of demographic data was also collected

from both patients and controls (Table 1; Supplementary

material), as well as the Addenbrooke’s cognitive examin-

ation (ACE): a written neuropsychological test which

examines attention, fluency, language, memory and visuo-

spatial ability (Addenbrooke’s Cognitive Examination

Revised Version, 2005) (Mioshi et al., 2006). The ACE,

which was initially designed as an extension of the mini-

mental state examination, aims to pinpoint cognitive im-

pairment in dementia and other neuropsychiatric condi-

tions, including Alzheimer’s disease.
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EEG data acquisition and
pre-processing

EEG recordings were collected using a DC amplifier

(BrainAmp MR Plus, Brain Products GmbH Gilching,

Germany) and a 64-channel electrode system (actiCAP,

Brain Products GmbH), referenced to the average of 64

channels, as described in Gilbert and Moran (2016).

Impedances of <5 kX for all electrodes were confirmed

prior to data collection. Data were sampled at 1000 Hz

and online filtered at DC-250 Hz during data acquisition.

EEG data were analysed using the academic freeware

SPM12 (Wellcome Trust Centre for Neuroimaging,

Figure 1 Analysis pipeline, task structure and task performance across patients and controls. (A) Schematic of the EEG data

analysis pipeline, from collection and pre-processing of raw EEG data, through source identification, to constructing our DCMs and analysing our

DCMs using PEB. (B) Visual mnemonic priming and recognition task structure. Subjects were presented with an image of an object and were

instructed to covertly name the object (priming task) or indicate whether the object was old or new (recognition task), for 100 trials per task.

(C) Mean RTs 6 SEM for novel and repeated trials in the priming task, in patients and controls. Controls had significantly faster RTs across trial

types than patients, and controls had significantly faster RTs in repeated trials compared to novel trials. (D) No correlation between ACE scores

and mean RT differences for patients only in the priming task. (E) Mean accuracy scores 6 SEM in the recognition task, in patients and controls.

Controls had significantly higher accuracy scores compared to patients. (F) Strong correlation between ACE scores and accuracy score for

patients only in the recognition task. AD ¼Alzheimer’s disease; SEM ¼ standard error of mean. ***P< 0.001.

Table 1 Descriptive statistics for demographic data Data include number of participants (N), percentage of total

participant number in each group (%), mean 6 standard deviation and range (N–N) of demographic variables. AD ¼
Alzheimer’s disease.

Controls AD patients

Participants 21 21

Female 12 (57.14%) 11 (52.38%)

Left handed 3 (14.29%) 0

Age (years) 73.71 6 6.37 (66–91) 80.05 6 6.18 (68–89)

ACE score 91.90 6 4.17 (80–99) 60.86 6 10.91 (37–75)

MMSE score 29.76 6 0.436 (29–30) 22.62 6 4.46 (15–30)

Education (years) 16.10 6 2.61 (12–22) 13.19 6 1.94 (11–18)

Social network score 7.90 6 2.61 (4–12) 6.81 6 3.60 (2–12)

Travel score 4.10 6 1.34 (1–6) 2.29 6 1.19 (0–5)

Exercise score 2.43 6 0.507 (2–3) 1.43 6 0.676 (1–3)

Diagnosis scan (days) 376.6 6 720.2 (14–3192)

Depressive symptoms 5 (23.8%)

Diabetes mellitus 3 (14.3%)

Hypertension 8 (38.1%)
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London, UK, http://www.fil.ion.ucl.ac.uk/spm/). Pre-proc-

essing involved band-pass filtering to retain signals from

2 to 30 Hz, segmenting the continuous EEG signal into

552 ms epochs (�52 to 500 ms peristimulus time), and

manually artefact-correcting to remove bad trials and

channels, for example, trials containing remnant artefacts

or eyeblinks. Data were then averaged based on the

stimulus condition, i.e., novel images and repeated

images, following baseline correction. The final pre-proc-

essed data features thus comprised event-related potentials

(ERPs) over each of the 64 sensor electrodes for each

condition and for each participant (see Fig. 2C for uncor-

egistered EEG sensor positions; Fig. 2D and E for ERP

grand means). A schematic of the data analysis pipeline

is shown in Fig. 1A.

Source localization and
identification

Three-dimensional spatiotemporal source reconstruction

and source localization were performed using SPM’s mul-

tiple spare priors routines, to infer the network of active

sources of the ERPs to inform our network model. This

source reconstruction optimizes sources using a parame-

terized lead field, and constrained minimum norm type

regression model [though constraints embody multiple

Figure 2 Source identification, ERP grand means for patients and controls, and exemplary patient DCM fits. (A) Bilateral four-

source model identified using 3D source reconstruction for the priming task. Colour bar indicates Z scores. (B) Bilateral six-source model

identified using 3D source reconstruction for the recognition task. Colour bar indicates Z scores. (C) Uncoregistered EEG sensor positions;

front-right side view (top) and top view (bottom). Approximate location of channel PO4 circled in white. (D) Grand mean of controls (top) and

patients (bottom), showing ERPs for averaged novel (magenta) and repeated trials (green) in the priming task for channel PO4 (right OCP). (E)

Grand mean of controls and patients, showing ERPs for averaged novel and repeated trials in the recognition task for channel PO4. (F) DCM fits

(solid line) and real data (dashed line) from the first mode of an exemplary Alzheimer’s disease patient in the priming (top) and recognition

(bottom) tasks. AD ¼ Alzheimer’s disease; L ¼ left; R ¼ right; MNI ¼ Montreal Neurological Institute.
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(512) patches a priori precluding source smearing].

Sources were estimated for broadband power (2–30 Hz)

over the ERP time window from 0 to 450 ms. For each

participant and condition, a 3D volumetric image of

sources was obtained. From these, second-level (i.e.

group) analyses were performed using one-sample t-tests.

These t-tests were conducted separately for the priming

task and recognition task, and included both patients and

controls, and both task conditions (Fig. 2A and B).

Dynamic causal modelling

DCM served as our framework for a model-based assay

of source connectivity. DCMs were specified for each in-

dividual participant to examine the modulation of extrin-

sic activity between patients and controls, and between

the novel and repeated conditions. The DCMs were fit to

the scalp-related ERPs from 0 to 450 ms peristimulus

time. Based on our group-level source activity maps gen-

erated in the 3D source reconstruction analyses described

above, we identified two network structures: one for each

task.

Priming network

A four-source model was used to describe the network

dynamics during the implicit priming task. The sources

included left inferior occipital gyrus (MNI coordinates:

�32 �94 �6), right occipital pole (OCP) (MNI coordi-

nates: 28 �96 �8), and bilateral sources in the inferior

frontal gyrus pars triangularis (IFG) (MNI coordinates

left: �40 40 �2 and right: 40 40 �4) (Fig. 2A), as previ-

ously reported (Gilbert and Moran, 2016).

Recognition network

Given that the source localization results found temporal

regions of activation in addition to frontal and occipital

sources, we used an extended six-region network com-

prising occipital, temporal and frontal sources. These con-

sisted of left inferior occipital gyrus (MNI coordinates:

�30 �96 �4), right OCP (MNI coordinates: 28 �96

�8), bilateral sources in the inferior temporal gyrus (ITG)

(MNI coordinates left: �46 �6 �34 and right: 46 �4

�30), and bilateral sources in the IFG pars triangularis

(MNI coordinates left: �46 40 2 and right: 42 38 0)

(Fig. 2B). As expected, the explicit recognition phase in

the task recruited additional brain regions. Bilateral anter-

ior temporal sources were selected for our extended expli-

cit memory network due to their strong task relevance, in

line with previous analyses (Gilbert and Moran, 2016).

We optimized DCMs for evoked responses (DCM for

ERPs) for each participant individually for both models.

We used a neural mass model to describe the activity at

each source. Specifically, we employed the N-methyl-D-as-

partate model (Moran et al., 2011). To specify the net-

work, we allowed for connections between these neural

masses. These comprised the so-called A matrix (Friston

et al., 2003). For the priming task DCM, we specified

both bottom-up and top-down hierarchical connections

between the occipital sources and IFG, bilaterally for the

A matrix, without lateral connections (Fig. 2A). For the

recognition task DCM, we defined both forward and

backward connections from occipital sources to ITG, and

ITG to IFG bilaterally for the A matrix, without lateral

connections (Fig. 2B). For both tasks, we assumed that

no crosstalk between hemispheres would occur via lateral

connections.

We then defined the B matrix: a connectivity matrix

similar to the A matrix which defines task-dependent

modulatory connections, i.e., the difference in novel ver-

sus repeated image trials on specified connections. For

our models, we defined the B matrices with the same

connections as in the A matrices, but with added self-

connections for all sources. The input vector C defines

the activity sources receiving subcortical sensory input,

which here were the left and right occipital sources in the

models for both tasks. The models also included parame-

ters describing local glutamate connectivity (G), the time

constant of post-synaptic responses (T) and delays be-

tween sources (D) (Supplementary Table 1). These

parameters constitute a multivariate set h.

These generative models of interacting sources were

inverted according to a variational Bayesian scheme to

examine the likelihood of parameters, given the model

and data for each participant individually (Friston, 2002).

Inversion of the models was performed for each task,

and each subject, individually. This approximates the

posterior probability of model parameters pðhjy;mÞ, i.e.,

the probability of the model parameters given the data

and the model. The ERP scalp response is represented by

y, and m represents the model, i.e., which regions in the

brain are connected and how these connections are

modulated by the tasks; h represents the model parame-

ters (see Fig. 2F for example patient DCM fits). For the

priming task, the model had 29 parameters, and for the

recognition task, the model had 43 parameters (due to

the increased number of sources in the network). Given

these inferred parameter sets, we next sought to deter-

mine those parameters associated with task performance,

and those associated with the disease per se. To study

these group effects, these posterior parameters were then

passed into our PEB analysis outlined below.

PEB and classical analyses

PEB was used for a random-effects analysis over model

parameters, based on the presence or absence of

Alzheimer’s disease and task performance for both tasks

separately. The PEB comprises a Bayesian General Linear

Model (GLM) at the second level. Here we constructed

the Bayesian GLM, using two second-level covariates as

well as including an average mean effect. A random-

effects design matrix was generated containing three sep-

arate columns, one for each covariate: the first column

6 | BRAIN COMMUNICATIONS 2020: Page 6 of 12 A. Tyrer et al.

https://academic.oup.com/braincommsarticle-lookup/doi/10.1093/braincomms/fcaa212#supplementary-data


was the average over all subjects (a column of ones), the

second column defined disease, i.e., patient or control (1

or 0 respectively), and the third column defined the para-

metric task performance (either RT difference for the pri-

ming task, calculated as the mean novel RT minus mean

repeated RT for each participant, or accuracy score for

the recognition task). From this one can compute which

parameters show group-level differences based on disease

state (patients versus controls), and which are also

affected by task performance, as well as their probabil-

ities. Thus, the GLM allows us to examine the network

correlates of task performance while accounting for dis-

ease state. We describe which connections in our models

were strengthened/weakened as a result of disease, the

directionality of such connections, and whether this was

specific to a particular hemisphere. Also, these analyses

inform us about whether such connections are modulated

by task performance, and whether these connections may

be performing compensatory roles in patients based on

task performance. The PEB analysis essentially re-esti-

mates model parameters at the level of individual DCMs

by conducting a search over all possible parameter com-

binations that emulate the design matrix. The final analy-

ses report the effect size, direction, and probability. This

approach aims to reduce the second-level effects using

Occam’s razor until only meaningful parameters that con-

tribute to group differences remain (Fig. 3).

Statistical analyses

A two-way mixed-effects ANOVA and Wilcoxon signed-

rank tests were conducted to examine RT differences

across patients and controls in the priming task, and a

one-way ANOVA was conducted to examine differences

in accuracy scores between patients and controls in the

recognition task. A MANOVA was also conducted to in-

vestigate group differences in demographic variables,

comparing patients and controls. These statistical tests

were conducted using IBM SPSS Statistics 24 software.

Spearman’s rank correlations were conducted using

MATLAB software to examine associations between ACE

scores and mean RT difference/accuracy scores.

Following the PEB, we also conducted post hoc classic-

al statistical tests using MATLAB software on group dif-

ferences in parameter values between patients and

controls using two-tailed two-sample t-tests, and correla-

tions between specific parameter values and the behav-

ioural measures calculated previously (i.e. mean RT

difference for the priming task and accuracy score for the

recognition task) using Pearson’s correlation.

Data availability

The data that support the findings of this study are avail-

able from the corresponding author, upon reasonable

request.

Results

Controls consistently outperform
patients in both implicit and explicit
memory tasks, with high variability
in patients’ task performance

We conducted a two-way mixed-effects ANOVA on the

RTs in novel and repeated trials in patients and controls.

This revealed a significant between-subjects main effect of

disease [F(1,40) ¼ 44.4, P< 0.001, gp
2 ¼ 0.526] indicat-

ing that RTs were significantly higher in patients com-

pared to controls. There was also a significant within-

subject main effect of trial type [F(1,40) ¼ 16.7,

P< 0.001, gp
2 ¼ 0.294], suggesting that RTs in novel tri-

als were overall significantly higher than RTs in repeated

trials (Fig. 1C). However, the disease � trial-type inter-

action was not significant [F(1,40) ¼ 1.02, P¼ 0.318],

indicating that the RT differences in novel versus

repeated trials did not differ significantly between patients

and controls (Fig. 1C). This suggests that implicit mem-

ory may be preserved in patients in the priming task, as

well as in controls.

For RTs in both novel and repeated trials, however,

the variances were unequal for patients compared with

controls, which may result in inflated P values [novel:

F(1,40) ¼ 28.0, P< 0.001; repeated: F(1,40) ¼ 30.7,

P< 0.001; Levene’s test of equality of error variances].

Therefore, to supplement the ANOVA, we conducted

Wilcoxon signed-rank tests to examine RT differences be-

tween the novel and repeated trials in patients and con-

trols separately. In controls, the median of novel RTs

was significantly higher than that of repeated RTs (Z ¼
�4.02, P< 0.001). In patients, the medians of novel and

repeated RTs were not significantly different (Z ¼ �1.48,

P¼ 0.140).

To assess how task performance relates more broadly

to cognitive decline, we examined the relationship be-

tween performance during this task and the ACE. There

was no correlation between ACE scores and mean RT

difference (the difference between mean novel and mean

repeated RT) for patients only (rho ¼ 0.0741, P¼ 0.750)

(Fig. 1D).

Task performance was measured in the recognition task

by calculating accuracy scores, i.e., the number of suc-

cessful responses out of total responses in the task.

Behaviourally, accuracy scores for the recognition task

were significantly higher for controls (mean ¼ 0.765,

SEM ¼ 0.0210) than for patients (mean ¼ 0.553, SEM

¼ 0.0249) [F(1,40) ¼ 42.1, P< 0.001] (Fig. 1E). Once

again, we investigated the relationship between ACE

scores and task performance, in this case, recognition ac-

curacy scores. There was a moderate correlation between

accuracy scores and ACE scores for patients (rho ¼
0.434, P¼ 0.0492), with high variability in the spread of

accuracy scores and ACE scores (Fig. 1F).
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Overall, our group-level results showed the typical de-

cline in mnemonic processing seen in patients with

Alzheimer’s disease. Moreover, we also observed high

variability in accuracy scores and priming performance

(i.e. RT), where variability in the explicit task was related

to established clinical scales. We therefore aimed to

understand how this variability is related to network con-

nectivity using our DCMs.

Years of education, travel and
exercise scores are significantly
lower in patients, but no effect of
social network scores

A MANOVA was conducted to examine differences be-

tween patients and controls across the following demo-

graphic variables: years of education, travel score, social

network score and exercise score (Table 1). Using Pillai’s

trace, we found a significant effect of disease state, in

that the demographic variables tested were significantly

different between patients and controls [V¼ 0.606,

F(4,37) ¼ 14.2, P< 0.001]. Separate univariate ANOVAs

on each demographic variable revealed significant effects

of years of education [F(1,40) ¼ 16.8, P< 0.001], travel

score [F(1,40) ¼ 21.5, P< 0.001] and exercise score

[F(1,40) ¼ 29.4, P< 0.001], but did not reveal a signifi-

cant effect of social network score [F(1,40) ¼ 1.28,

P¼ 0.265].

The travel score contained a historical element, as partici-

pants were asked if they had previously lived abroad during

their lives, suggesting that the amount of travelling an indi-

vidual did during their life may influence their susceptibility

to Alzheimer’s disease in later life. In contrast to the travel

score, the social network score only considered each partici-

pant’s current number of social networks, rather than his-

torical social networks prior to diagnosis, and therefore

cannot be used as an accurate indication of the role of so-

cial networks in the risk of developing the disease.

Demographic variables such as years of education,

travel score, and exercise may have an impact on the

likelihood of an individual developing dementia later in

life, however, historical data for exercise levels would be

required for this to be conclusive. Rather than solely the

travel scores and years of education directly affecting the

susceptibility of an individual to suffering from dementia,

it is more likely that these factors play roles in a complex

socioeconomic interaction with additional factors.

Figure 3 Model parameters estimated using PEB, for group-level differences and effects of task performance. (A) PEB findings in

the priming task. Top: group differences in excitatory time constant between patients and controls in the left IFG, showing mean 6 SEM of

parameter estimates across participants. Centre: group differences in intrinsic glutamate (centre left) and synaptic delay (centre right) between

patients and controls in the right OCP. Bottom: correlation between intrinsic glutamate and implicit memory task performance in the right IFG.

Patients: red; controls: blue. (B) PEB findings in the recognition task. Top left: group differences in subcortical input into the left occipital gyrus

between patients and controls, showing mean 6 SEM of parameter estimates across participants. Centre left: group differences in forward

connectivity strengths from the left ITG to left IFG between patients and controls, showing mean 6 SEM of parameter estimates across

participants. Centre right: no significant correlation between forward connectivity strengths from the left ITG to left IFG, and ACE scores in

patients only (rho ¼ 0.0039, P¼ 0.987, Spearman’s rank correlation). Bottom right: correlation between backward connectivity strengths from

the right ITG to right OCP, and explicit memory task performance. Patients: red; controls: blue. AD ¼Alzheimer’s disease; corr. ¼ correlation;

SEM ¼ standard error of mean.
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Patients show within-region slowing
in implicit memory network

In our PEB analysis, we first tested whether there was

a group difference in the connectivity strengths and

modulated connectivity strengths between patients and

controls, and then examined the effects of mnemonic

task performance, while accounting for effects of dis-

ease state.

Controls had significantly increased strengths of intrin-

sic glutamate connectivity (G) in right OCP compared to

the patients in the priming task [Effect size (Ep) ¼
�0.482, posterior probability (Pp) ¼ 1.00] (Fig. 3A).

Additionally, patients had significantly reduced aggregate

excitatory receptor activity (i.e. increased excitatory time

constant T) in the left IFG (Ep ¼ 0.367, Pp ¼ 1.00) and

a greater delay in signal transmission (D), i.e., the time

taken for signals to transmit from region-to-region includ-

ing axonal delays (Ep ¼ 0.194, Pp ¼ 1.00), indicating a

general slowing in memory processing in patients. The

PEB analysis also found significant associations between

intrinsic glutamate connectivity in right IFG and RT dif-

ference, in that this connectivity was increased for larger

RT differences (Ep ¼ 1.52, Pp ¼ 1.00), suggesting that

task-related increases in local glutamate connectivity in

the right hemisphere may have a modulatory effect on

implicit memory task performance in patients only

(Fig. 3A).

Left hemisphere circuit deficits in
explicit memory sub-network in
patients, with task-associated
connectivity increases in right
hemisphere

In the recognition task, the PEB showed increased for-

ward connectivity (A matrix) from left ITG to left IFG

in controls compared to patients (Ep ¼ �0.352, Pp ¼
1.00) (Fig. 3B). The subcortical input (C) into left in-

ferior occipital gyrus was also increased in controls

compared to patients (Ep ¼ �0.177, Pp ¼ 1.00), indi-

cating that patients may suffer from reduced visual in-

put into their left-hemisphere memory circuit (Fig. 3B).

Top-down connections from right ITG to right OCP

were found in the PEB analysis to have a significant

correlation with accuracy score (Fig. 3B), as these con-

nections increased with higher accuracy scores (Ep ¼
0.670, Pp ¼ 1.00), in addition to the recurrent bottom-

up connectivity from right OCP to right ITG showing

similarly strong positive associations with accuracy

score (Ep ¼ 0.553, Pp ¼ 1.00). This implies a strong

association between increased right-hemisphere connect-

ivity and improved task performance in this more tax-

ing memory recall task while accounting for group

differences.

Post hoc classical analyses confirm
PEB findings, and reveal that
association between implicit
memory performance and intrinsic
glutamate activity is patient-driven

To confirm our findings from the PEB analysis, we then

used classical statistics to further interrogate the effects of

disease and task performance on the above parameter

estimates.

Classical inference on these parameter estimates con-

firmed that in the priming task, controls had signifi-

cantly increased intrinsic glutamate connectivity in right

OCP compared to patients [t(40) ¼ 2.22, P¼ 0.0319],

as seen in the PEB (Fig. 3A). Also, intrinsic glutamate

connectivity within right IFG showed a significant posi-

tive correlation with the RT difference (rho ¼ 0.421,

P¼ 0.00550) (Fig. 3A). However, this correlation is pri-

marily driven by patients (patients only: rho ¼ 0.439,

P¼ 0.0465), rather than the controls (controls only:

rho ¼ 0.167, P¼ 0.468), implying that this glutamate

connectivity in the right hemisphere may be playing a

task-related compensatory role specifically in

Alzheimer’s disease patients.

In the recognition task, classical inference on parameter

estimates displayed an increase in forward connectivity

from left ITG to left IFG in controls compared to

patients [t(40) ¼ �2.26, P¼ 0.0295] (Fig. 3B).

Furthermore, backward connectivity from right ITG to

right OCP showed significant positive correlation with

recognition accuracy score (rho ¼ 0.354, P¼ 0.0216),

further confirming our findings in the PEB analysis of

left-hemisphere dropout in patients, and task-related

increases in right-hemisphere connectivity in explicit mem-

ory processing (Fig. 3B).

Discussion
While previous studies have shown left hemisphere-specif-

ic effects in patients with Alzheimer’s disease at rest

(Scahill et al., 2002; Miller et al., 2007), here we used

DCM of task-based EEG and PEB to demonstrate that in

simple priming memory tasks, Alzheimer’s disease

patients suffer from slowing of implicit memory processes

in the left hemisphere but display task-related right hemi-

sphere-specific upregulation of local glutamate connectiv-

ity, which may play a compensatory role in implicit

memory circuits. In the more taxing explicit memory

task, we found source-level memory circuit dropout in

the left hemisphere of patients which were preserved in

the priming task. Also using PEB, we showed task-associ-

ated increases in connectivity strengths and local excita-

tion specifically in the right hemisphere, implying

compensatory mechanisms are being performed by the

right hemisphere in these patients. Importantly, the PEB
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analyses enabled us to examine both group effects and

the effects of each task while accounting for disease state.

We further showed that the tasks used in this study are

effective in testing implicit and explicit memory, as con-

trols consistently showed significantly better performance

compared to patients as expected. Our behavioural

results revealed a high level of variability in task per-

formance of Alzheimer’s patients for both tasks; task per-

formance was quantified as mean RT difference in the

priming task and accuracy score in the recognition task.

Recognition accuracy scores correlated strongly with

patients’ ACE scores, an established clinical score that

can be used to indicate the presence of dementia and dis-

ease progression. This correlation suggests a direct rela-

tionship between patients’ explicit memory and the

severity of cognitive deficits.

These two behavioural tasks examined distinct types of

memory recall: implicit priming memory and explicit rec-

ognition memory. Previous studies have demonstrated a

slight preservation of implicit memory in patients with

mild Alzheimer’s disease using similar priming and recog-

nition memory tasks, specifically using picture stimuli. A

study by Deason et al. (2015) showed preserved implicit

conceptual priming memory in subjects suffering from

mild Alzheimer’s disease comparing the priming effect

when pictures and words were presented as visual stim-

uli. They found intact priming in Alzheimer’s disease

patients only when pictures were used as stimuli, and

also used an explicit recognition memory task to demon-

strate a decline in recognition memory in patients with

mild Alzheimer’s disease compared to healthy aged con-

trols (Deason et al., 2015). Another study by Martins

and Lloyd-Jones (2006) showed similar effects using a

fragmented picture paradigm, demonstrating preserved

perceptual closure in Alzheimer’s disease patients

(Martins and Lloyd-Jones, 2006). Our patient group suf-

fered from mild to moderate Alzheimer’s disease and dis-

played varying severities of cognitive decline, reflected by

a wide range of clinical ACE scores. This variation in the

cognitive ability within the patient group could explain

why, although patients were slightly slower in novel trials

compared with repeated trials, this preservation of impli-

cit memory is not statistically significant.

Using source localization, we identified distinct net-

works in each task: a six-source bilateral network in the

recognition task; and a simplified four-source network in

the priming task. These networks included left and right

occipital sources and left and right frontal sources, with

the addition of left and right temporal sources in the rec-

ognition task only. We expected to identify a more com-

plex network for the recognition task, in that there is

greater recruitment of medial temporal regions in explicit

memory recall, as compared to priming. It naturally fol-

lows, therefore, to include bilateral ITG sources here as

an extension of the network used for the priming task.

As in all DCM studies, our findings are dependent on

our selection of sources included in the models, however,

our source selection is justified and well-supported by

source localization analyses and previous work (Gilbert

and Moran, 2016). Our six-source network represents a

sub-network of the full explicit memory network which

may employ additional regions. However, to reduce

model complexity and prevent over-fitting of the model,

we selected a maximum of six sources in our sub-net-

work. The deposition of tau neurofibrillary tangles has

been reported to initiate in the medial temporal lobe and

spread outwards as the disease progresses (Marks et al.,

2017; Pasquini et al., 2019), and studies have shown that

Ab has increased deposition in the left medial temporal

lobe during early Alzheimer’s disease (Frings et al.,

2015). We then generated our DCMs for the tasks using

these two different networks and conducted PEB analyses

to examine both group effects and task performance.

Our PEB analyses revealed a slowing of signal trans-

mission generally and with further slowing (increased

time constants) specifically in the left hemisphere of

Alzheimer’s patients. This was observed in the priming

task, along with strong associations between local within-

region glutamate connectivity (G) and task performance

in the right frontal lobe, specifically the right IFG. This

correlation was predominantly driven by patients only,

revealed by our post hoc classical analyses—indicating

compensatory, right-hemisphere recruitment. The spread

of parameter values for glutamatergic local connectivity

was much greater in patients and showed a strong correl-

ation with the mean RT difference (i.e. task performance)

in the priming task, whereas in healthy controls the range

of G parameter values was much narrower and did not

correlate with task performance, exhibiting a low vari-

ability relative to patients. This glutamate connectivity, or

gain, also showed group-level differences, not related to

task performance per se: with enhanced gain in the right

OCP which was significantly greater in healthy controls

compared to patients in the priming task. These findings

suggest that intrinsic glutamate connectivity in the right

hemisphere may act as a compensatory mechanism in

Alzheimer’s patients while performing simpler implicit

memory tasks, but controls have overall higher levels of

this connectivity as a group and are still able to outper-

form patients.

In the recognition task, however, we see much larger-

scale network effects between patients and controls.

There was significant network dropout in the left hemi-

sphere: forward connectivity from the left ITG to left IFG

was reduced in patients compared with controls, and sub-

cortical input into the left inferior occipital gyrus was sig-

nificantly reduced in patients. This therefore indicates

that left-hemisphere memory circuits are compromised in

patients, and in the more difficult explicit memory task

patients have a reduced capacity to compensate for this

loss, as seen in their significantly reduced task perform-

ance versus controls. It may be that these networks are

preserved in implicit memory processing in patients, at

least early in the disease, as this dropout is absent from
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our PEB analysis of the simpler priming task. In terms of

task-based effects, we observed a strong relationship be-

tween recurrent right-hemisphere connectivity, namely

forward right OCP to right ITG and backward right ITG

to right OCP, and recognition accuracy score across par-

ticipants, with a higher PEB effect size for the backward

connections. Thus, this right-hemisphere region-to-region

connectivity may play a role in explicit memory recall.

Many studies have found that, at rest, patients suffer-

ing from mild cognitive impairment or early stages of

Alzheimer’s disease have lateralized atrophy specifically in

the left hemisphere (Miller et al., 2007), and a resting-

state MRI study by Thompson et al. (2001) found

increased left-hemisphere grey matter atrophy in patients

with mild to moderate Alzheimer’s disease compared to

healthy elderly controls (Thompson et al., 2001). Another

resting-state MRI study (Fox et al., 1996) showed signifi-

cant asymmetry in the left and right hippocampal forma-

tion of pre-symptomatic individuals at risk of familial

Alzheimer’s disease who were followed for 3 years and

later developed symptoms of Alzheimer’s disease. The

right hippocampal formation showed no significant differ-

ences to that of controls, whereas left hippocampal for-

mations were significantly smaller than that of controls

during this pre-symptomatic period (Fox et al., 1996).

Here, we show specific left-lateralized slowing and deple-

tion of connectivity in patients with Alzheimer’s disease

in two different memory tasks, with potential task-related

compensation for implicit memory circuits in the right

hemisphere.

A potential limitation of our paradigm is the use of

covert rather than overt naming during the priming task.

However, the explicit identification of an object during

priming does not affect long-term object priming as

shown in a recent study (Gomes and Mayes, 2015), and

whether subjects were consistent in their naming of

objects is of greater importance than the particular name

given to the object in the context of the priming task.

The use of EEG in this paradigm was essential for esti-

mating parameters such as excitatory time constants and

signal delays. EEG delivers a high temporal resolution at

timescales constant with that of synaptic transmission;

this is in contrast with other human neuroimaging techni-

ques such as fMRI. While fMRI may offer much more

powerful spatial resolution, in our experiment it was cru-

cial that we obtain more temporally resolved, direct

measures of neuronal activity in order to scrutinize

parameters inferred using our DCMs which span from

macroscale region-to-region connectivity, to mesoscale

ensembles of cellular and synaptic dynamics.

Future work may examine potential lateralized compen-

satory mechanisms and cognitive reserve in bilingualism.

Bilingualism has been widely reported to delay the onset

of many forms of dementia, including Alzheimer’s disease

(Bialystok et al., 2007; Craik et al., 2010). Bilingual

brains have also been shown to undergo experience-asso-

ciated neuro-structural alterations, particularly in left-

hemispheric regions such as the left IFG (Stein et al.,

2012) and left inferior parietal lobule (Della Rosa et al.,
2013). These changes may be neuroprotective in age-

related cognitive decline as compared with brains of

monolinguals (Abutalebi et al., 2014). Bilingual brains

may therefore be able to better compensate the loss of

connectivity in the left hemisphere that is observed in

dementias such as Alzheimer’s disease. Such work could

offer powerful insights into compensatory and neuropro-

tective mechanisms against Alzheimer’s disease. Overall,

our results speak to a relative specificity of functional

pathology in regional circuit-level signal integration and

how compensatory measures may be identified.
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