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Dye wastewater has attracted more and more attention because of its high environmental
risk. In this study, a novel TiO2 nanotube (TNT) catalyst was prepared and its morphology
and structure were characterized. The synthetic catalyst was used to degrade Rhodamine
B (RhB) under UV light and evaluated for the application performance. According to the
characterization results and degradation properties, the optimum synthetic conditions
were selected as 400°C calcination temperature and 10 wt% Pt deposition. As a result, the
degradation efficacies were sequenced as TNT-400-Pt > TNT-500-Pt > TNT-400 > TNT-
300-Pt. In addition, the effect of pH and initial concentration of RhB were explored, and
their values were both increased with the decreased degradation efficacy. While the
moderate volume of 11 mm of H2O2 addition owned better performance than that of 0, 6,
and 15mm. Scavengers such as tertbutanol (t-BuOH), disodium
ethylenediaminetetraacetate (EDTA-Na2), and nitroblue tetrazolium (NBT) were added
during the catalytic process and it proved that superoxide radical anions (O–•

2 ),
photogenerated hole (h+) and hydroxyl radical (OH•) were the main active species
contributing for RhB removal. For the application, TNT-Pt could deal with almost
100% RhB, Orange G (OG), Methylene blue (MB), and Congo red (CR) within 70min
and still kept more than 50% RhB removal in the fifth recycling use. Therefore, TNT-Pt
synthesized in this study is potential to be applied to the dye wastewater treatment.
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INTRODUCTION

With increasing technological and industrial development, a diverse set of pollutants have been
discharged into water bodies, leading to the increasing concern about water contamination and
environmental risks (Xu et al., 2021; Zeng et al., 2021). Colored dyes, represented by Rhodamine B
(RhB), OrangeG (OG),methylene blue (MB), andCongo red (CR) are widely used in the textile, printing,
and plastic industries, which have high concentration levels in wastewater (Skjolding et al., 2021).
Seriously, most dye pollutants cannot be easily degraded in water due to their complex composition, deep
color, and chemical and physical stability (Sutar et al., 2022). Therefore, several techniques, such as
adsorption, coagulation, biodegradation, and photocatalysis have been used in treating dyeing wastewater
(Hao et al., 2021; Liu et al., 2021; Pu et al., 2017). Among these technologies, photocatalysis is increasingly
regarded as a favorable option in recent years due to the advantages of its simple operation process, low
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energy consumption, and comparatively high degradation efficacy
for pollutant removal (Xu et al., 2017a; Xu et al., 2017b).In addition,
compared with photolysis, photocatalysis has the synergistic benefit
of a specific catalyst combined with light irradiation (Xu et al., 2018;
Xu et al., 2020a). Among many candidates of photocatalysts, TiO2 is
the most widely studied material, currently the most likely
photocatalyst for industrial-scale application in terms of high
chemical stability, durability, high hydrophilicity, photoactivity
efficiency, low toxicity, and low cost (Xu et al., 2020b; Hao et al.,
2022).

While during photocatalysis by TiO2, the high recombination
rates of photogenerated electron-hole pairs result in reduced
photocatalytic efficiency (Perera et al., 2012). Accordingly, a
series of strategies for the preparation of TiO2-based
nanocomposites have been developed (Mi et al., 2021; Wang
et al., 2021; Wu et al., 2021). TiO2-based nanotubes (TNTs)
were first synthesized by electrochemical deposition in a porous
aluminum oxide mold (Hoyer, 1996). Compared with commonly
used TiO2 nanoparticles (NPs), TNTs exhibit unique
photocatalytic properties including larger specific surface area
(up to 478 m2/g) and larger pore volume (up to 1.25 cm3/g),
comparatively strong ion-exchange capability; significant fast
and long-distance electron-transport ability; and enhanced light
absorption due to the high tube diameter ratio (Liu et al., 2014).

In addition, noble metals (e.g., Pt, Pd, and Ag) with TiO2

deposited can bend the valence band (VB) and conduction band
(CB) as the difference in the Fermi level between metals and
semiconductors (SC) to form a Schottky barrier (Christoforidis
and Fornasiero, 2017). The work function (φ) increases with the
greater Schottky barrier in the metal-SC heterojunction, causing a
better charge separation effect, which is a key step in most
photocatalytic processes. For example, TiO2 modified with Pt,
Pd, and Ag has higher decomposition activity for the pollutants
removal, with the pseudo-first-order kinetic rate constants of were
0.7267, 0.4369, and 0.1257 h−1, which were 12.5, 7.5, and 2.2 times
higher than that of pure TiO2, respectively (Li et al., 2016). While
among these noble metals, platinum (Pt) has a comparatively high
work function (φ = 5.93 eV) with good performance as a TiO2co-
catalyst (Fu et al., 2008; Chiarello et al., 2010). The reason has been
explained that photogenerated electrons are used more efficiently
in Pt atoms (Nguyen and Juang, 2019). In this study, TNT-Pt was
prepared by hydrothermal synthesis, calcined at different
temperatures (300, 400, 500°C), and different amounts of Pt
loading (3, 5, 10, and 20 wt%). All catalysts were characterized
for their morphology and structure and tested for the degradation
performance of RhB in the photochemical reactor under UV
irradiation. Meanwhile, the solution pH, initial concentration of
the pollutants, and H2O2 addition affecting the degradation
efficacy was discussed and the photocatalytic mechanism was
explored by quenching experiments.

MATERIALS AND METHODS

Preparation of TNT-Pt
Briefly, 1.2 g commercial TiO2 (AeroxideP25) and 75 ml NaOH
aqueous solution (10 M) were placed in a 100 ml Teflon lined

hydrothermal autoclave reactor and kept in an oven at 110°C for
12 h. Then, the sample was washed several times with deionized
water and filtered. Afterward, the sample was ultrasonically
treated with 0.1 M HCl aqueous solution for 15 min and
filtered. After filtering, the sample was washed several times
with deionized water. The obtained samples were kept in an
oven at 80°C for 12 h. After being completely dried, the samples
were collected and ground, which were identified as TiO2

nanotubes (TNT). All chemicals are of analytical grade. TNT
was calcined at different temperatures in a tube furnace
(Nabertherm P330) with the following temperature program:
from 25°C to the calcination temperatures (Tcalc, °C) at a heating
rate of 5°C/min, and keeping 3 h at Tcalc. The Tcalc values were set
at 300, 400, and 500°C, respectively. These three samples are
labeled as TNT-300, TNT-400, and TNT-500.

Pt was photo-deposited on all the samples (P25, TNT, TNT-
300, TNT-400, TNT-500). Firstly, 50 mg photocatalyst was added
into 1.05 ml H2PtCl6 aqueous solution (10 g/L) to prepare 50 ml
solutions and then mixed with 4 ml CH3OH. After irradiating
under the 300W mercury lamp for 3 h, the suspension was
washed with deionized water and filtered to obtain the
precipitate. After keeping in an oven at 80°C for 12 h, the
sample was collected and determined to be TNT-Pt, TNT-300-
Pt, TNT-400-Pt, and TNT-500-Pt, which were subsequently used
in this study.

Catalyst Characterization
The crystalline structure of the samples was determined by an
XRD PANalytical Empyrean diffractometer, a Cu Kα radiation of
1.54 Å, scan step-size 0.0167°and a 2θ scan range of 10–90°.
Absorption spectra of doped and undoped Pt samples were
analyzed using a UV spectrometer (Shimadzu) scanning
wavelengths from 200 to 800 nm. TEM and STEM-EDS
analysis were performed by using Tecnai G2 and Titan FEI
transmission electron microscopes, operating at 200 and
300 kV, respectively. The sample was prepared by suspending
the powder in 2-propanol, ultrasounds treated, and finally
dropping 5 μL of the suspension three consecutive times on a
400-mesh Cu grid provided by Tedpella, letting the solvent
evaporate at room temperature. The specific surface area and
pore volume of the derived nanotubes were determined by BET
(Micromeritics, ASAP 2460/2020). Determination of Pt loading
on TNT-Pt by ICP-MS (Agilent 7700s). Zeta potential values
were determined using a laser particle size zeta potential analysis
(Malvern Zetasizer Nano As). Zeta potential was measured three
times at each pH value. The preparation method referred to the
previous studies by some modifications (Xiong and Xu, 2016;
Scandura et al., 2019).

Photocatalytic Evaluation
The photodegradation of RhB in water was performed in a
photochemical reaction instrument, which consisted of a
100W mercury lamp with a wavelength of 365 nm, a
condensation cup, and a magnetic stirrer inside a box. For
degradation of RhB, the synthesized catalyst samples were
added to the RhB solution with an initial concentration of
20 mg/L. Then, the suspensions were strongly stirred for 0.5 h
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in the dark to reach the adsorption equilibrium state. After that,
the solution was exposed to UV irradiation for 70 min. During
the photocatalytic process, 2 ml solution was sampled every
10 min (8 times in total) and filtered to remove the catalyst.
The supernatant was analyzed to measure the concentration of
RhB with a Hitachi UV-3010 UV-vis spectrometer. All
experiments were conducted in triplicate.

RESULTS AND DISCUSSION

Morphologies and Structures
The evaluation of the phase and structure of the calcined TNT
was observed through XRD patterns (Figure 1A). The
crystallinity of these samples gets higher with the increase in
calcination temperature (Tcalc). It can be seen that TNT-300 has
only a small amount of anatase diffraction peaks (Supplementary
Figure S1). The spectra of TNT-400 show characteristic
diffraction peaks located at 25.281°, 37.8°, and 48.049°,
corresponding to the (101), (004), and (200) reflection plane
(JCPDS card 21-1,272) (Lazarte et al., 2018). H2Ti3O7 (202),
brookite (200), and rutile (210) reflection plane appear in TNT-
500 at 24.670°, 33.050°, and 44.699°. Thus, TNT-400 owns the
highest amount and purest anatase type crystal phase than that
TNT-300 and 500. After Pt was deposited on the surface of TNT,
new diffraction peaks at 40.186° and 63.024°that derived from
PtO2 (101) and PtO (222), respectively, appeared in the catalyst
samples (JCPDS card 38-1355 and 47-1171). Moreover, the
addition of Pt only passivates the diffraction peaks of anatase
and does not affect the overall crystal form of the sample. In order
to determine the photo absorbance properties, the UV absorption
of TNT and Pt-TNT under different Pt loadings were analyzed by
UV-Vis at wavelengths of 200–800 nm as shown in Figure 1B.

The main light absorption wavelength of TNT-400 is in the
ultraviolet range. However, with increasing Pt loading, the
amount of visible light absorbed by the catalyst steadily
increased, with only a slight increase in the amount of light
absorption in the UV range, where 10 wt% loadings showed the
best absorption of UV light in the UV rangeability. This illustrates
the increased photosensitivity of Pt-modified TNTs in the visible
and near-visible light wavelength range relative to pure TNTs.

Furthermore, TNT-300, 400, and 500 were modified with Pt
deposition, respectively. While no obvious change in the
morphology of Pt-loaded samples was observed in SEM
images (Supplementary Figure S2). EDS results verified the
presence of Ti, O, and Pt elements (Figure 2), indicating the
successful photo-deposition of Pt particles. BET results provided
in Table 1, claim that the surface areas were followed the
sequence as TNT-300-Pt = 286.2 m2/g > TNT-400 = 155.8 m2/
g > TNT-400 = 148.2 m2/g > TNT-500-Pt = 81.5 m2/g proving
maximum specific surface area of TNT-300 Pt. TEM was used to
further analyze the morphology of the TNT-300, 400, and 500-Pt
samples as shown in Figure 3. From the images, all the TNT tubes
present a uniform distribution with an average diameter of
7–10 nm, with an opened tube orifice (Figures 3A–C), while
the surface-adsorbed Pt nanoparticles exhibit a size of about
2–5 nm (Figure 3D), demonstrated again the emergence of new
photocatalytic sites. A layered structure with an apparent edge
was observed, illustrating the incomplete curling of part of the
TNT tube. With the increase of calcination temperature from 300
to 500 °C, TNT tube curling degree increased and the loading
content of Pt nanoparticles raised (Figures 3A–C).

Photocatalytic Behavior
The irradiation time versus the RhB concentration curves has
been given in Figure 4. Obviously, TNT prepared under Tcalc

FIGURE 1 | XRD patterns of different samples with most important planes indicated (A), and UV absorption of samples with different Pt loading (B),): the typical
diffraction peak of anatase, (: the diffraction peak of Pt oxide.
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400°C (TNT-400) exhibited higher photocatalytic ability for RhB
removal than that of TNT-300, 500, and primitive material
(TNT) as shown in Figures 4A,B. This could be explained
that TNT-400 owns the highest amount of anatase type crystal
phase according to the characterization results mentioned above.
Commonly, the anatase type crystal phase contains more defects
and vacancies, resulting in more oxygen vacancies to capture
electrons, so it has higher activity (Li et al., 2021). Comparatively,
TNT-300 and 500 own fewer amounts of anatase type crystal
phase, especially TNT-500 with part of rutile type crystal phase,
which has almost no photocatalytic activity (Phuong and Yoo,
2020). Thus, TNT-300 and 500 had poor photocatalytic capacity
for RhB Removal. While after the Pt loading, the degradation
performance was highly promoted as RhB was completely
bleached by TNT-400-Pt within 70 min (Figure 4C). The
kinetics of the photodegradation of RhB fitted well to the

pseudo-first-order model (R2 > 0.90) based on Eq. 1
(Mansurov et al., 2022):

In(C0/Ct) � kt (1)
where k is the rate constant, C0 andCt are the concentration of RhB
in solution at irradiation time 0 and t (min−1), respectively. As
shown in Figure 4D, the rate constant (k) was ranked as kTNT-400-Pt
= 0.035 min−1 > kTNT-400 = 0.015 min−1. As Pt loading on TNTwas
favorable for O2 adsorption and the superoxide radical (O–•

2 )
formation, which plays the key role for RhB degradation.
Similarly, TNT-400-Pt owned better catalytic ability than TNT-
300, 400 and original TNT-Pt, with the sequence of k value as kTNT-
400-Pt = 0.035 min−1 > kTNT-500-Pt = 0.015 min−1 > kTNT-300 =
0.002 min−1 ≈ kTNT-Pt = 0.002 min−1, which further proved the
high activity of TNT-400-Pt. This might be attributed to the
various Pt contents deposited in TNT. Under different Tcalc. the

FIGURE 2 | EDS mapping of elements Ti (A), O (B), Pt (C), and elements composition (D) of TNT-400-Pt.

TABLE 1 | Surface areas and particle sizes of TNT-400 and TNT-Pt photocatalysts.

Catalyst Surface areas (m2/g) Pore volume (cm3/g) Pore sizes (nm)

TNT-400 155.8403 1.0586 23.632
TNT-300-Pt 286.2142 1.005651 12.3963
TNT-400-Pt 148.194 0.646873 13.9094
TNT-500-Pt 81.4997 0.450061 17.1476
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Pt contents deposited in TNT-300, 400, 500 detected by ICP-MS
were 7.3 wt%, 7.5 wt%, and 6.8 wt%, thus TNT-400-Pt owned the
highest amount of Pt deposited in the catalyst. Furthermore, TNT-
400 owns the highest amount of anatase type crystal phase, leading
to the stronger photocatalytic ability for pollutant removal.

In this case, the effects of different experimental factors were
investigated on photocatalysis by TNT-400-Pt. First, the loading
amount of Pt during the synthesis process is essential for the
catalytic performance as shown in Figure 5A. As a result, only a
proper amount of Pt 10 wt% loading has a positive effect on RhB
removal. A higher or lower amount of Pt (20 wt% or 5 wt% and
3 wt%) loading had the reduced degradation efficacies, which were
all better than that of pure TNT. This could be explained that Pt
deposition could provide active species for the pollutant oxidation,
while the excess loading may cover active sites on the TiO2 surface,
thereby reducing photodegradation efficiency, which was also
discussed by previous literature (Shawky et al., 2020). In
addition, the UV-vis results (Figure 1B) exhibit that 20 wt%
TNT-Pt had higher absorption values than that of others, which
also could be the reason for its higher degradation performance.

Moreover, the photodegradation of RhB by TNT-400-Pt
(10 wt%) was evaluated at various initial solution pHs of 3, 5,
7, and 9 as shown in Figure 5B. The degradation efficacy is higher

under acid conditions than that under neutral and alkali
conditions, which is probably due to fact that the charge of
TNT-400-Pt at the pH of 6.1 is zero as shown in Supplementary
Figure S3 in the appendix. This suggests that the TNT surface
was positively charged at pH < 6.1, while negatively charged at pH
> 6.1. At low pH, H+ adsorbed on the catalyst surface has a large
proton exchange capacity, which could react with the
photogenerated electrons to form hydrogen radical (H•).
Meanwhile, a lower pH solution has electronegative centers,
leading to the promoted adsorption on the surface of TiO2,
which also increase the degradation rate under acid condition.
A similar explanation has also been mentioned in the previous
literature (Mohanty et al., 2020).

Figure 5C exhibits the effect of initial concentration in the
range of 5–25 mg L−1 on the catalytic performance. The results
show that the degradation efficacy was highest at the RhB
concentration of 5 mg L−1. While it decreased with the
concentration increasing as the rate constant (k) was ranked
from highest to lowest as k5 mg/L = 0.092 min−1 > k10 mg/L =
0.055 min−1 > k20 mg/L = 0.034 min−1 > k30 mg/L = 0.011 min−1,
which could be explained as the active radicals generated on the
catalyst surface were reduced due to the occupation of pollutant
molecules in the active sites. Furthermore, H2O2 reported as an

FIGURE 3 | TEM images of TNT-300-Pt (A), TNT-400-Pt (B), and TNT-500-Pt (C), scale bar: 50 nm, Pt nanoparticle size (D).
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electron acceptor also plays role in the RhB removal. Figure 5D
reveals that H2O2 in the RhB solution enhanced the degradation
efficacy, especially 11 mm addition with the promoted rate
constant of 0.057 min−1, higher than that of 7 mm and no
H2O2 addition. The reason could be attributed to the
generation of hydroxyl radical (OH•) reacting from the
reaction of H2O2 with electron (e–) as the Eq. 2 (Wang J.-F.
et al., 2022).

e− +H2O2 → OH− +OH• (2)
While a limiting value for the degradation rate occurred when

the H2O2 addition achieved 15 mM due to the scavenging
reaction as shown in Eq. 3.

H2O2 +OH•→ H2O +HO2• (3)

Photocatalytic Mechanism
During the photocatalytic process, the main active species include
photogenerated holes (h+) and electrons (e–), hydroxyl radicals

(OH•), and superoxide radical anions (O–•
2 ) that could be

produced based on the following Eq. 4–6.

TNT − Pt + hv → TNT − Pt(h+ + e−) (4)
h+ +H2O → OH• +H+ (5)

e− +O2 → O−•
2 (6)

To confirm the significance of these active species, tertbutanol
(t-BuOH), disodium ethylenediaminetetraacetate (EDTA-Na2), and
nitroblue tetrazolium (NBT) as the scavengers of OH•, h+, and O–•

2 ,
respectively were added during the photocatalytic process. As shown
in Figure 6A, it could be easily observed that the degradation efficacy
was poorest with NBT addition, followed by EDAT-Na2 and
t-BuOH addition, compared with the performance by TNT-Pt
without scavengers. This proves that O–•

2 plays an essential role
in the RhB degradation, then was a photogenerated hole (h+) and
OH• contributed to the pollutant removal. Accordingly, the possible
photocatalytic mechanism could be speculated as shown in Figure 7.
Under UV irradiation, the RhB molecules were activated as short-
lived active transient, adsorbed over Pt metal sites. Meanwhile, Pt

FIGURE 4 | (A) Photocatalytic decomposition of RhB and (B) pseudo-first-order kinetic model by TNT, TNT-300, TNT-400, and TNT-500, (C) photocatalytic
decomposition of RhB, and (D) pseudo-first-order kinetic model by TNT-Pt, TNT-300-Pt, TNT-400-Pt and TNT-500-Pt, pH = 6.83, initial RhB concentration = 20 mg/L.
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loading induced the O–•
2 generation of pollutant oxidation, and

nano-structure holes of TNT could provide unique space and
electronic environments for Pt active sites, which was easier to
inhibit the recombination of photogenerated electron and hole pairs,
leading to the prior photocatalytic ability dealing with RhB. This was
consistent with the literature (Ding et al., 2022;Wang X. et al., 2022).
Therefore, the catalytic activity for RhB was significantly improved
by TNT with Pt deposition.

Application to Other Dye Pollutants and
Recycling
TNT-Pt-400 (10wt%) was also used for other dye pollutants such
as CR, MB, and MO as shown in Figures 6B,C. As a result, at
initial concentrations of 10 mg/L, almost all RhB, CR, MB, and
OG could be removed within 70 min by TNT-Pt. While at the
concentration of 20 mg/L, 100% RhB and CR, 65% MB and 90%
OG could be degraded within 70 min. Thus, the obtained catalysts
of TNT-Pt own a comparatively strong capacity for dye pollutants
removal. In addition, the reuse capacity of the synthesized
materials (TNT-Pt-400, 10 wt%) was evaluated by five cycling
usages as shown in Figure 6D. Obviously, the performance
stained well as almost 100% RhB removal in the first three
cycles, 80% removal remained in the third time of cycling, and

more than 60% removal was achieved in the fifth time, indicating
that the synthesized catalysts were reusable and exhibited high
potential on the applications of real wastewater treatment.

CONCLUSION AND FUTURE
PERSPECTIVE

In summary, TNT-Pt was synthesized successfully and exhibited
well-characterizedmorphology and structure. During the synthetic
process, 400°C calcination temperature and 10 wt% Pt deposition
was determined to be the preferable condition to form a better
crystal morphology based on the characterization results. In the
photodegradation experiments, the rate constant (k) was ranked as
kTNT-400-Pt = 0.045 min−1 > kTNT-400 = 0.014 min−1. In addition,
acid solution (pH 3) and lower initial concentration of RhB (5mg/
L) both increased the degradation process, while a moderate
volume of 11 mm H2O2 addition had the promoted degradation
performance. Furthermore, in the quenching experiment, NBT
had the most significant inhibition effect on the photocatalytic
efficacy than other scavengers, suggesting the dominant active
species O–•

2 . Besides, the synthesized TNT-Pt could remove almost
CR, MB, and OG as well as RhB, and its catalytic capacity stained
well in five recycling usages.

FIGURE 5 | Change Pt load on TNT-400 (A), effects of pHini (B) on RhB photodegradation by TNT-400-Pt (10), the effect of initial concentration of RhB on the
photocatalytic degradation of TNT-400-Pt (10) (C), effects of H2O2 (D) on RhB photodegradation by TNT-400-Pt.
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So far, large datasets have existed on the synthesis of
photocatalyst materials and their degradation ability for
particular pollutant removal (Xu et al., 2020a). Nevertheless,

information on the controlling factors of the photocatalysis
process and the immobilization and recycling use of catalysts
are limited. Thus, future research should focus on the follows:

FIGURE 6 | Photocatalytic activities of the TNT-400-Pt sample for RhB degradation with disparate scavengers (A), photocatalytic degradation of different dyes
within 70 min by TNT-400-Pt at an initial concentration of 10 mg/L (B), and 20 mg/L (C), five cycles of degradation of TNT-400-Pt (D).

FIGURE 7 | The possible photocatalytic mechanism of TNT-PT for RhB removal.
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◆ Assessing dissolved oxygen (DO) and dissolved organic
matters (DOM) effect on the photocatalytic performance of
the as-synthesized TNT-Pt;
◆ Exploring the immobilization of the synthesized catalysts
when dealing with real dye wastewater;
◆ Utilizing the electron paramagnetic resonance (EPR) to
detect the active radicals directly for the further investigation
of the reaction mechanism;
◆ Synthesizing more functionalized yet low-cost catalyst
polymers decomposing the dye water with high efficacy.
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