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Retromer is a highly integrated multimeric protein complex that mediates retrograde
cargo sorting from endosomal compartments. In concert with its accessory proteins,
the retromer drives packaged cargoes to tubular and vesicular structures, thereby
transferring them to the trans-Golgi network or to the plasma membrane. In addition
to the endosomal trafficking, the retromer machinery participates in mitochondrial
dynamics and autophagic processes and thus contributes to cellular homeostasis.
The retromer components and their associated molecules are expressed in different
types of cells including neurons and glial cells, and accumulating evidence from genetic
and biochemical studies suggests that retromer dysfunction is profoundly involved in
the pathogenesis of neurodegenerative diseases including Alzheimer’s Disease and
Parkinson’s disease. Moreover, targeting retromer components could alleviate the
neurodegenerative process, suggesting that the retromer complex may serve as a
promising therapeutic target. In this review, we will provide the latest insight into the
regulatory mechanisms of retromer and discuss how its dysfunction influences the
pathological process leading to neurodegeneration.
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INTRODUCTION

Membrane trafficking is an evolutionarily conserved cellular process by which proteins and other
macromolecules reach their destinations without crossing a membrane. Multiple lines of evidence
have revealed that the defects in membrane trafficking are profoundly involved in the pathogenesis
of neurodegenerative diseases (Hasegawa et al., 2017a). In particular, much interest has been
focused on retromer because recent genetic and biological studies have underscored the significance
of the retromer sorting machinery in the pathogenesis of Alzheimer’s Disease (AD) and Parkinson’s
disease (PD) (Zhang et al., 2018). Retromer is considered a master regulator of retrograde cargo
trafficking, e.g., transport from early endosomes (EEs) to the trans-Golgi network (TGN) and the
plasma membrane (Seaman, 2021). On the other hand, retromer participates in the mitochondrial
dynamics and the autophagic system, which are key processes in the maintenance of neuronal
homeostasis (Cui et al., 2018). Moreover, pharmacological chaperones that stabilize retromer
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function successfully prevent neurodegeneration in cellular and
animal models, suggesting that retromer is a promising target
for disease-modifying therapy (Seaman, 2021). In this review,
we will summarize the molecular basis of retromer function and
discuss its pleiotropic roles in the causation and prevention of
neurodegeneration.

RETROMER: A MASTER REGULATOR OF
ENDOSOMAL SORTING AND BEYOND

The term “retromer” was first used to describe an essential
protein complex for the transport of vacuolar protein sorting
10p (Vps10p), a transmembrane receptor, from endosomes to
the TGN in Saccharomyces cerevisiae (Seaman et al., 1998).
Structurally, the retromer complex comprises five distinct
proteins, namely Vps26p, Vps29p, Vps35p, Vps5p, and Vps17p.

In mammals, retromer usually comprises a
VPS26/VPS29/VPS35 heterotrimer complex because it lacks
robust interaction with sorting nexin 1 (SNX1), a mammalian
homolog of Vps5p (Seaman, 2021). In cooperation with the
VPS26/VPS29/VPS35 trimeric structure, SNX orchestrates
endosomal cargo sorting (Figure 1). Similarly, as their yeast
counterpart Vps5p, SNX1 and SNX2 in mammals carry a
Bim/Amphiphysin/Rvs (BAR) domain that drives membrane
curvature and tubulation on the endosomal membrane (Carlton
et al., 2005). Although the affinity of SNX1/2 for retromer is
rather weak and transient, these SNX synergistically function in
cargo retrieval from endosomes to the TGN (Bujny et al., 2007;
Rojas et al., 2007). In addition, SNX5 and SNX6, which form
heterodimers with SNX1/2, can directly interact with retromer
cargoes such as cation-independent mannose-6-phosphate
receptor (CI-MPR) (Wassmer et al., 2009; Simonetti et al.,
2017; Yong et al., 2020). Likewise, SNX27 binds retromer subunit
VPS26, and these proteins cooperatively drive the cargo transport
from endosomes to the plasma membrane (Steinberg et al., 2013;
Gallon et al., 2014).

In the first step of retromer-dependent cargo transport,
the retromer core is recruited to the endosomal surface
under the control of Rab7a and SNX3 (Rojas et al., 2008;
Seaman et al., 2009). Interestingly, the inactivation of Rab7a by
TBC1 domain family member 5 (TBC1D5), a Rab7a GTPase-
activating protein (GAP), promotes the release of retromer from
endosomes (Seaman et al., 2009; Ye et al., 2020). Meanwhile,
SNX3 binds to the endosomal membrane, thereby initiating
retromer-mediated retrograde transport irrespective of SNX1/2
and SNX5/6 (Strochlic et al., 2007; Harterink et al., 2011). In the
endosomal microdomain, the Wiskott-Aldrich syndrome protein
and scar homolog (WASH) complex modulates the process of
endosomal tubulation (Linardopoulou et al., 2007; Gomez and
Billadeau, 2009) (Figure 1). The WASH molecular machinery is a
macromolecular protein complex composed of WASH1, FAM21,
strumpellin- and WASH-interacting protein, strumpellin and
coiled-coil domain-containing protein 53. VPS35 interacts with
the unstructured C-terminal tail of FAM21 and recruits FAM21
to endosomes, whereas the FAM21-WASH interaction occurs
through its N-terminus, thereby regulating actin polymerization

(Harbour et al., 2012; Hao et al., 2013). Additionally, FAM21
interacts with SNX27, directing SNX27-retromer cargoes to the
plasma membrane (Temkin et al., 2011).

Apart from the endosomal cargo sorting, the retromer is
involved in mitochondrial dynamics and the autophagic system
(Figure 1). An unbiased molecular screening revealed that
both VPS35 and VPS26 bind the mitochondrial-anchored
protein ligase (MAPL) (Braschi et al., 2010). The recruitment
of VPS35 to mitochondria regulates the transport of MAPL
to peroxisomes via mitochondrial-derived vesicles (MDVs).
Moreover, VPS35 participates in the recycling of dynamin-like
protein 1 (DLP1), a mitochondrial fission protein (Wang W.
et al., 2016). In that sense, retromer may control mitochondrial
dynamics through cargo-protein trafficking. Another line
of evidence suggested a regulatory role for retromer in
autophagy lysosomal pathway. Actually, proteomics analysis
of autophagosome composition in MCF7 cells identified
VPS35 as an autophagosome-associated protein (Dengjel
et al., 2012). When retromer is depleted, Atg9 aberrantly
remains in EEs and interferes with subsequent autophagosome
formation (Ravussin et al., 2021). In addition, retromer
participates in mitophagy by regulating Rab7 activity with
TBC1D5 (Jimenez-Orgaz et al., 2018). Cumulatively, these
findings provide a scientific basis for the fundamental role
of retromer in the maintenance of cellular homeostasis and
stress tolerance.

ALZHEIMER’S DISEASE

Genetic and Pathological Evidence
Linking Retromer and Alzheimer’s
Disease
Alzheimer’s Disease (AD) is the most common cause
of progressive dementia among older populations. The
histopathological signature of AD is the deposit of extracellular
senile plaques and intracellular neurofibrillary tangles, which
are composed mainly of aggregated amyloid-β (Aβ) and
phosphorylated tau, respectively (DeTure and Dickson, 2019).
The synergistic neurotoxicity of these two proteins in AD has
been extensively studied, and growing evidence suggests that
the retromer sorting pathway exerts a substantial impact on
the generation of AD pathology through Aβ production and
tau accumulation (Zhang et al., 2018). Microarray analysis
using the entorhinal cortex and the dentate gyrus from the
autopsied brain tissue of patients with AD demonstrated that
the expression of the retromer subunits VPS35 and VPS26
is markedly reduced at both the mRNA and protein levels.
This finding is further corroborated by experiments in a
cultured cellular model revealing that VPS35 silencing leads
to a significant increase of endogenous Aβ level (Small et al.,
2005). Like AD, the expression level of VPS35 is significantly
decreased in the brains of patients with distinct primary
tauopathies such as progressive supranuclear palsy (PSP)
and Pick’s disease, and downregulation of VPS35 results in
the exacerbation of motor and learning impairments and
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FIGURE 1 | Schematic illustration of the retromer-mediated sorting pathway. Retromer is a hetero-trimeric protein complex composed of VPS26, VPS29, and
VPS35. In cooperation with its associated proteins, the retromer sorting machine plays a primary role in the retrograde cargo trafficking from the endosomes to the
TGN or plasma membrane. In the first step of retromer-mediated cargo transport, the retromer core is recruited to the endosomal surface under the control of Rab7a
and SNX3. Because the endosomal recruitment of retromer complex largely depends on Rab7 activity, the inactivation of Rab7a by TBC1D5 promotes the release of
retromer from endosomes. Lipid membrane deformation is crucial for intracellular trafficking and organelle remodeling. In the endosomal microdomain, the WASH
complex modulates the process of endosomal tubulation through the activation of actin nucleation and polymerization. In addition to endosomal transport, retromer
participates in the mitochondria dynamics through the cargo trafficking from the endosomes to the mitochondria and MDV-mediated trafficking. VPS, vacuolar
protein sorting; TGN, trans-Golgi network; SNX, sorting nexin; TBC1D5, TBC1 domain family member 5; WASH, Wiskott-Aldrich Syndrome protein and scar
homolog.

accumulation of pathological tau in a relevant mouse model
(Vagnozzi et al., 2019). Moreover, a gene-association study
between AD and single nucleotide polymorphisms (SNPs)
in 15 retromer-related genes revealed a positive association
for several retromer-associated genes (e.g., SNX3, RAB7A,
KIAA1033, and SNX1) (Vardarajan et al., 2012). Furthermore,
copy number variation analysis and whole exome sequencing
in sporadic early-onset AD identified a de novo deleterious
variant (L625P) in VPS35 in a French cohort (Rovelet-Lecrux
et al., 2015). The pathogenic role of retromer in AD is also
supported by studies using different animal models. Human
amyloid precursor protein (APP) transgenic (Tg) mice (Tg2576
and J20) exhibit a progressive decrease in the expression
levels of VPS35, VPS26, and CI-MPR (Chu and Praticò,
2017; Tammineni et al., 2017). In Macaca fascicularis, an age-
dependent decline in the endosomal sorting machinery including
the retromer is closely related to the intracellular accumulation
of APP and Aβ (Kimura et al., 2009, 2016). Lifestyle-related
diseases, such as hypertension and diabetes, are known as
major risk factors for AD, and interestingly, a mouse model
of type 2 diabetes revealed hippocampus-specific retromer

deficiency similarly as observed in an APP Tg mouse model
(Morabito et al., 2014).

Roles of Retromer in the Trafficking and
Metabolism of Alzheimer’s
Disease-Related Proteins
A plethora of evidence suggests that the endosomal sorting
machinery including the retromer has a great impact on the
biogenesis and transport of Aβ peptides in healthy and diseased
brains (Willén et al., 2017; Kimura and Yanagisawa, 2018).
Cellular and animal model studies demonstrated that retromer
deficiency facilitates the buildup of toxic Aβ oligomers in the
endosomal compartments, resulting in abnormal endosomal
enlargement and subsequent neuronal cell death (Muhammad
et al., 2008; Wen et al., 2011; Bhalla et al., 2012; Ansell-Schultz
et al., 2018). In the amyloidogenic pathway, Aβ synthesis is
initiated through the proteolytic cleavage of APP by β-secretase
[β-APP-cleaving enzyme-1 (BACE1)] on the plasma membrane,
TGN, and EEs, followed by the transport to the multivesicular
bodies (MVBs) (Rajendran et al., 2006; Burgos et al., 2010;
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Willén et al., 2017). BACE1 produces the N-terminal fragment of
APP called soluble peptide APPβ, and the C-terminal fragment
of APP named β-CTF (also known as C99). Subsequently, the Aβ

peptide is generated as a fragment, in which β-CTF is cleaved
by γ-secretase within endosomes. Importantly, the retromer
complex contributes to the retrograde transport of APP, BACE1,
γ-secretase, and related proteins from the endosomes, and thus,
its malfunction causes the aberrant endosomal retention of these
molecules, leading to the overproduction of Aβ (Wen et al.,
2011; Bhalla et al., 2012; Choy et al., 2012; Cuartero et al., 2012;
Kanatsu et al., 2018).

The retrograde trafficking of APP is mediated by the
Vps10 domain-containing proteins SorLA and sortilin-related
Vps10 domain-containing receptor 1 (SorCS1) through their
interactions with the retromer complex (Pallesen and Vaegter,
2012) (Figure 2). Intriguingly, the SORL1 gene, a gene encoding
SorLA which is abundantly expressed in the central nervous
system, is associated with both late- and early-onset forms of
AD (Rogaeva et al., 2007; Pottier et al., 2012). In addition,
the protein expression of SorLA is significantly lower in
brain tissue and cerebrospinal fluid (CSF) from patients with
sporadic AD compared to controls, (Scherzer et al., 2004;
Ma et al., 2009). Intriguingly the reduced expression of
SorLA in the brains begins even in the prodromal phase of
AD, and low SorLA expression is correlated with cognitive

function (Sager et al., 2007). In agreement with these findings,
overexpression of SorLA decreased the expression level of APP
and Aβ in cellular and mouse models, whereas loss of SorLA
increased the Aβ load (Andersen et al., 2005; Offe et al., 2006;
Schmidt et al., 2007; Dodson et al., 2008). Mechanistically, SorLA
co-localizes with APP in EEs, and transports APP to the TGN
in association with the retromer complex (Andersen et al., 2005;
Fjorback et al., 2012). Collectively, these results suggest that
the lack of interaction between APP and SorLA perturbs the
retrograde trafficking of APP and SorLA from EEs to the TGN
or plasma membrane, leading to aberrant endosomal retention of
APP and Aβ in the AD brain.

Notably, the SorLA-mediated retrieval of APP to the plasma
membrane is regulated by SNX27; thus, the depletion of
SNX27 leads to the accumulation of SorLA and APP in EEs,
thereby promoting Aβ production (Huang et al., 2016). Indeed,
the coding variants of SORL1 identified in the familial and
sporadic forms of AD bind APP less well, and HEK293 cells
overexpressing mutant SORL1 displayed increased Aβ secretion
in culture medium (Vardarajan et al., 2015). Similarly, SorLA-
deficient human induced pluripotent stem cell (iPSC)-derived
neurons specifically exhibit the abnormal enlargement of EEs
with APP accumulation, which mimics affected neurons in AD
brains (Cataldo et al., 2000; Knupp et al., 2020). Moreover,
genetic cohort studies demonstrated that variants in SORCS1, a

FIGURE 2 | Roles of the retromer machinery in the trafficking and metabolism of AD-related proteins. Endosomal trafficking plays a key role in the processing of APP
and the biogenesis of Aβ peptides. Under physiological conditions (left panel), the Aβ peptide is synthesized through the proteolytic cleavage of APP by BACE1 (also
known as β-secretase) and γ-secretase on the plasma membrane, early endosomes, and TGN. Retromer complex contributes to the retrograde transport of APP,
BACE1, γ-secretase, and related proteins (e.g., SorLA and SorCS1) from endosomes. The SorLA-mediated transport of APP to the plasma membrane requires the
support of SNX27. In addition to the endosomal pathway, the retromer might participate in surface recycling of the AMPAR subunit GluA1, thereby modulating
synaptic plasticity. In AD brains, in which retromer function is compromised (right panel), APP, BACE1, γ-secretase, and associated proteins accumulate in early
endosomes, thereby increasing Aβ production with hypertrophic changes in endosomal compartments. Besides the amyloidogenic pathway, retromer malfunction
perturbs the cell surface recycling of GluA1, which may influence on synaptic plasticity. APP, amyloid precursor protein; Aβ, amyloid-β; BACE1, β-APP-cleaving
enzyme-1; TGN, trans-Golgi network; SNX sorting nexin; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor; AD, Alzheimer’s Disease.
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gene encoding another Vps10 family protein, are significantly
associated with AD as well as type 1 and type 2 diabetes
mellitus (Goodarzi et al., 2007; Paterson et al., 2010; Reitz
et al., 2011). Similarly as SorLA protein, overexpression of
SORCS1 in HEK293 cells transfected with mutant APP reduces
Aβ secretion into the culture medium. Conversely, SORCS1
silencing significantly increases Aβ secretion together with
the decline of VPS35 level in the mice brain (Lane et al.,
2010; Reitz et al., 2011). Regarding the mode of action,
it is likely that SORCS1 does not directly modulate the
endocytic uptake of APP, but rather, it regulates the exit of
APP and/or CTFs out of EEs, resulting in increased APP
translocation to the TGN as well as decreased Aβ secretion
(Lane et al., 2010, 2013).

The scission of APP by BACE1 is putatively the rate-limiting
step in Aβ synthesis. As a type 1 transmembrane aspartic
protease, BACE1 activity is highest in acidic compartments
including the endosomal compartments and TGN, making it
plausible that the regulation of the post-Golgi transport of
BACE1 plays an important role in the processing of APP
and Aβ genesis (Sun and Zhang, 2017). In neuronal cells,
BACE1 is transported from EEs to the TGN through retromer-
mediated transport, and thus, the loss of retromer function
promotes the retention of BACE1 in endosomes, resulting in
increased binding of APP to BACE1 and consequently, Aβ

production (Wen et al., 2011; Cuartero et al., 2012) (Figure 2).
During this process, sortilin, a Vps10 domain-containing protein,
cooperatively regulates the trafficking of BACE1. Specifically,
sortilin on the cell surface is taken up by cells via adaptor
protein 1-dependent endocytosis, which is followed by transport
to the TGN with BACE1 (Canuel et al., 2008; Finan et al.,
2011). The expression level of sortilin is correlated with Aβ

production and is markedly elevated in the brain tissue of
patients with AD and retromer-deficient mice (Kim et al.,
2010; Finan et al., 2011). Supporting this result, the N-terminal
fragments of two BACE1 substrates, namely APP-like 1 and
close homolog of L1, are substantially increased in the CSF of
forebrain-specific Vps35 KO mice and patients in the prodromal
stage of AD (Simoes et al., 2020). Altogether, these findings
strongly suggest that the subcellular trafficking of BACE1 and the
amyloidogenic APP processing pathway largely depend on the
retromer function.

In addition to the amyloidogenic pathway, the retromer
machinery is likely to modulate the subcellular trafficking of
cargo molecules related to AD pathogenesis. One example is
triggering receptor expressed on myeloid cells 2 (TREM2), a risk
gene for AD and an important regulator of microglial functions
(Guerreiro et al., 2013; Jonsson et al., 2013; Lee et al., 2018).
TREM2 is a transmembrane receptor of the immunoglobulin
superfamily that is mainly expressed in monocytes, macrophages,
dendritic cells, and microglia, and it undergoes shutting
between the plasma membrane and endosomal compartments in
association with retromer (Yin et al., 2016). Particularly, the loss
of retromer components perturbs plasma membrane-resident
TREM2 but increases its lysosomal translocation for degradation,
which impairs the microglial activation and phagocytic clearance
of Aβ (Lucin et al., 2013; Yin et al., 2016). Consistent with this

finding, R47H TREM2, an AD-associated mutant, disrupts the
binding to VPS35, and it is destined for lysosomal degradation
(Yin et al., 2016). The importance of retromer function in the
microglial clearance of Aβ is further supported by a recent study
showing that microglia-specific Vps35 conditional KO 5XFAD
mice showed impaired microglial uptake of Aβ and disease-
associated microglia development in the brains, resulting in
the exacerbation of Aβ-related pathology and cognitive decline
(Ren et al., 2022).

Other evidence demonstrated the putative role of retromer
in the alteration of synaptic plasticity in AD (Figure 2).
In hippocampal neurons, VPS35 deficiency impairs the
surface recycling of α-amino-3-hydroxy-5-methyl-4-isoxazole
propionate receptor (AMPAR) subunit GluA1 during long-term
potentiation (LTP), resulting in dendritic spine deficit (Tian et al.,
2015; Temkin et al., 2017). In addition, Vps26B, a brain-enriched
paralog of Vps26 in mammals, potentiates the activity-dependent
retrograde trafficking of GluA1 during LTP (Bugarcic et al., 2011;
Simoes et al., 2021). It is interesting that silencing of Vps26B, but
not Vps26A, in mice significantly decreases SorLA levels in the
plasma membrane, which is accompanied by increased Aβ and
tau accumulation in brain tissue and CSF (Simoes et al., 2021).

Considerations for Retromer as a
Therapeutic Target in Alzheimer’s
Disease
Given the multifaceted roles of retromer in the subcellular
trafficking of AD-related proteins, one can imagine that the
genetic engineering or pharmacological stabilization of retromer
components may have a potentially beneficial effect on the
neurodegenerative process of AD. For example, intracerebral
AAV-mediated gene transfer of VPS35 in triple Tg (3xTg) mice
{i.e., a human mutant presenilin 1 [M146V] knockin (KI), mutant
APP [KM670/671NL] and tau [P301L] transgene} ameliorates
cognitive dysfunction, which is associated with significant
decreases in Aβ deposition and phosphorylated tau levels (Li
et al., 2020a). Moreover, overexpression of VPS35 in cultured
cellular models increases the expression of cathepsin D (CTSD),
a lysosomal aspartic protease, thereby promoting the autophagic
clearance of pathological tau aggregates (Vagnozzi et al., 2019). In
addition to retromer gene transduction, retromer stabilization by
the chemical chaperones R33 and R55 can mitigate AD-related
pathology. Specifically, both R33 and R55 stabilize the retromer
complex by binding the interface between VPS35 and VPS29,
thereby preventing their degradation (Mecozzi et al., 2014).
In the aforementioned 3xTg mice, R33 successfully prevented
memory deficit along with reducing the intracerebral Aβ burden
and phosphorylated tau levels (Li et al., 2020b). Likewise, in
human iPSC-derived neurons from patients with AD, both R33
and R55 reduced tau phosphorylation in an APP-independent
manner (Young et al., 2018). Finally, a recent cellular and
animal model study demonstrated that the administration of R33
ameliorated the retention of APP in EE and increased the level
of phosphorylated tau under high glucose condition (Chae et al.,
2022). Taken together, these results open up a new therapeutic
avenue for targeting retromer in AD. Future studies are required
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to further evaluate the efficacy of retromer-modulating drugs in
different types of cellular and animal models.

PARKINSON’S DISEASE

Genetic Basis Linking Retromer and
Parkinson’s Disease
Parkinson’s disease (PD), the second most common
neurodegenerative disease, is clinically characterized by a
progressive movement disability and a variety of non-motor
symptoms. The neuropathological hallmarks of PD are the
preferential loss of dopaminergic neurons in the substantia
nigra pars compacta (SNpc) and the appearance of cytoplasmic
inclusions called Lewy bodies (LBs), which are mainly composed
of hyperphosphorylated, aggregated α-synuclein (α-syn)
(Baba et al., 1998).

After the discovery of the missense mutations in the VPS35
gene in a late-onset, dominantly inherited familial form of
PD (PARK17), the retromer function in the pathogenesis of
PD has been highlighted (Vilariño-Güell et al., 2011; Zimprich
et al., 2011). The exogenous induction of PD-related leucine-rich
repeat kinase 2 (LRRK2, PARK8) and Rab7L1 also impairs the
retromer-mediated transport of MPR with abnormal lysosomal
swelling. Somewhat surprisingly, the expression of wild-type
(WT) VPS35 (WTVPS35) can rescue the phenotypes induced
by LRRK2 or RAB7L1 variants both in vitro and in vivo,
suggesting that these three genes might operate in a common
cellular pathway (MacLeod et al., 2013). Moreover, in the
brain tissue from LRRK2 mutation carriers, the insoluble
form of VPS35 is prominently increased probably because of
retromer or lysosomal dysfunction (Zhao et al., 2018). Although
the mechanisms by which VPS35 and LRRK2 synergistically
participate in the pathogenesis of PD remains unclear, several
possibilities have been postulated. The pathogenic D620N
VPS35 (D620NVPS35) mutant enhanced LRRK2-mediated Rab10
phosphorylation in cellular and mouse models. Conversely, an
in vivo study using a fly model revealed that Drosophila vps35
(dvps35) and LRRK2 cooperatively modulate synaptic vesicle
endocytosis through the endosomal pathway (Inoshita et al.,
2017; Mir et al., 2018). Several lines of evidence also suggest
a molecular interaction between VPS35 and PARKIN (PARK2),
the most common cause of autosomal recessive young-onset
parkinsonism. In a Drosophila model, vps35 genetically interacted
with PARKIN but not with PINK1 (PTEN-induced putative kinase
1), and notably, vps35 overexpression rescued several parkin-
mutant phenotypes (Malik et al., 2015). As an E3 ubiquitin
ligase, parkin directly interacts with VPS35 through its RING1
domain, thereby modulating retromer function through VPS35
ubiquitination (Williams et al., 2018). Additionally, as a vesicle-
associated protein, α-syn can influence retromer-mediated
sorting by interfering with the interaction between SNX3 and
PI(3)P (Patel et al., 2018; Kobayashi et al., 2019). Another
interesting finding was that the loss of iPLA2-VIA, a Drosophila
homolog of PLA2G6 (PARK14), inhibits the retromer-mediated
transport of sphingolipids from endosomes to the TGN, resulting
in the lysosomal dysfunction due to ceramide overload in the

lysosomes (Lin et al., 2018). Intriguingly, similar results were
observed upon loss of vps26 or vps35 or overexpression of
α-syn in this fly model, indicating that these defects might be
common in the pathogenesis of PD. In addition to genetic models
mimicking familial forms of PD, VPS35 overexpression may have
a protective effect on toxin-induced models such as rotenone-
induced Drosophila PD model (Linhart et al., 2014; Dhungel
et al., 2015; Williams et al., 2018). Taken together, these findings
indicate that the retromer sorting machinery may configure a
common biological pathway involved in PD.

Molecular and Cellular Mechanisms
Underlying Familial Parkinson’s Disease
With Retromer-Related Gene Mutations
Although the molecular mechanism underlying neuronal loss in
PD remains unclear, the critical roles of endosomes and their
associated trafficking process in the pathophysiology of PD have
emerged (Hasegawa et al., 2011, 2017a,b; Konno et al., 2012;
Sugeno et al., 2014; Yoshida and Hasegawa, 2022). In particular,
the discovery of VPS35 as a responsible gene for PARK17 has
attracted great attention because this finding revealed a causal
relationship between the retromer machinery and PD (Vilariño-
Güell et al., 2011; Zimprich et al., 2011). Among the VPS35
mutations so far identified, the D620N missense mutation in
the C-terminus of VPS35 has been consistently reported in
unrelated PD families from different ethnicities (Sassone et al.,
2021). Based on these results, genetically engineered animal
models harboring D620NVPS35 have been created, and they have
variable phenotypes. In a viral-mediated gene transfer rat model,
the expression of human D620NVPS35 in the SNpc resulted in
prominent dopaminergic neuron loss with axonal pathology,
whereas D620NVPS35 Tg aged mice generated via Rosa26-based
transgenesis did not exhibit apparent motor impairment or
neurodegeneration (Tsika et al., 2014; Vanan et al., 2020). On the
contrary, Tg flies expressing human D620NVPS35 or P316SVPS35
displayed a detrimental phenotype including dopaminergic
neuron loss, locomotor dysfunction, a shortened lifespan, and
susceptibility toward PD-linked environmental toxins (Wang
et al., 2014). There are several conflicting research findings about
D620NVPS35 KI mice; however, some of them exhibit levodopa-
responsive motor impairment with dopaminergic neuron loss
in the SNpc (Chen et al., 2019; Chiu et al., 2020; Niu et al.,
2021). Notably, D620NVPS35 KI mice display phosphorylated
tau accumulation and tangle-like pathology instead of LB
pathology (Ishizu et al., 2016; Chen et al., 2019; Chiu et al.,
2020), which may have mimicked the autopsy findings in the
Japanese PARK17 patient carrying VPS35 mutation displaying
“pure nigral” degeneration without LB pathology in the brain
(Bono et al., 2020).

The mechanisms by which mutant VPS35 induces the PD-
related pathology remain uncertain; however, several possibilities
have been proposed: (i) toxic α-syn accumulation attributable
to lysosomal dysfunction, (ii) synaptic dysfunction, and (iii)
impaired mitochondrial dynamics and mitophagy (Figure 3).
Retromer plays a key role in the lysosomal sorting of
CTSD, a major lysosomal hydrolase in α-syn degradation
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FIGURE 3 | Retromer-mediated pathogenic pathway in PD. In physiological states (left panel), the retromer participates in the activation and CI-MPR-mediated
sorting of CTSD, a major lysosomal hydrolase for α-syn degradation. The clearance of neurotoxic α-syn species largely depends on the autophagy-lysosomal
pathway, especially macroautophagy and CMA. Retromer modulates the retrograde transport of LAMP2A, a receptor for CMA, from endosomes to the TGN, thereby
preventing its degradation in lysosomes. In addition, retromer regulates the surface recycling of GluA1, D1R and DAT and thus influences synaptic function.
Furthermore, retromer might participate in the autophagic machinery and mitochondrial dynamics, which are key processes in the maintenance of neuronal
homeostasis. In the PD brain (right panel), retromer function is disturbed by aging, environmental toxin exposure, or genetic alterations. The familial PD-linked mutant
VPS35 disrupts the molecular interaction between VPS35 and the WASH complex, which hampers retromer-mediated cargo sorting to the TGN. The perturbation of
endosome-TGN trafficking hampers CTSD trafficking, thereby leading to abnormal α-syn accumulation in lysosomes. Likewise, retromer failure impairs the
endosome-to-TGN retrieval of LAMP2A and accelerates its degradation in lysosomes, which compromises the CMA-mediated degradation of cytotoxic α-syn.
Moreover, mutant VPS35 causes autophagic failure, which is partly explained by the mislocalization of autophagy protein ATG9A. Additionally, retromer failure
increases the expression level of GluA1 and D1R on the plasma membrane, and thus induces synaptic dysfunction. In addition, mutant VPS35 has detrimental
effects on mitochondrial fission-fusion dynamics and PINK1-PARKIN-mediated mitophagy, which results in mitochondrial dysfunction and fragmentation. The
PD-linked DNAJC13 mutation influences on the trafficking of multiple cargoes possibly due to the alteration of the membrane dynamics via retromer-related WASH
complex and SNX1. CI-MPR, cation-independent mannose-6-phosphate receptor; CTSD, cathepsin D; CMA, chaperone-mediated autophagy; LAMP2A,
lysosomal-associated membrane protein 2A; TGN, trans-Golgi network; D1R, dopamine D1 receptor; DAT, dopamine transporter; PD, Parkinson’s disease; VPS,
vacuolar protein sorting; WASH, Wiskott-Aldrich Syndrome protein and scar homolog; ATG, autophagy-related; PINK1, PTEN-induced putative kinase 1; SNX
sorting nexin; DNAJC13, DnaJ heat shock protein family (Hsp40) member C13.

(Sevlever et al., 2008). Namely, upon arrival in the Golgi
apparatus, newly synthesized lysosomal enzymes including
CTSD are modified with mannose 6-phosphate residues, which
are recognized by CI-MPR in the TGN. CTSD is translocated
to endosomes and released for further sorting to lysosomes.
Retromer retrieves the unoccupied CI-MPR from endosomes
to the TGN, where they participate in further cycles of CTSD
sorting. Hence, retromer malfunction decreases the levels of the
active form of CTSD in lysosomes and thus leads to abnormal
α-syn accumulation (Follett et al., 2014; Miura et al., 2014).
Through comparative stable isotope labeling by amino acids
in cell culture (SILAC)-based analysis, the major defect of
D620NVPS35 is attributed to its insufficient interaction with the
actin-nucleating WASH complex, which results in perturbation
of endosome-to-TGN trafficking (McGough et al., 2014).
Likewise, exogenous expression of D620NVPS35 in HeLa cells
can rescue lysosomal proteolytic defect and altered autophagic
flux caused by the silencing of endogenous VPS35; however, this
mutant fails to support the retrieval of CI-MPR from endosomes
to the TGN (Cui et al., 2021). Similarly as D620NVPS35,
R524WVPS35 and A320VVPS35 can also interfere with retrograde

cargo sorting in the endosome-to-TGN pathway (Follett et al.,
2016; Wu et al., 2020).

In PD and other synucleinopathies, one of the major concerns
is the mode of α-syn clearance. Although some researchers
have emphasized the importance of the ubiquitin-proteasome
system for α-syn degradation, numerous studies have suggested
that its degradation largely depends on the autophagy lysosomal
pathway, especially macroautophagy and chaperone-mediated
autophagy (CMA) (Cuervo et al., 2004; Oshima et al., 2016).
Because retromer function is closely involved in the maintenance
of autophagy-mediated proteostasis (Figure 3), it is easy to
assume that retromer malfunction could influence the clearance
of toxic α-syn and subsequent neurodegeneration. Indeed, PD-
linked D620NVPS35 impairs WASH complex recruitment to
the endosomes and thus causes autophagic failure, which is
partly explained by the mislocalization of the autophagy protein
ATG9A (Zavodszky et al., 2014). Furthermore, dopaminergic
neurons expressing D620NVPS35 and neurons in D620NVPS35 KI
mice exhibit impaired endosome-to-Golgi retrieval of LAMP2A,
thereby accelerating LAMP2A degradation in lysosomes (Tang
et al., 2015a; Niu et al., 2021). Collectively, these results suggest
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that retromer malfunction impairs the cellular clearance of
α-syn via the autophagy-lysosome pathway, thereby accelerating
neurodegeneration possibly due to the accumulation of toxic,
misfolded α-syn species.

Growing evidence suggests that retromer can influence
mammalian nervous system development and synaptic
neurotransmission in healthy and diseased brains (Brodin
and Shupliakov, 2018). Although limited evidence is available,
several studies claim that the disorder in retromer function
by PD-related VPS35 mutations may affect synaptic function
(Figure 3). In mouse primary cortical neurons, the presence
of D620NVPS35 was less frequently present in dendritic spines
than WTVPS35, and D620NVPS35 tended to form clusters with
FAM21 in EEs (Munsie et al., 2015; Kadgien et al., 2021). In the
synaptic nerve terminal, VPS35 participates in the cell surface
recycling of GluA1, dopamine D1 receptor (D1R), and dopamine
transporter (DAT), and thus, D620NVPS35 might increase the
surface expression of these receptors, thereby producing chronic
stress in neuronal circuits (Munsie et al., 2015; Wang C. et al.,
2016; Wu et al., 2017; Kadgien et al., 2021).

Mitochondria have long been recognized as a key component
in the pathogenesis of PD (Hasegawa et al., 2006; Bose and Beal,
2016). Another interesting idea is that the VPS35 pathogenic
mutation may have a detrimental effect on mitochondrial fission-
fusion dynamics and mitophagy (Figure 3). Indeed, aberrant
mitochondrial fragmentation and impaired mitophagy have
been observed in fibroblasts from patients bearing D620NVPS35
(Wang W. et al., 2016; Hanss et al., 2021). The underlying
mechanism of mitochondrial fragmentation induced by VPS35
deficiency is supposed to be aberrant trafficking of MAPL (also
known as mitochondrial E3 ubiquitin ligase-1) and dynamin-like
protein 1 (DLP1). More specifically, D620NVPS35 impairs the
trafficking of MAPL from mitochondria to MDVs, and the
overloaded MAPL in mitochondria ubiquitinates mitofusin-2
(MFN2), thereby promoting mitochondrial fragmentation
(Tang et al., 2015b). Alternatively, D620NVPS35 enhances the
VPS35-DLP1 interaction and increases the turnover of the DLP1
complex in mitochondria, which induces neurodegeneration
by increasing the rate of mitochondrial fission (Wang W.
et al., 2016). It is widely accepted that both PINK1 and
PARKIN participate in the quality control pathway to sense
damaged mitochondria and target them for degradation through
mitophagy (Tanaka, 2020). A recent study using SH-SY5Y cells
carrying the D620NVPS35 demonstrated that mutant VPS35
impairs the PINK1-PARKIN-mediated mitophagy through
impaired PINK1 recruitment to mitochondria, suggesting a
converging pathophysiological cascade among VPS35, PINK1,
and PARKIN in PD (Ma et al., 2021).

Another important player in the endosomal cargo sorting is
a DNAJC13 [DnaJ heat shock protein family (Hsp40) member
C13], which associates with SNX1 and has been linked to an
autosomal-dominant, late-onset familial form of PD (PARK21)
(McGough and Cullen, 2013; Freeman et al., 2014; Vilariño-
Güell et al., 2014; Gustavsson et al., 2015). The neuropathological
feature in DNAJC13 N855S (N855SDNAJC13) mutation carriers is
the presence of the brainstem or transitional type of LB pathology
(Appel-Cresswell et al., 2014; Vilariño-Güell et al., 2014).

DNAJC13 is a human homolog of receptor-mediated endocytosis
8 (RME-8) in nematodes and is ubiquitously expressed including
the nervous system (Fujibayashi et al., 2008). Structurally, it
includes four conserved IWN repeats, which are characterized
by seven invariant residues, including isoleucine, tryptophan,
and asparagine, and a Hsc70-binding J-domain (Hasegawa
et al., 2017b). In a fly model, N855SDNAJC13 exacerbated
α-syn-mediated motor dysfunction, a rough eye phenotype,
and the loss of dopaminergic neurons, which recapitulates
the clinicopathological features of PD (Yoshida et al., 2018).
In concert with SNX1 and FAM21, DNAJC13 is recruited to
EEs, where it participates in multidirectional endosomal sorting
including the retrieval of CI-MPR (Hasegawa et al., 2017b). It
remains unclear whether the PD-linked DNJAC13 mutant could
directly impede retromer function; however, the expression of
N855SDNAJC13 in cultured cells alters the membrane dynamics
of retromer-related SNX1 and influences the trafficking of
multiple cargoes, e.g., the transport of epidermal growth factor
receptor (EGFR) to the lysosomes, the recycling of transferrin
receptor (TfR) to the cell surface, notch receptor recycling, and
the transport of ATG9A to the phagophores (Gomez-Lamarca
et al., 2015; Yoshida et al., 2018; Follett et al., 2019; Besemer
et al., 2021). Further work is required to precisely identify the
pathophysiological role of DNAJC13 in the neurodegenerative
process leading to PD.

Retromer’s Roles in Other
Neurodegenerative Diseases
Although there is only limited evidence available at present,
the retromer sorting system may also contribute to the
etiopathogenesis of less common neurodegenerative diseases
such as amyotrophic lateral sclerosis (ALS) and Huntington’s
disease (HD). Amyotrophic lateral sclerosis is a fatal
neurodegenerative disease clinically characterized by the selective
loss of both upper and lower motor neurons. Although most
ALS cases are sporadic, approximately 10% of cases are familial
(FALS) and predominantly associated with Mendelian-inherited
mutations in genes including Cu/Zn superoxide dismutase
(SOD1) and C9ORF72. Notably, the iPSC-derived motor neurons
from patients with FALS carrying C9ORF72 hexanucleotide
repeat expansion or G93A SOD1 mutation exhibit retromer
deficiency, and retromer stabilization by chemical chaperone
attenuated the locomotive activity and motor neuron loss in
G93A SOD1 Tg mice (Aoki et al., 2017; Muzio et al., 2020).
Likewise, the neuron-specific deletion of VPS35 results in the
selective loss of ventral horn motor neurons with the formation
of p62-positive inclusions in the spinal cord, mimicking the
neuropathological features of sporadic ALS (Sargent et al., 2021).

Huntington’s disease (HD) is a progressive, dominantly
inherited neurodegenerative disorder clinically manifesting
as involuntary movement and cognitive and psychiatric
impairment. The cardinal genetic defect in HD is the abnormally
elongated polyglutamine repeat expansion in the huntingtin
(HTT), and striatal medium spiny neurons (MSNs) are known
as the most vulnerable cells in HD. In MSNs, SorCS2 interacts
with VPS35, thereby regulating the surface trafficking of the
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NR2A subunit of N-methyl-D-aspartate (NMDA) receptor.
Intriguingly, SorCS2 selectively interacts with mutant huntingtin
but not WT huntingtin, and it is mislocalized to perinuclear
clusters in the striatal neurons of patients with HD and model
mice, indicating that retromer affects the pathogenesis of HD
by modulating SorCS2-mediated NR2A trafficking in MSNs
(Ma et al., 2017).

CONCLUDING REMARKS AND FUTURE
PROSPECTIVES

In this review, we summarized the functional roles of
the retromer as an endosomal trafficking regulator and its
implication in the pathogenesis of neurodegenerative disorders,
including AD, PD, ALS, and HD. In particular, after the discovery
of missense mutations in VPS35, a core component of retromer,
in autosomal dominant forms of PD, the role of retromer-
mediated endosomal sorting came into the limelight in the
etiopathogenesis of PD. However, several questions remain
to be clarified (e.g., why neurons are selectively vulnerable
to the retromer dysfunction; why do mutations in the same
retromer-associated gene result in multiple phenotypes and
different disorders; are disease-associated protein aggregates
an indicator of retromer malfunction, a driver of retromer
impairment, or both). Currently, most researchers postulate
that defects in the retromer machinery affect the proteostasis
and cellular burden of cytotoxic proteins including α-syn and
Aβ; however, the causal relationship between these protein
aggregates and neuronal cell loss is unclear, especially in PD
because patients with PARK2 typically display pure nigral
degeneration without LBs, and LB pathology may not be
present in patients with dominantly inherited familial PD
with LRRK2 and VPS35 mutations (Hayashi et al., 2000;

Hasegawa et al., 2009; Bono et al., 2020). In that sense, dissecting
the molecular mechanisms responsible for changes in retromer-
mediated synaptic neurotransmission and mitochondrial
dynamics may help to clarify the pathophysiological cascades
of neurodegenerative disorders. Of course, other scenarios that
we might not anticipate are also possible. Although stabilization
of the retromer complex by pharmacological chaperones can
direct disease-causing proteins away from a pathogenic pathway
and mitigate neurodegeneration both in vivo and in vitro,
we must continue to decipher the mechanism by which the
distinct retromer components and their associated proteins
cooperatively function in endosomal sorting and the change of
cellular circumstances after machineries are perturbed. Further
investigation will uncover the underlying molecular mechanisms
of retromer-mediated neurodegeneration and provide a crucial
insight into the development of disease-modifying therapy.
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