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Abstract 

Lymph node metastasis (LNM) is an important factor affecting the prognosis of patients with gastric adenocarcinoma 
(STAD), which is the most common malignancy of the human digestive system. Current detection techniques have 
limited sensitivity and specificity, and there is a lack of effective biomarkers to screen for LNM. Therefore, it is critical 
to screen for biomarkers that predict LNM in STAD. Gene expression differential analysis (false discovery rate < 0.05, 
|log2Fold change| ≥1.5) was performed on 102 LNM samples, 224 non-LNM samples, and 29 normal gastric tissue 
samples from The Cancer Genome Atlas (TCGA) STAD dataset, and 269 LNM-specific genes (DEGs) were obtained. 
Enrichment analysis showed that LNM-specific genes functioned mainly in cytokine-cytokine receptor interactions, 
calcium signaling, and other pathways. Ten DEGs significantly associated with overall survival in STAD patients were 
screened by multivariate Cox regression, and an LNM-based 10-mRNA prognostic signature was established (Logrank 
P < 0.0001). This 10-mRNA signature was well predicted in both the TCGA training set and the Gene Expression Omni-
bus validation dataset (GSE84437) and was associated with survival in patients with LNM or advanced-stage STAD. 
Using Kaplan-Meier survival, receiver operating characteristic curve, C-index analysis, and decision curve analysis, 
the 10-mRNA signature was found to be a more effective predictor of prognosis in STAD patients than the other two 
reported models (P < 0.0005). Protein-protein interaction network and gene set enrichment analysis of the 10-mRNA 
signature revealed that the signature may affect the expression of multiple biological pathways and related genes. 
Finally, the expression levels of prognostic genes in STAD tissues and cell lines were verified using qRT-PCR, Western 
blot, and the Human Protein Atlas database. Taken together, the prognostic signature constructed in this study may 
become an indicator for clinical prognostic assessment of LNM-STAD and provide a new strategy for future targeted 
therapy.
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Background
Gastric cancer (GC) is the fifth most common malig-
nancy in the world and is an important factor affecting 
patient prognosis [1]. Of these, gastric adenocarcinoma 
(STAD), which accounts for 95% of cases, is the most 
common histological type of gastrointestinal malignancy. 
Lymph node metastasis (LNM) in STAD is the result of a 
combination of multiple biological pathways driving the 
disease progression [2–4]. Currently, the limited sensi-
tivity and specificity of the LNM screening method and 
the lack of validated biomarkers largely limit the effect of 
diagnosis and treatment of STAD [5–7]. Therefore, there 
is an urgent need to screen for specific markers that can 
predict STAD LNM to further guide treatment.

Second-generation sequencing technology is used to 
rapidly identify tumor characteristics, based on which 
appropriate cancer treatment strategies can be designed 
[8]. With the development and application of sequenc-
ing technology in the past decades, the large-scale high-
throughput data have become an effective resource for 
finding cancer biomarkers. Zhang et  al. used bioinfor-
matics analysis to construct a profile of five miRNAs in 
GC and found that the target genes of these miRNAs are 
involved in various cancer-related pathways [9]. A novel 
genome-wide 11-miRNA signature predicting recur-
rence in GC patients was identified [10]. An expression 
signature consisting of 10 angiogenesis-related genes 
(ITGAV, STC1, APOH, SLCO2A1, NRP1, POSTN, VTN, 
SERPINA5, LPL, KCNJ8) was shown to predict the 
prognosis of GC patients [11]. Researchers constructed 
a prognostic model including four genes (RASSF2, 
MS4A2, ANKRD33B, and ADH1B) to predict patient 
LNM based on The Cancer Genome Atlas (TCGA) STAD 
dataset [12]. However, the study was conducted only for 
the immune microenvironment and was not validated 
using an external dataset. Molecular markers or prog-
nostic models associated with LNM have been reported 
in other cancer studies. A combination of four miRNAs 
(miR-502, miR-145, miR-142, and miR-33b) was found to 
serve as independent prognostic features in cervical can-
cer (CRC). Among them, miR-502 and miR-33b together 
with two LNM key genes (PTPRC and CDH5) could 
be used as potential novel biomarkers for CRC [13]. 
Eight immune-related gene signatures (IRGs), including 
IKBKB, LTBR, MIF, PPARD, PPIA, PSME3 S100A6, and 
SEMA4B, were associated with LNM in lung adenocar-
cinoma (LUAD) and were constructed as a reliable risk 
scoring model [14]. Luo et al. screened APOL2, AHNAK, 
GSDMB, and SHTN1 by co-expression analysis and con-
structed a prognostic model for bladder cancer (BC) 
[15]. Thirteen miRNAs as a disease signature can serve 
as a non-invasive method to objectively predict LNM in 
patients with LUAD [16].

In this study, a series of R language packages were used 
to perform differential gene expression analysis on the 
TCGA STAD dataset to obtain LNM-specific differen-
tially expressed genes (DEGs). The main biological func-
tions and the involved signaling pathways were explored 
by enrichment analysis of LNM-DEGs by Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG). The prognostic signature of STAD based on 
LNM-DEGs was established by the Cox risk regression 
method, validated by Gene Expression Omnibus (GEO) 
external STAD dataset GSE84437, and compared with 
the reported prognostic features of GC for predicting the 
effect. Risk scores based on prognostic signatures were 
used to classify STAD patients into high and low-risk 
groups. The correlation between prognostic signature 
and clinical characteristics of STAD patients was inves-
tigated. Gene set enrichment analysis (GSEA) was also 
performed on differential genes between the high and 
low groups to explore the functional pathways associ-
ated with the 10-mRNA signature. The protein interac-
tion (PPI) network was used to explore the interactions 
between the 10-mRNA signature. Finally, the expression 
of the prognostic signature was verified using qRT-PCR 
and Western blot in GC cell lines, tissue samples, and the 
Human Protein Atlas (HPA) database (Fig. 1A).

Materials and methods
Data collection and gene expression processing
High-throughput sequencing gene expression data 
and clinical information of STAD patients, including 
326 STAD tissues and 29 normal gastric tissues, were 
obtained from the TCGA database download. Accord-
ing to the American Joint Commission (AJCC) clin-
icopathological grading criteria for STAD lymph node 
metastases (LNM) (N0~N3), the 326 patients were clas-
sified into the non-LNM group (N0, 102 cases) and the 
LNM group (N1~N3, 224 cases), respectively. Differen-
tial gene expression analysis was performed using the R 
language limma package for the non-LNM group vs. nor-
mal group and the LNM group vs. normal group, respec-
tively [17]. The false discovery rate (FDR) < 0.05 and 
the absolute value of expression difference fold change 
(|log2FC|) ≥ 1.5 were used as thresholds for significant 
differences, and the analysis results were visualized with 
the ggplot2 and pheatmap packages [18]. LNM-specific 
DEGs, non-LNM-specific DEGs, and non-LNM and 
LNM co-expression DEGs (co-DEGs) for STAD were 
obtained using the R language VennDiagram package 
[19]. The TCGA-STAD dataset was also used as a train-
ing set to construct a risk regression signature of STAD 
patients based on LNM-specific DEGs. The STAD data-
set GSE84437 sequencing information in the NCBI GEO 
database is based on GPL6947 (Illumina HumanHT-12 
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V3.0 Expression BeadChip) microarray platform, which 
contains 433 STAD samples (Table S1). The GSE84437 
dataset was used as a test set to validate the validity and 
accuracy of the prognostic signature.

Functional enrichment analysis
Based on Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) [20], the LNM-DEGs, 
non-LNM-specific DEGs, and co-DEGs obtained in the 
previous step were analyzed for biologically functional 
enrichment, including cell composition (CC), molecular 
function (MF), and biological processes (BP), as well as 
biological pathways, diseases, and drugs, using the Clus-
terProfile and ggplot2 packages in R language.

Construction and evaluation of prognostic signature
Based on the clinical data of STAD patients in the TCGA 
dataset, univariate Cox proportional hazards regression 
analysis was performed using the Survival and Survminer 
packages in R to screen for statistically significant DEGs 
in STAD LNM-DEGs (P<0.05). Then, multivariate COX 
regression analysis was conducted using a bivariate step-
wise regression method to screen out genes associated 

with the prognosis of STAD patients, and risk scores (RS) 
were calculated according to the following formula.

Using the median RS value as the threshold, STAD 
patients were included in the high-risk and low-risk 
groups, respectively. The Kaplan-Meier method with 
Log-rank test was used to assess the survival of STAD 
patients. The validity and sensitivity of the prognos-
tic characteristics were assessed by calculating the area 
under the receiver operating characteristic (ROC) curve 
(AUC) for STAD patients in the training and test groups. 
In addition, as the patients were divided into different 
clinical subgroups according to LNM, clinicopathology, 
histological grading, and age, the relationship between 
the prognostic characteristics and clinical factors in 
STAD patients was analyzed in the training and test data-
sets. Further, to assess the superiority of the prognostic 
characteristics of LNM-related STAD, the predictive per-
formance of this model was compared with two other 
models reported in previous studies (5 gene signatures 
proposed by Wang et al. and 6 gene signatures proposed 

Risk score =

n

i=1

Coef i ∗ xi

Fig. 1 Analysis workflow and lymph node metastases related genes in STAD. A Experimental design and analytical workflow of this study. B Volcano 
plots of DEGs for LNM STAD samples versus normal gastric tissue (left) and non-LNM STAD samples versus normal gastric tissue (right), respectively. 
x-axis: log fold change; y-axis: -log 10 (P value) for each gene; vertical dotted line: fold change ≥1.5 or ≤−1.5; horizontal dotted line: significance 
cutoff point (P value = 0.05). Red dots represent upregulated genes and blue dots represent downregulated genes. C Venn diagram of the overlap 
between DEGs
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by Cho et  al.) using K-M survival analysis, ROC curve 
analysis, Harrell consistency index (C-index), and deci-
sion curve analysis (DCA) [21, 22].

Gene set enrichment analysis
To elucidate the molecular mechanisms of STAD 
involved in the LNM-related prognostic feature, DEGs 
were analyzed between high-risk and low-risk groups 
using the limma package in R. Based on KEGG, GO, and 
The Reactome Pathway database (https:// react ome. org/), 
significantly enriched biological pathways and functions 
were analyzed by the GSEA method (P < 0.05). The analy-
sis results were visualized using the clusterProfile pack-
age in R.

Protein‑protein interaction network construction
The protein-protein interaction (PPI) network of the 
genes in the constructed signature was mapped using 
The Search Tool for the Retrieval of Interacting Genes 
(STRING) website (http:// string- db. org/) and visualized 
with Cytoscape software. The core module clusters were 
screened with the Cytoscape plugin, Molecular Com-
plex Detection (MCODE), with the cutoff parameters of 
node score (0.2), degree (2), K-core (2), and max depth 
(100), and P value (0.05). The biological function of each 
module was annotated with the Local network cluster in 
STRING (P < 0.05).

Patients and samples
To detect the signature expression in tumor tissues, we 
collected 20 pairs of GC tissues and matched adjacent 
normal tissues from patients who underwent radical sur-
gery at the Cancer Hospital of the Chinese Academy of 
Medical Sciences (CAMS) between June 2020 and April 
2022. The patients were diagnosed with lymph node 
metastases, and none of them received neoadjuvant 
chemoradiotherapy. All patients signed an informed con-
sent form for the use of samples. The Human Ethics and 
Research Ethics Committees of the Cancer Hospital, the 
CAMS approved the study (approval no. 14-067/857).

Cell culture
Gastric cancer cell lines (AGS and MGC-803) were pur-
chased from the Shanghai Institute of Cell Biology, Chi-
nese Academy of Sciences. The cell lines were cultured 
in Dulbecco’s modified Eagle medium (DMEM; Invit-
rogen, Carlsbad, CA, USA) containing 10% fetal bovine 
serum (FBS; HyClone, Logan, UT, USA), 100 U/ml peni-
cillin and 100 mg/ml streptomycin in a 37°C, 5%  CO2 
incubator.

Expression verification of LNM‑related prognostic 
signature
The total RNA was extracted using a Trizol reagent (Inv-
itrogen, CN). cDNA was then synthesized using the 
Advantage RT-for-PCR Kit (Clontech), diluted, and sub-
jected to qRT-PCR using the HiScript® II One Step qRT-
PCR SYBR ® Green Kit (Takara, Japan). qRT-PCR was 
performed (Table S2). GADPH was used as an internal 
control for mRNA, and the relative expression levels of 
genes were calculated by the  2-ΔΔCt method.

Protein was extracted with RIPA lysis buffer containing 
protease inhibitors and measured with a standard bovine 
serum albumin (BSA) kit. The extracted proteins were 
separated electrophoretically using 10% sodium dodecyl 
sulfate-polyacrylamide gels (SDS-PAGE) and then trans-
ferred to polyvinylidene difluoride (PVDF) membranes 
(Millipore Corporation, Billerica, MA, USA). The mem-
branes were blocked with 5% non-fat milk for one hour 
at room temperature and then incubated with the pri-
mary antibody (PA5-114294, Invitrogen, California, USA; 
GTX121032, GeneTex, Texas, USA; ab137118 ab80264, 
ab276749, ab42108, ab288419, ab249907, ab283897, and 
ab8245, Abcam, Cambridge, UK) at 4°C overnight and 
then washed with TBST solution (Boster, China). These 
membranes were then incubated with secondary anti-
bodies (bs-0295G, BIOSS, China). Finally, ECL chemilu-
minescence detection system is used for signal detection. 
Protein expression profiles in normal gastric tissues or 
STAD tissues were also obtained using the Human Pro-
tein Atlas (HPA, https:// www. prote inatl as. org/) online 
tool.

Results
Identification of DEGs related to lymph node metastasis 
of STAD
Differential gene expression analysis was performed for 
LNM tissues (n=102) and non-LNM tissues (n=224) 
versus normal tissues (n=29), respectively. The results 
showed that 1562 genes were significantly upregulated 
and 549 genes were downregulated in LNM STAD tissues 
compared with normal tissues, while 1483 genes were 
significantly upregulated and 663 genes were significantly 
downregulated in non-LNM STAD tissues (Fig.  1B). 
Overlapping analysis of DEGs showed that 226 upregu-
lated genes and 43 downregulated genes were specifically 
expressed in LNM tissues (Table S3), 146 upregulated 
genes and 157 downregulated genes were specifically 
expressed in non-LNM tissues, while 1336 upregulated 
genes and 506 downregulated genes were co-differen-
tially expressed in LNM and non-LNM tissues (Fig. 1C).

https://reactome.org/
http://string-db.org/
https://www.proteinatlas.org/
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Functional enrichment analysis
GO functional annotation of LNM-specific DEGs, non-
LNM-specific DEGs, and co-DEGs, respectively, revealed 
that LNM-specific DEGs were mainly enriched in leu-
kocyte cell adhesion (GO:0007159, P<0.0001), platelet α 
granules (GO 0031091, P=0.003), MHC class II receptor 
activity (GO 0032395, P=0.002), etc. (Fig. 2A; Table S4); 
non-LNM-specific DEGs were mainly enriched in chemi-
cal stimulus detection (GO 0050911, P=2.44E−30), 
olfactory receptor activity (GO 0004984, P=1.46E−29), 
etc. (Fig.  2B; Table S5); co-DEGs were mainly enriched 
in DNA replication (GO 0006260, P=5.75E−25), spli-
ceosome complex (GO 0005681, P=1.21E−23), catalytic 
activity, acting on RNA (GO 0140098, P=6.04E−15), etc. 
(Fig. 2C; Table S6).

KEGG pathway enrichment analysis showed that 
LNM-specific DEGs were mainly enriched in hemat-
opoietic cell lines (hsa04640, P=0.007), Staphylococcus 
aureus infection (hsa05150, P=0.002), and inflamma-
tory bowel disease (hsa05321, P=0.009) (Fig.  2A; Table 
S7); non-LNM-specific DEGs were mainly enriched in 
olfactory transduction (hsa04080, P=2.74E−31), neuro-
active ligand-receptor interactions (hsa04080, P=0.002) 
(Fig.  2B; Table S8); co-DEGs were mainly enriched in 

nucleocytoplasmic transport (hsa03013, P=1.03E−13), 
cell cycle (hsa04110, P=3.84E−10), and spliceosomes 
(hsa03040, P=1.46E−09) (Fig. 2C; Table S9).

Establishment of multigene prognostic signature
To investigate the effect of LNM-DEGs on patient sur-
vival, we did univariate Cox regression analysis on 269 
LNM-DEGs and obtained 24 genes with P values less 
than 0.05 (Fig. S1), and then conducted multivariate 
Cox regression analysis and subsequently obtained 10 
genes with P values less than 0.05 (Fig. S1). The results 
showed that these 10 genes were associated with the OS 
of STAD patients, including RAI14 (HR=0.376, P<0.001), 
GUCY1A2 (HR=0.524, P=0.001), CNGB3 (HR=0.572, 
P=0.003), FJX1 (HR=0.662, P=0.026), FZD2 (HR=0. 
591, P=0.006), and ELOVL2 (HR=0.641, P=0.017) were 
probably benign prognosis, while CXCL13 (HR=1.606, 
P=0.012), GDPD4 (HR=1.602, P=0.011), TIGIT 
(HR=1.636, P=0.010), and SEL1L3 (HR=1.542, P=0.017) 
may have a poor prognosis.

Therefore, a 10-mRNA risk-prognosis model was con-
structed based on these 10 genes. The median RS value 
(1.049) calculated according to the prognostic scor-
ing formula (RS = −0.308 × RAI14 expression −0.166 

Fig. 2 Functional enrichment analysis of GO and KEGG for differentially expressed genes. Based on the results of the previous step, the LNM-DEGs 
(A), nonLNM-DEGs (B), and co-DEGs (C) were functionally annotated for GO categories including biological processes (BP), molecular functions 
(MF), and cellular components (CC) and KEGG biological pathways, respectively
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× SEL1L3 expression + 0.142 × GUCY1A2 expres-
sion + 0.119 × CXCL13 expression - 0.004 × CNGB3 
expression + 0.034 × GDPD4 expression + 0.029 × 
FJX1 expression + 0.079 × FZD2 expression + 0.008 × 
TIGIT expression + 0.042 × ELOVL2 expression), divid-
ing the 326 patients into low- and high-risk groups. As 
shown in Fig. 3A, the survival rate in the low-risk group 
was significantly higher than that in the high-risk group 
(Logrank P < 0.0001). Subsequently, the survival rates of 
STAD patients at 1, 3, and 5 years were assessed using 
the 10-mRNA signature, and the time-dependent ROC 
curves showed AUC values of 0.611, 0.711, and 0.764, 
respectively, which implied that the prognostic signa-
ture had the good prognostic ability (Fig. 3B). Figure 3C 
showed the gene expression of the prognostic signature 

in the high-risk and low-risk groups. As the prognostic 
score increased, the number of deaths in STAD patients 
increased, indicating that the higher the risk score, the 
worse the prognosis of STAD patients.

Validation and comparison of a prognostic signature
Subsequently, the accuracy of the 10-mRNA prognostic 
signature was validated in the GSE84437 dataset. The 433 
STAD patients were divided into low-risk and high-risk 
groups based on the median RS value (0.948) calculated 
from the prognostic score formula. As shown in Fig. 3D, 
STAD patients in the low-risk group had significantly 
higher OS than those in the high-risk group (P<0.0001). 
The AUC values of 0.570, 0.613, and 0.620 for the 1-year, 
3-year, and 5-year survival rates of patients analyzed 

Fig. 3 A prognostic feature containing ten mRNAs constructed based on LNM-DEGs. A KM survival analysis of the high-risk and low-risk groups in 
the TCGA-STAD dataset. B Time-dependent ROC curves of patients’ OS at 1, 3, and 5 years in the TCGA-STAD dataset. C Survival status, survival time 
(days), and relationship between risk score classes in high- and low-risk groups, and expression patterns of ten genes in the TCGA-STAD dataset. 
D KM survival analysis between the high- and low-risk groups in the GSE83347 dataset. E Time-dependent ROC curves at the 1, 3, and 5 years 
for patients’ OS of the GSE83347 dataset. F Survival status, survival time (days), and relationship between risk score classes in high- and low-risk 
groups, and expression patterns of ten genes in the GSE83347 dataset. G ROC curves and DAC profiles in the TCGA-STAD dataset comparing the 
performance of 10-mRNA signatures compared to previous signatures, including Cho’s and Wang’s gene signatures
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according to 10 genetic prognostic traits indicated that 
the trait also had a good prognostic ability (Fig. 3E). The 
higher the prognostic score, the more STAD patients 
died, indicating that the higher the risk score, the worse 
the prognosis of STAD patients in the GSE84437 dataset 
(Fig.  3F). Several prognostic models have been identi-
fied in previous studies to predict the survival of STAD 
patients. In the present study, the predictive effect of 10 
gene signatures with the predictive performance of two 
previous models was further done. For normalization, 
the gene expression levels in each model were extracted 
uniformly from the original matrix of the TCGA-STAD 
dataset. Based on the corresponding coefficients pro-
vided by each model, the risk score of each STAD patient 
was calculated accordingly, and the patients were divided 
into high-risk and low-risk groups. As shown in Fig. 3G, 
by comparing the ROC curves, CI values (95% CI val-
ues), and DCA curves, the results showed that the AUC 
of the 10-mRNA model constructed in this study was 
higher and more stable than the other features, and the 
C-index was also the highest among the three models. 
This further demonstrated the better clinical utility of the 
10-mRNA signature in predicting the survival of STAD 
patients.

Kaplan‑Meier analysis in clinical subgroups
Next, we investigated the relationship between 10-mRNA 
characteristics and OS in TCGA-STAD patients in differ-
ent clinical subgroups. As shown in Fig. 4, in the clinical 
subgroups of LNM stage (N1~N3), clinical stage (III~IV), 
tumor grading T3~T4, and advanced pathological grad-
ing (G3~G4) groups, the OS of STAD patients in the 
low-risk group was significantly higher than that in the 
high-risk group. In contrast, in the clinical subgroups of 
non-LNM (N0), early clinical stage (I~II), tumor grading 
T1~T2, and early pathological grading (G1~G2) groups, 
there was no significant difference in survival between 
STAD patients in the high-risk and low-risk groups. In 
both the distal metastasis and age clinical subgroups, 
the overall survival rate of STAD patients in the low-risk 
group was significantly higher than that in the high-risk 
group.

Gene set enrichment analysis
To explore the possible involvement of the 10-mRNA 
signature in tumor biological pathways, we performed 
differential gene expression analysis for the high- and 
low-risk groups and obtained 709 DEGs, including 320 
genes with upregulated expression and 389 genes with 

Fig. 4 KM analysis of high- and low-risk groups in relation to the TCGA dataset (A) and the GSE84437 clinical subgroup (B), respectively
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downregulated expression. GSEA analysis of DEGs 
showed (Fig.  5A; Table S10) that the results indicated 
that the expression of secretory vesicles (GO 0099503, 
P=0.001), supramolecular fibers (GO 0097435, P=0.002), 
supramolecular polymers (GO 0099081, P=0.001), and 
other related genes were activated in STAD tissues. 
In contrast, the expression of genes associated with 
xenobiotic glucuronidation (GO 0052697, P=0.002), 
negative regulation of sterol transport (GO 0032372, 
P=0.002), and regulation of B cell receptor signaling 

pathway (GO 0050855, P=0.001) were suppressed in 
STAD tissues. KEGG enrichment analysis revealed 
that major KEGG pathways included retinol metabo-
lism (hsa00830, P=0.002), chemotaxis-DNA adducts 
(hsa05204, P=0.001), and drug metabolism-other 
enzymes (hsa00983, P=0.002) (Fig.  5B; Table S11). Fig-
ure  5C shows the top 5 enriched 10-mRNA signatures 
that may be involved in tumor biological pathways. The 
major enriched Rectome pathways include the formation 
of a keratinized envelope (R-HSA-6809371, P=0.001), 

Fig. 5 Functional enrichment and annotation analysis of DEGs between the high- and low-risk groups by the ten-mRNA signature. A The dotplot 
showing GO enrichment analysis. B The emaplot showing KEGG pathway enrichment analysis. C GSEA enrichment analysis. D The ridgeplot 
showing Rectome pathway enrichment analysis; P value less than 0.05 indicated a significant enrichment term
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keratinization (R-HSA-6805567, P=0.001), response to 
elevated platelet cell membrane  Ca2+ (R-HSA-76005, 
P=0.002), etc. (Fig. 5D; Table S12).

Protein‑protein interaction
To investigate the functional relationships between 
ten-mRNA signatures, we performed a PPI analysis of 
ten-mRNA signatures and constructed a network of 

40 proteins containing 9 proteins in ten-mRNA sig-
natures except for SEL1L3 (Table S13). The protein 
network consisted of 86 edges, with each protein inter-
acting with at least 4 proteins on average (P<1.0e−16). 
As shown in Fig. 6A, the cluster analysis was performed 
using the MCODE plugin in Cytoscape software, and a 
total of 5 Clusters were obtained. Functional enrich-
ment analysis showed (Fig.  6B, Table S14) that Cluster 

Fig. 6 Protein-protein interaction (A) and functional enrichment analysis (B) of the ten-mRNA signature. A The dashed circles indicate the clusters 
analyzed by the MCODE module. Protein colors show the MCODE scores, yellow to purple indicates 0 to 6, and similar branches indicate the same 
cluster. Gray edges between proteins indicate that the proteins connected at both ends have reciprocal relationships, and the thickness indicates 
the combined score between 0 and 1, with the thicker indicating a higher score. B Histogram of STRING cluster functional enrichment analysis of 
the protein network



Page 10 of 13Wang et al. World Journal of Surgical Oncology           (2023) 21:61 

1 was mainly enriched in the Wnt signaling pathway 
(CL 21042, P=1.64E−07; CL 21046, P=1.64E−07; CL 
21049, P=0.00011; CL 21052, P=0.02), cluster 2 was 
mainly enriched in chemokine receptors binding (CL 
18276, P=2.48E−09; CL:18318, P=8.87E-09), cluster 
3 was mainly enriched in positive regulation of natural 
killer cell mediated cytotoxicity directed against tumor 
cell target, and t cell surface protein tactile (CL 19158; 
P=1.13E−08), cluster 4 was mainly enriched in Achro-
matopsia 4 (CL 24112; P=5.27E−07), and the cluster 5 
was mainly enriched in mixed, incl. van maldergem syn-
drome, and four-jointed box protein 1/four-jointed pro-
tein (CL 22077; P=7.8E−07). In addition, the proteins 
which were not classified in clusters, SMAP2-RAI14 
were mainly associated with mixed, incl. ankycorbin, 
and xrcc1 N terminal domain (CL:25376; P=0.02), and 
GDPD4-GDPD1 were related to fatty acid elongation (CL 
14207; P=0.02).

Expression validation
Ultimately, we verified the expression levels of the 
10-mRNA signature using gastric cancer tissue and cell 
lines. As shown in Fig.  7A, the mRNA levels of RAI14, 
GUCY1A2, CNGB3, FJX1, FZD2, ELOVL2, and GDPD4 
were all expressed upregulated in gastric cancer tissues, 
except for CXCL13, whose expression level was not sig-
nificantly different between gastric cancer tissues and 
normal cell lines. Similar results were observed in West-
ern blot (Fig. 7B), except for CNGB3, which had no pro-
tein expression. We also detected the relative expression 
levels of the 10 mRNA signatures in gastric cancer cell 
lines, and the same results were found (Fig. S2). Further-
more, we obtained immunohistochemical results for 10 
mRNA signatures in the HPA database to support their 
role in tumor tissues (Fig.  7C). The specific biological 
pathways involved in the 10-mRNA signature need to be 
verified in future in-depth studies.

Fig. 7 Expression validation of ten-mRNA prognostic features based on LNM-DEGs. A qRT-PCR validation of 10-mRNA expression levels in gastric 
cancer cell lines (AGS and MGC-803) and normal cell lines (GES-1). B Immunohistochemical map of protein expression in STAD and normal gastric 
tissues. Data were obtained from the Human Protein Atlas online database. **P < 0.01 and *P < 0.05
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Discussion
STAD is the most common malignancy of the digestive 
system and has one of the highest incidence and mortal-
ity rates of all cancers worldwide. The effectiveness and 
strategy of cancer treatment often depend on the stage 
of cancer diagnosis. However, the development of STAD 
is a complex multistage process involving many genetic 
and epigenetic changes. Patients with STAD are mostly 
diagnosed at advanced stages, which leads to difficult 
treatment, poor prognosis, and high mortality. Molecular 
markers based on coding or non-coding genes have great 
potential in predicting cancer prognosis. The develop-
ment of molecular markers that can effectively identify 
STAD at the LNM stage with a good prognosis is crucial 
for the treatment strategy and outcome of STAD.

The sensitivity or specificity of a single tumor marker 
used clinically is low and cannot reach the ideal state. 
Therefore, it is reasonable to realize the combined detec-
tion of multiple tumor markers and continuously moni-
tor the change of tumor marker concentration to improve 
the sensitivity and specificity of screening and diagnosis, 
avoiding the waste of resources, and finally, achieving the 
purpose of improving the clinical treatment effect, pro-
longing the survival time of patients, and reducing the 
mortality of tumor patients. The change or not of tumor 
marker concentration can also monitor the clinical treat-
ment effect and predict the chance of recovery. Tumor 
marker concentration will change significantly after 
effective treatment (such as complete tumor resection or 
chemotherapy). If it does not decrease as expected after 
surgery, it indicates poor treatment outcomes. In addi-
tion to this, changes in tumor marker concentrations can 
also predict or observe recurrence as part of a patient’s 
follow-up plan.

In this study, gene expression data of STAD sam-
ples and clinical information of patients were obtained 
from TCGA and GEO public databases. A total of 269 
LNM-specific DEGs were identified by the bioinfor-
matic mining method. Enrichment analysis revealed 
that these LNM-specific DEGs were mainly involved 
in cytokine-cytokine receptor interactions, neuroac-
tive ligand-receptor interactions, and calcium signal-
ing pathways. Multivariate Cox proportional hazard 
regression analysis of LNM-specific DEGs by a bivari-
ate stepwise method was performed to screen 10 DEGs, 
including RAI14, GUCY1A2, CNGB3, FJX1, GDPD4, 
FZD2, ELOVL2, CXCL13, TIGIT, and SEL1L3, and the 
STAD prognostic signature was established based on 
them. Survival analysis and time-dependent ROC curve 
analysis of both thee TCGA-STAD test dataset and 
GEO validation dataset GSE84437 showed that the sig-
nature had good predictive value and predictive effect. 
Correlation analysis of the 10-mRNA signature with 

the clinical characteristics of STAD patients revealed 
that the signature was associated with the survival sta-
tus of STAD patients in the LNM stage, advanced stage, 
late tissue grading, and advanced primary tumor stage. 
In addition, the 10-gene signature had a more effective 
and sensitive predictive effect compared with published 
biomarkers and can be used as an independent prog-
nostic factor for STAD patients.

According to reported studies, the 10-mRNA signature 
gene was found to be associated with tumor progres-
sion and prognosis. silencing of RAI14 inhibits the pro-
liferation and invasion of BC cells and the progression 
of esophageal cancer (EC) through the STAT3 pathway 
[23, 24]. High expression of GUCY1A2 in GC tissues 
and its association with poor patient prognosis could be 
used as a potential prognostic marker [25]. FJX1 can be a 
candidate diagnostic and prognostic biomarker for CRC 
patients; downregulation of FJX1 expression or neu-
tralization of secretory FJX1 inhibited CRC cell prolif-
eration and migration in vitro and is strongly associated 
with liver metastasis [26, 27]. Fzd2 played a role in BC 
cell mesenchymal-like stemness; targeting Fzd2 inhibits 
tumor cell recurrence, metastasis, and chemoresistance 
[28]. ELOVL2 inhibited cell proliferation, migration, and 
invasion in prostate cancer (PC) and may act as a novel 
tumor suppressor to attenuate tamoxifen resistance in 
BC; however, in renal cell carcinoma (RCC), ELOVL2 
promoted cancer progression by inhibiting apoptosis 
[29–31]. CXCL13 promoted the formation of an immune 
microenvironment and enhanced the effects of PD-1 
checkpoint blockade in plasmacytic advanced ovar-
ian cancer (OC) [32]. TIGIT was an inhibitory receptor 
expressed by lymphocytes that played an important role 
in limiting the antitumor response process and the can-
cer-immune cycle [33]. SEL1L3, together with other key 
genes, has been used as a polygenic prognostic signature 
in patients with glioblastoma (GBM) or LUAD [34, 35]. 
The above reports imply a potential impact of the con-
structed 10-mRNA prognostic signature on STAD.

In this study, we constructed a 10-gene STAD prognos-
tic signature based on LNM-specific DEGs, which have 
a good predictive effect on STAD prognosis at the LNM 
stage and have not been reported yet. This signature 
could be used as a potential biomarker to predict STAD 
prognosis and provide theoretical support for the mining 
of relevant therapeutic target drugs. The shortcoming of 
our current research was that more clinical data samples 
need to be collected to verify the validity and reliability 
of the prognostic signature because the STAD dataset 
involved in the study is from public databases. Mean-
while, the biological functions of prognostic signature 
genes in gastric cancer development also deserve further 
experimental studies to verify.
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Conclusion
Through a series of bioinformatics approaches to analyze 
the gene expression differences between STAD and nor-
mal tissues in the TCGA dataset, we obtained 269 LNM-
specific DEGs. Enrichment analysis gave us insight into 
the biological functions and pathways that LNM-spe-
cific DEGs may be involved in. Subsequently, using the 
TCGA-STAD and GSE84437 datasets, we constructed a 
10-mRNA prognostic signature based on LNM STAD-
specific DEGs, including RAI14, GUCY1A2, CNGB3, 
FJX1, GDPD4, FZD2, ELOVL2, CXCL13, TIGIT, and 
SEL1L3. This prognostic feature has good sensitivity and 
accuracy in predicting the prognosis of STAD patients. 
Based on the current study, we will continue to explore 
prognostic genes and their potential biological functions.
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