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Abstract

Motivation: The accumulation of publicly available DNA methylation datasets has resulted in the

need for tools to interpret the specific cellular phenotypes in bulk tissue data. Current approaches

use either single differentially methylated CpG sites or differentially methylated regions that map

to genes. However, these approaches may introduce biases in downstream analyses of biological

interpretation, because of the variability in gene length. There is a lack of approaches to interpret

DNA methylation effectively. Therefore, we have developed computational models to provide bio-

logical interpretation of relevant gene sets using DNA methylation data in the context of The

Cancer Genome Atlas.

Results: We illustrate that Biological interpretation of DNA Methylation (BioMethyl) utilizes the

complete DNA methylation data for a given cancer type to reflect corresponding gene expression

profiles and performs pathway enrichment analyses, providing unique biological insight. Using

breast cancer as an example, BioMethyl shows high consistency in the identification of enriched

biological pathways from DNA methylation data compared to the results calculated from RNA

sequencing data. We find that 12 out of 14 pathways identified by BioMethyl are shared with those

by using RNA-seq data, with a Jaccard score 0.8 for estrogen receptor (ER) positive samples. For

ER negative samples, three pathways are shared in the two enrichments with a slight lower similar-

ity (Jaccard score¼0.6). Using BioMethyl, we can successfully identify those hidden biological

pathways in DNA methylation data when gene expression profile is lacking.

Availability and implementation: BioMethyl R package is freely available in the GitHub repository

(https://github.com/yuewangpanda/BioMethyl).

Contact: chengchao12@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Epigenetic modification of DNA plays an important role in regulat-

ing gene activity and transcript levels without directly changing

the gene sequence. DNA methylation is one of the most common

epigenetic mechanisms and has been shown to impact multiple

biological processes (Amir et al., 1999; Bender, 2004; Costello and

Plass, 2001; Laird, 2003). Consequently, aberrant DNA methylation

has been associated with multiple human cancers including prostate

cancer (Goering et al., 2012; Goessl et al., 2000), breast cancer

(Silva et al., 1999; Szyf et al., 2004) and liver cancer (De Zhu, 2005;
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Wong et al., 2000). Moreover, a strong relationship between DNA

methylation and cancer development has been found, which has

resulted in DNA methylation being used as a prognostic marker in

many cancer types (Gyparaki et al., 2013; Heyn and Esteller, 2012;

Maeda et al., 2003; Ng et al., 2002; Sandoval et al., 2013).

Therefore, array-based or sequencing-based approaches have been

developed to measure large-scale DNA methylation profiles (Laird,

2010; Plongthongkum et al., 2014). The Illumina methylation array

platform provides an opportunity to generate genome-wide human

DNA methylation profile, and the Illumina HumanMethylation450

BeadChip is one of the most commonly utilized platforms for inves-

tigating DNA methylation in a comprehensive manner. It contains

450 000 CpG probes that cover 99% of Refseq genes, encompassing

promoters, gene bodies, UTRs and intergenic regions (Sandoval

et al., 2011).

To interpret the underlying biology, differentially methylated

CpG sites are routinely associated with particular phenotypes

including cancer survival and biological pathway enrichment. Since

gene ontology terms and pathways are generally represented as sets

of genes, it is critical to accurately map DNA methylation sites to

gene annotations. Mapping DNA methylation sites to genes usually

involves either (1) identifying the genes with a single differentially

methylated CpG site in their promoters (Kim et al., 2012; Kriebel

et al., 2016; Li et al., 2009; Shaknovich et al., 2010) or (2) identify-

ing genes cover differentially methylated regions (DMR) of the gen-

ome (Marsit et al., 2011; Rijlaarsdam et al., 2014; Wang et al.,

2012). Additionally, several web-based tools can be used to analyze

methylation data including Annotation-Modules (Hackenberg and

Matthiesen, 2008), EpiExplorer (Halachev et al., 2012), GREAT

(McLean et al., 2010) and Galaxy (Goecks et al., 2010). However,

these methods have four main limitations. First, it is hard to capture

the directionality of gene expression that results from DNA methyla-

tion. Generally, hypermethylation of the promoter causes repression

(Jones and Takai, 2001), while hypermethylation in the gene body is

correlated with activation (Bell et al., 2011; Jones, 1999). Therefore,

it is difficult to predict the changes in gene expression based simply

upon DNA methylation results. Second, it is difficult to precisely de-

fine the extent of gene promoter methylation due to variability in

the size of canonical promoters and the presence of distal enhancers,

which introduces biases into the association of methylated regions

with gene models. Third, the longer length of a gene, the higher the

probability that this gene could be selected due to the nearby differ-

entially methylated CpG sites. Lastly, for the web-based studies, spe-

cialized tools are needed to reformat the methylation data to

genomic region formats (i.e. BED and WIG), which increases the dif-

ficulty of usage. To our knowledge, tools utilizing complete large-

scale DNA methylation data to infer the directionality of gene ex-

pression and provide a framework for the interpretation of biologic-

al impact are lacking.

We have developed an R package that we have named Biological

interpretation of DNA Methylation (BioMethyl), which identifies

biologically meaningful trends from a complete DNA methylation

profile by using all available CpG sites. By integrating DNA methy-

lation and RNA sequencing (RNA-seq) profiles for 37 cancer types

from The Cancer Genome Atlas (TCGA), we have developed linear

regression models to analyze the relationship between any single

gene’s expression profile and its corresponding CpG sites methyla-

tion sites for each cancer type. We inferred the contribution of each

single CpG site to the expression of a gene using the coefficient of

linear regression calculated by the model. Therefore, BioMethyl cap-

tures the expression values for a gene, based on its association with

CpG methylation sites. We compare our results to RNA-seq profiles

and show that BioMethyl accurately estimates gene expression from

DNA methylation data. We have integrated Gene Set Enrichment

Analysis (GSEA) (Subramanian et al., 2005) into BioMethyl to auto-

matically identify enriched pathways. As a result, we show that the

enriched pathways identified by BioMethyl were highly consistent

with those identified by RNA-seq. The BioMethyl R package is

freely available at GitHub accessing by https://github.com/yuewang

panda/BioMethyl.

2 Materials and Methods

2.1 Data collection
We downloaded RNA-seq and DNA methylation data for all 37

TCGA cancer types from Firehose (https://gdac.broadinstitute.org/,

November, 2016). We fit models to the cancer types that contained

more than 50 samples with both RNA-seq and DNA methylation

profiles. We excluded ovarian cancer, lymphoid neoplasm diffuse

large B-cell lymphoma and cholangiocarcinoma due to their low

sample numbers (Supplementary Table S1). To train a non-cancer

model, TCGA normal samples with paired RNA-seq and methyla-

tion profiles were collected (Supplementary Table S2). To validate

the non-cancer model, DNA methylation data (GSE42861) (Liu

et al., 2013) and gene expression data (GSE15573) (Teixeira et al.,

2009) were downloaded for rheumatoid arthritis (RA) samples.

2.2 Development of BioMethyl models
To train BioMethyl models for each cancer type, we first prepro-

cessed the RNA-seq and DNA methylation data. For RNA-seq data,

we log2-transformed the data and removed genes if expression val-

ues were zero in more than half of the samples. Then, a z-transform-

ation was further applied to the RNA-seq profile across samples.

For DNA methylation data, we removed CpG sites if methylation

levels were missing values in more than half of sample size. Then, R

package ‘ENmix’ (Xu et al., 2016) was applied to methylation data

to filter out outliers and to replace missing values using k nearest

neighbors algorithm.

Then, we trained each BioMethyl model using linear regression

to capture the association between gene expression and DNA

methylation for each cancer types. For genei, E ¼ {e1, e2, . . ., en} is

the gene expression across N samples, and M is the corresponding

methylation matrix, containing all CpG sites associated to genei,

where cpgn, j is the beta value of j-th CpG in sample n. By calculating

the correlations between beta values of each CpG site and E, we

only selected the CpG sites whose beta values are correlated

(Pearson correlation coefficient >j0.05j) with gene expression to

build a model for genei using the following function:

E ¼ aþ B �M;

where B ¼ {b1, b2, . . ., bn} is the vector of coefficients estimated by

linear regression model which explains the contribution on gene ex-

pression for each CpG site. We built cancer-specific models for all

TCGA cancer types and recorded those models into BioMethyl. The

non-cancer model was trained with the same way instead of using

matched data of TCGA normal samples.

2.3 Pathway enrichment analysis
GSEA and Fisher’s exact test were applied to conduct pathway en-

richment analyses in this study with the Molecular Signature

Database (MSigDB) C2 dataset (c2.all.v5.2.symbols.gmt, 2016)

(Subramanian et al., 2005). Statistical significance of enriched path-

ways was set to false discovery rate (FDR) < 0.01. For Fisher’s exact
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test, FDR was calculated with Benjamini and Hochberg method. To

automatically identify enriched pathways, GSEA R script method

‘GSEA.1.0.R’ was deployed in BioMethyl package to perform en-

richment analysis with default settings (Subramanian et al., 2005).

The C2 dataset was set as the default gene sets.

2.4 BioMethyl validation
To validate our model, we applied 10-fold cross-validation to test

the quality of the gene expression inferred by the linear regression

model. Namely, for each validation, we used 9/10 samples as train-

ing dataset to train the model. Then, by integrating the DNA methy-

lation data and trained model, we calculated a gene expression

profile for the rest 1/10 samples. After 10-fold cross-validation, we

merged those profiles to a gene expression profile containing all

samples and compared it with the RNA-seq data to conduct down-

stream validations.

2.5 Statistical analysis
To identify differentially methylated CpG sites and differentially

expressed genes in two phenotypes (in our case is ERþ versus ER�),

we applied the Student t test to calculate the t scores and corre-

sponding P-values. The FDR was further calculated using the

Benjamini–Hochberg multiple hypothesis testing correction method.

By ranking t scores in a decreasing order, top-ranked CpG sites/

genes are differentially methylated/expressed in ERþ samples and

bottom-ranked CpG sites/genes are differentially methylated/

expressed in ER� samples. For P-values in boxplots, ANOVA test

was used for comparison in multiple groups and two-sample

Wilcoxon test was applied to those two group comparisons.

3 Results

3.1 The limitations of previous approaches
Previous studies (Kim et al., 2012; Kriebel et al., 2016; Li et al.,

2009; Shaknovich et al., 2010) have used gene promoter regions

that contained differentially methylated CpG sites to perform path-

way enrichment analyses. We tested the hypothesis that gene length

might introduce biases in the downstream analyses. First, we exam-

ined the number of CpG sites associated with each gene according

to the HumanMethylation450 platform mapping information. We

found that 43.3% of genes (10 865 out of 25 094) map to less than

10 CpG sites, whereas more than 20% genes map to over 20 CpG

sites (Fig. 1A). Moreover, only 7.4% of genes (1860 out of 25 094)

map to one CpG site. Notably, 0.7% of genes (163 out of 25 094)

map to more than 100 CpG sites. Broadly, genes with a longer

length cover more CpG sites in the HumanMethylation450 platform

(Fig. 1A). For example, PTPRN2, a receptor-type tyrosine-protein

phosphatase N2 gene which occupies 1 048 741 bases, is associated

with many diseases (Schmidli et al., 1998; Smyth et al., 2014;

Sorokin et al., 2015) and covers 1288 CpG sites in the platform.

Furthermore, by ranking genes based on the number of covered

CpG sites in decreasing order, we found that the accumulation of

CpG sites is derived by genes with longer length (Fig. 1B). In fact,

the top 5000 genes in length collectively occupy more than 50% of

measured CpG sites.

For further biological interpretation of study results, differen-

tially methylated CpG sites are often translated to genes. Because

these mappings are not linear, it is theoretically possible for a gene

to be implicated in both up- and downregulated CpG groups in an

analysis. To demonstrate this phenomenon, using TCGA breast

cancer (BRCA) as an example, we identified the significantly

(P<0.01) differentially methylated CpG sites for estrogen receptor

positive (ERþ) and estrogen receptor negative (ER�) samples

which resulted in two distinct, non-overlapping lists of CpG sites.

We then randomly selected 5%/10%/15%/20% of the sites from

each of the groups, mapped these sites to genes, and calculated the

Jaccard score between the groups of genes. This simulation was

repeated 10 000 times. When using sites only in promoter region

(within 1 kb of the transcription start site) of genes, we found that

the average number of genes overlapping between the two lists

increased as the number of random CpG sites were selected. We

found the same trend when considering CpG sites that map to

whole gene regions (Fig. 1C). Moreover, the number of overlapping

genes was at least 4.2 times larger when using all CpG sites com-

pared to using only promoter sites. These observations suggest that

simply translating CpG sites to genes based on location may con-

fuse the overall interpretation of results. This may be in part due to

the effect of gene length because longer regions generally contain

more CpG sites.

Fig. 1. Simply translating CpGs to genes confuses downstream results be-

cause of gene length diversity. (A) The mapping between number of genes

and different CpG sites range (left y axis). The fraction above each bar shows

the percentage of whole genome genes which located in this CpG range.

Right y axis shows the relationship between the distribution of gene lengths

in each CpG range. (B) The accumulation of CpG sites with gene length. (C)

Barplot showing the average Jaccard scores from 10 000 times simulations.

Error bars show standard deviation of Jaccard scores. Blue is only using pro-

moter CpG sites and red is using whole CpG sites. (D) Boxplot showing the

distribution of gene lengths for each simulation and all genes. ANOVA P-

value is showed. (E) The distributions of covered CpG sites for common

genes in simulations and all genes. (F) Boxplots for comparing gene length

and covered CpG sites numbers between genes (subset of common genes) in

significant pathways and all genome genes. Wilcoxon Rank Sum test P-val-

ues are showed
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Next, we identified the 500 genes that most frequently appeared

in each simulation using whole region CpG sites and found that the

average lengths of these genes are nearly identical between simula-

tions but are much longer than the average length of all genes in the

genome (Fig. 1D, ANOVA P<2e-16). Furthermore, we found that

449 of the 500 genes are shared by these four different simulations,

and those genes tend to cover more CpG sites compared to all genes

in the genome (Fig. 1E). These 449 common genes were significant-

ly involved in sensory system (olfactory transduction), signaling

molecules and interaction (cytokine receptor interaction), genetic

information processing (ubiquitin mediated proteolysis, spliceo-

some), signaling molecules and interaction (neuroactive ligand

receptor interaction), neurodegenerative diseases (Huntington’s

disease and Alzheimer’s disease) and nucleotide metabolism (purine

metabolism and pyrimidine metabolism). Moreover, we found that

genes involved in those significant pathways cover more CpG sites

(P¼2e-14) and have a longer gene length (P¼4e-07) compared

to all genes in the genome (Fig. 1F). Again, these results suggest

that longer genes could be preferentially selected, and the length of

genes might dramatically impact the biological interpretation of

previously studies which use direct mapping approaches.

3.2 Overview of our analyses
To overcome these limitations, we developed a simple and powerful

method called BioMethyl to interpret DNA methylation data in a

wide range of cancer types. We built a linear regression model for

each gene to capture the association of its expression and corre-

sponding CpG methylation sites by integrating RNA-seq and DNA

methylation profiles for each TCGA cancer type. The coefficients of

each model explain the contributions of CpG methylation sites asso-

ciated with each gene’s expression. To validate the model, we used

10-fold cross-validation to compare the biological outcome of the

inferred gene expression profiles and the original RNA-seq profile

(Fig. 2A). We found a high concordance between those two profiles,

both in terms differentially expressed genes and enriched pathways.

Therefore, our method takes advantage of the complete profiles of

DNA methylation and RNA-seq to build more accurate models for

each cancer type. By assembling our framework and GSEA method,

we developed a user-friendly R package, called BioMethyl, which is

freely available at GitHub (https://github.com/yuewangpanda/

BioMethyl). When a user inputs a new DNA methylation dataset of

interest for a given cancer type, BioMethyl utilizes the corresponding

models to uncover relevant biological pathways hidden in the data

(Fig. 2B).

3.3 Validation of the BioMethyl model
To validate BioMethyl, we first examined whether the linear regres-

sion model could accurately depict the gene expression profile

through DNA methylation data. We trained the models with cancers

in TCGA that had both RNA-seq and DNA methylation profiles

using 10-fold cross-validation (see Section 2). Comparing the pseudo

gene expression estimated by the model and the RNA-seq profile,

we found that BioMethyl model could explain the relationship be-

tween RNA-seq and DNA methylation profiles of 94.1% (32 out of

34) cancers in TCGA with median Spearman correlation coefficients

(SCCs) greater than 0.3 (Supplementary Fig. S1).

We tested BioMethyl on the TCGA breast cancer (BRCA) data-

set since it contained 785 tumors, the highest number of tumors in

TCGA, with both RNA-seq and DNA methylation profiles.

BioMethyl was able to recapitulate tumors’ gene expression using

their DNA methylation data alone with a median SCC 0.423 when

compared to their RNA-seq profiles (Fig. 3A). Moreover, the major-

ity (more than 88%) of genes have SCCs greater than 0.3

(Supplementary Fig. S2). By dividing genes into low, intermediate

and high variance groups based on the original RNA-seq dataset, we

found that genes with high variance had significantly higher SSCs

than the other two groups (Supplementary Fig. S3, ANOVA test

P<2e-16). To further test the reliability of our model, we compared

the expression difference of each gene between ERþ and ER�
patients for the estimated gene expression profile and RNA-seq pro-

file. By calculating the correlation of t scores, the result showed that

the estimated gene expression profile inferred from DNA methyla-

tion data is highly consistent with the RNA-seq data (Fig. 3B,

SCC¼0.88) which is only slightly lower than the comparison be-

tween TCGA microarray and RNA-seq profiles (Supplementary Fig.

S4, SCC¼0.94). These observations suggest that BioMethyl is able

to accurately infer gene expression through DNA methylation data

compared to RNA-seq data.

To further compare the similarity of biological findings identi-

fied by BioMethyl and RNA-seq analyses, we performed GSEA ana-

lysis (Subramanian et al., 2005) (Supplementary Table S3). By

dividing TCGA BRCA samples into ERþ and ER� groups, we iden-

tified pathways significantly enriched in those two groups of sam-

ples. When using RNA-seq data, there were 13 pathways

significantly (FDR<0.01) enriched in ERþ samples and four path-

ways significantly (FDR<0.01) enriched in ER� samples (Fig. 3C).

When using the gene expression profile inferred by BioMethyl, there

were 14 pathways significantly (FDR<0.01) enriched in ERþ sam-

ples and four pathways significantly (FDR<0.01) enriched in ER�
samples (Fig. 3D). We found that 12 pathways for ERþ samples are

shared by those two methods (Jaccard score¼0.8). For ER� sam-

ples, three pathways are shared in the two enrichments with a slight

lower similarity (Jaccard score¼0.6). We also investigated Jaccard

scores using different FDR thresholds (from 0 to 0.25) for shared

pathways in either ERþ or ER� samples (Supplementary Fig. S5).

Fig. 2. Workflow of our computational framework. (A) Validation of models.

Using a 10-fold cross-validation manner, BioMethyl trains models and calcu-

lates a new gene expression matrix for samples. To validate our models, we

compare the inferred gene expression matrix with RNA-seq data in terms of

gene difference and involved pathways. (B) Application of models. Using the

complete DNA methylation and RNA-seq profiles, we build models for each

cancer. Further by integrating GSEA analysis, we develop the R package

BioMethyl to reveal the relevant pathways in a new DNA methylation data of

interest
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In our experience, setting a more conservative FDR threshold

(<0.05) is important to achieve high similarity (Jaccard scores>0.5)

between the results of BioMethyl and RNA-seq.

3.4 Validation of Fisher’s exact test enrichment results
Next, we compared the enriched pathways of genes covering differ-

entially methylated CpG sites and the genes mostly differentially

expressed in gene expression profiles. We identified the top 500

hypermethylated CpG sites (FDR<1e-30) in ERþ samples and

mapped those sites to genes, resulting in 270 genes. We identified

348 genes for ER� samples through the top 500 hypermethylated

CpG sites (FDR<4e-38) in ER� samples. Notably, there were 12

genes shared between these two gene sets (Fig. 4A). Next, we identi-

fied the top 270 and 348 differentially expressed genes in ERþ and

ER� patients, respectively, using both the RNA-seq profile and the

profile inferred from BioMethyl. We found very little overlap in the

number of genes identified by CpG-mapped genes and the top differ-

entially expressed genes identified by RNA-seq or BioMethyl for

both ERþ (Fig. 4B) and ER� (Fig. 4C) samples. Then, we conducted

Fisher’s exact test to those six differentially expressed gene sets

to identify enriched biological pathways, respectively. When using

gene sets collected via differentially methylated CpG sites, there is

only one pathway enriched in ERþ samples (compared to 23 iden-

tified by RNA-seq and 28 identified by BioMethyl) and no path-

ways enriched in ER� samples (compared to 143 identified by

RNA-seq and 16 identified by BioMethyl) (data not shown). We

found that 21 out of 28 significantly enriched pathways

(FDR<0.01) using gene set from BioMethyl profile are shared

with those from RNA-seq in the context of ERþ samples (Fig. 4D).

The common pathways are highly related to ERþ context includ-

ing upregulated by ESR1, genes upregulated in luminal-B breast

cancer and downregulated in invasive breast cancer

(Supplementary Table S4). Similar, for ER� samples, 10 out of 16

pathways (FDR<0.01) are shared in the comparison (Fig. 4E)

including downregulation by ESR1, genes upregulated in basal

breast cancer and downregulated in luminal-B breast cancer

(Supplementary Table S4). These observations suggest that using

the gene expression values inferred by the BioMethyl method

is able to identify common biological pathways using Fisher’s

exact test.

3.5 Application of BioMethyl to non-cancer diseases
To test whether the BioMethyl could be applied to non-cancer

diseases as well, we selected RA, an autoimmune disease, as an ex-

ample. By integrating the non-cancer model and the DNA methyla-

tion data, we estimated gene expression for samples in GSE42861.

GSEA and Fisher’s exact test were applied to both the estimated

gene expression of GSE42861 and the real gene expression dataset

GSE15573. When comparing the GSEA results, neither of them

contains significant (FDR<0.25) pathways. When comparing the

results of Fisher’s exact test, differentially expressed genes

(FDR<0.01) in our model were significantly enriched in immune-

related pathways (Supplementary Table S5) such as T cell receptors,

immune response and antigen response. This result is consistent

with both the characteristics of RA (Choy, 2012) and the enrich-

ment analysis reported from the RA gene expression (GSE15573)

(Teixeira et al., 2009). This validation suggests that our non-cancer

model could capture the common biological pathways for non-

cancer diseases, such as RA.

3.6 Implementation of BioMethyl package
For a user-friendly and straightforward usage, we compiled models

for 37 cancer types into our BioMethyl R package including five

functions (Table 1). When a user inputs DNA methylation data,

BioMethyl will produce the relevant biological pathways as final

output. Here, we briefly introduce the procedure of BioMethyl pack-

age. BioMethyl preprocesses the data with filterMethyData() func-

tion and removes CpG sites that have missing values in more than

half samples and imputes the rest missing values by integrating

‘ENmix’, an specialized R package for DNA methylation data (Xu

et al., 2016), with default parameters. Next, calExpr() function is

applied to the filtered methylation data to infer the gene expression

profile for a given disease type. In this step, the inferred gene expres-

sion could be saved as a text file as an option for other customized

applications. Then, differentially expressed genes (DEGs) are

Fig. 3. Validation of BioMethyl in the context of breast cancer. (A) Density plot

for SCC of genes by comparing gene expression inferred by BioMethyl and

RNA-seq data. (B) Scatter plot of t scores (ERþ samples versus ER� samples)

for genes between gene expression inferred by BioMethyl and RNA-seq data.

Pathway enrichment results of GSEA are showed for (C) RNA-seq data and

(D) gene expression inferred by BioMethyl by comparing ERþ to ER� sam-

ples. For pathways enriched in ERþ samples, �log10(FDR) are showed (red).

The orange pathways are pathways shared by two results for ERþ samples.

For pathways enriched in ER� samples, log10(FDR) are showed (green), in

which green pathways are shared pathways

Fig. 4. Validation of BioMethyl using Fisher’s exact test. Venn diagrams for

(A) differentially expressed genes selected by hypermethylated CpG sites in

ERþ and ER� samples; (B) differentially expressed genes in ERþ samples

selected by hypermethylated CpG sites, RNA-seq and BioMethyl; (C) differen-

tially expressed genes in ER� samples selected by hypermethylated CpG

sites, RNA-seq and BioMethyl; (D) pathways enriched in ERþ samples be-

tween RNA-seq data and BioMethyl; (E) pathways enriched in ER� samples

between RNA-seq data and BioMethyl
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identified via calDEG() function in order to optimize gene expres-

sion for GSEA analysis. As well, the list of differentially expressed

genes could be saved as a text file for gene set based pathway or GO

term enrichment test. Lastly, using the inferred gene expression,

BioMethyl integrates GSEA R code to perform pathway enrichment

analysis using GSEA default settings. In this step, the parameter of

cutoff for DEGs is a numeric vector in which the first element is the

cutoff for t score (default is 0) and the second is for P-value (default

is 0.01). Moreover, BioMethyl package has a friendly recommenda-

tion function so that it helps users select the best model for their

DNA methylation data. By applying a centroid manner,

referCancerType() function can suggest a suitable cancer type model

having the best similarity with TCGA cancers when it is not clear.

The BioMethyl package and demo code are freely available at

GitHub (https://github.com/yuewangpanda/BioMethyl).

4 Discussion

Since DNA methylation plays important roles in multiple biological

processes, more and more efforts have been put on generating DNA

methylation data. Attempts at investigating enriched pathways using

DNA methylation profile has been an active area study. Previous

studies used either single differentially methylated CpG sites or

DMRs as an assumed proxy to identify the differentially expressed

genes between samples. However, our results suggest that using the

direct mapping method results in a pronounced overlapping of genes

between opposing biological groups which could introduce bias to

downstream analyses—pathway/genes associated with more CpG

sites are more likely to be identified (Figs 1 and 4A). Previous work

has tried to correct this bias by modeling the probability of a gene to

be selected by chance as a function of the number of CpG sites it

associated with (Geeleher et al., 2013). In this sense, all CpG sites

associated with a gene are assumed to contribute equally to the tran-

scriptional regulation of the gene. In our work, we developed the

BioMethyl method to more reasonably map CpG sites to genes by

assigning different weights to sites according to their relative contri-

butions to gene expression. Our results showed that the enriched

pathways determined by BioMethyl are highly consistent with those

interpreted directly from RNA-seq.

Due to the internal relationship between DNA methylation and

gene expression (Razin and Cedar, 1991), several studies have devel-

oped computational methods to infer gene expression from DNA

methylation data in the context of a certain cancer (Li et al., 2015;

Schlosberg et al., 2017). BioMethyl applies linear regression models

to capture the association between the expression of a gene and its

CpG sites methylation levels for all TCGA cancer types. We found

that the gene expression profile inferred from DNA methylation data

is highly like RNA-seq profile (Fig. 3 and Supplementary Table S2).

Moreover, we found that using the inferred gene expression profile

can classify ERþ from ER� breast cancer samples as well as using

RNA-seq profile (Supplementary Fig. S6). These results suggest that

BioMethyl captures the overall and true directions of gene expres-

sion via linear regression models. Therefore, the inferred gene ex-

pression profile could be applied to other downstream analyses (e.g.

pathway enrichment using Fisher’s exact test, identifying differen-

tially expressed genes) when a study only has DNA methylation

data available.

In this study, we took advantage of the TCGA cancer data to

estimate the contribution of individual CpG site to gene expres-

sion. However, the weights of CpG sites might change in different

tissues or under different physiological conditions. Therefore,

lower performance might be expected when the models trained

from the TCGA data are directly applied to DNA methylation

data for other diseases. Nevertheless, the proposed framework

can be used to re-calculate the weights of CpG sites under various

contexts given matched gene expression and DNA methylation

data, which has becoming more and more readily available in the

future.

In summary, BioMethyl makes use of the whole DNA methyla-

tion profile and captures the association between gene expression

and DNA methylation in a highly sensitivity way. In our models, we

assigned coefficients to those CpG sites really associated with

changes in gene expression. The models contained within BioMethyl

span a large number of diverse cancers. Our freely available R pack-

age is easy to install and use. Moreover, our methods represent sig-

nificant contributions to data interpretation when only DNA

methylation is available. With the improvement of methylation plat-

form (i.e. HumanMethylation850), BioMethyl hopefully could

achieve a higher accuracy in terms of biological interpretation dir-

ectly from DNA methylation data.
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