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Pseudomonas nitroreducens TX1 ATCC PTA-6168 was isolated from rice field drainage in Taiwan. The bacterium is of special
interest because of its capability to use nonionic surfactants (alkylphenol polyethoxylates) and estrogen-like compounds (4-t-
octylphenol and 4-nonylphenol) as a sole carbon source. This is the first report on the genome sequence of P. nitroreducens.
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Octylphenol polyethoxylate (OPEOn) and nonylphenol poly-
ethoxylate (NPEOn) are nonionic surfactants extensively

used as detergents, emulsifiers, and dispersants (1, 2). Nonylphe-
nol, 4-t-octylphenol, and carboxylated intermediates are known
metabolites from these surfactants (3, 4). Two enzymes, OPEOn

alcohol dehydrogenase (Pseudomonas putida S-5) and NPEOn al-
cohol dehydrogenase (Ensifer sp. strain AS08), are reported to be
able to shorten the ethoxylate chains (5, 6). The other growth
carbon sources, 4-t-octylphenol and 4-nonylphenol, are commer-
cial products and endocrine disruptors (7–9). The ubiquity of
alkylphenols in environments has been investigated (3, 9–11).
One of the proposed mechanisms for bacterial disruption of es-
trogen activity is involved in ipso substitution catalyzed by single-
component monooxygenase in strains of Sphingomonas spp. (12–
14). The other mechanism is related to the mono-oxygenation of
the phenol ring by multicomponent phenol hydroxylase (15–19)
or by cytochrome P450 monooxygenase (20), followed by aro-
matic ring-cleavage (19). The transporters for these carbon
sources so far are unknown.

P. nitroreducens TX1 was isolated from the sediment in rice
field drainage (4, 17, 19, 21–23). The bacterium was demonstrated
to be able to use OPEOn (Triton X-100; average n, 9.5), and
NPEOn (Triton N-101; average n, 9.5). It was demonstrated that it
grows on minimal basal salts medium containing 0.05% to 20%
OPEOn and shortens the ethoxylate chain, and then it produces
octylphenol (4). In addition, the strain also grows on 4-t-
octylphenol and 4-nonylphenol as a sole carbon source (17).
Strain TX1 is the first bacterium that is able to degrade both
OPEOn/NPEOn and 4-t-octylphenol/nonylphenol.

The genome of P. nitroreducens TX1 was sequenced by a whole-
genome shotgun strategy using Solexa HiSeq 2000 paired-end se-
quencing and assembled in silico using SOAPdenovo (version
1.05); this resulted in 138 contigs (�200 bp in size) with an N50

length of 111,179 bp. The protein-encoding genes were predicted
using Glimmer 3.02 (24), tRNAscan-SE (25), and RNAmmer
(26). The genome sequences were also annotated by Rapid Anno-
tations using Subsystems Technology (RAST) (27). The functions

of the predicted coding sequences (CDSs) were then annotated in
NCBI-NR (28), COG (29), and KEGG (30). The draft genome
sequence of strain TX1 has a total of 6,700,249 bp, with a G�C
content of 64.5%. It contains 6,341 CDSs, one 16S-23S-5S operon,
and 50 tRNAs. Of the predicted proteins, 87.3% were classified
into 23 COG categories.

For the genes that may be involved in ethoxylate chain degra-
dation, two quinoprotein alcohol dehydrogenase genes, two alde-
hyde dehydrogenase genes, and a pyrroloquinolone quinine bio-
synthesis cluster were shown to be clustered and to be upregulated
when the cells were grown on OPEOn. The genes for the oxygenase
component of cytochrome P450 monooxygenase and catechol
1,2-dioxygenase were identified. Genes encoding a multicompo-
nent phenol hydroxylase and catechol 2,3-dioxygenase were
shown to be clustered. They might be involved in the alkylphenol
degradation. Three porins and four ABC-type transporters are
upregulated and may be related to the transportation of nonionic
surfactants.

Nucleotide sequence accession numbers. The draft genome
sequence of P. nitroreducens strain TX1 has been deposited at Gen-
Bank under the accession no. AMZB00000000. The version de-
scribed in this paper is the first version, AMZB01000000.
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