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Abstract: Cystic fibrosis (CF) is a lifelong disorder affecting 1 in 3500 live births worldwide. It is a
monogenetic autosomal recessive disease caused by loss-of-function mutations in the gene encoding
the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR), the impairment of
which leads to ionic disequilibria in exocrine organs. This translates into a chronic multisystemic
disease characterized by airway obstruction, respiratory infections, and pancreatic insufficiency as
well as hepatobiliary and gastrointestinal dysfunction. Molecular characterization of the mutational
heterogeneity of CFTR (affected by more than 2000 variants) improved the understanding and
management of CF. However, these CFTR variants are linked to different clinical manifestations and
phenotypes, and they affect response to treatments. Expanding evidence suggests that multisystemic
disease affects CF pathology via impairing either CFTR or proteins regulated by CFTR. Thus, altering
the expression of miRNAs in vivo could constitute an appealing strategy for developing new CF
therapies. In this review, we will first describe the pathophysiology and clinical management of
CF. Then, we will summarize the current knowledge on altered miRNAs in CF patients, with a
focus on the miRNAs involved in the deregulation of CFTR and in the modulation of inflammation.
We will highlight recent findings on the potential utility of measuring circulating miRNAs in CF as
diagnostic, prognostic, and predictive biomarkers. Finally, we will provide an overview on potential
miRNA-based therapeutic approaches.

Keywords: cystic fibrosis; genetic disease; microRNA; circulating miRNAs; microRNA-targeted
therapies; miRNA mimics; antimiRs; antagomiRs; biomarkers

1. Introduction

The dual role of time, as a fearsome enemy or important ally in the course of human diseases,
has motivated researchers to advance in the frantic (and necessary) understanding of their cellular and
molecular bases, hoping to identify novel approaches for patient care. The discovery of a variety of
disease-modulatory molecules, including non-coding RNAs, that are present not only at the tissue
level, but also in the bloodstream, has revolutionized the world of clinical molecular biology.
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microRNAs (miRNAs), a class of small non-coding RNAs, are well known to regulate a diverse
array of biological processes, such as proliferation, development, and metabolism [1,2]. They act as
repressors of one or several genes by binding to complementary sites within the 3’ untranslated region
(UTR) of target mRNAs [1,3,4].

miRNAs positively or negatively impact on the pathogenesis and/or progression of human
diseases. They are (de)regulated by different mechanisms, such as epigenetic alterations, chromosomal
abnormalities, as well as changes in transcriptional control [2,5]. Moreover, the altered abundance
of miRNAs, along with their high stability (due to their small length of about 18–22 nucleotides)
renders them highly potential biomarker candidates in non-invasive sources (i.e., blood, serum, urine,
and saliva) [6,7].

The clinical potential of miRNAs as diagnostic and prognostic, as well as predictive biomarkers,
has been widely described, especially in the context of human cancer [6,8–10]. Moreover, potential
therapeutics harness the deregulation of miRNAs in disease conditions by means of miRNA mimics,
so-called antimiRs [11,12].

Accumulating evidence suggests the involvement of miRNAs also in genetic diseases, including
cystic fibrosis (CF) [13–19]. In particular, many studies showed the direct or indirect regulatory impact
of deregulated miRNAs on the expression of the cystic fibrosis transmembrane conductance regulator (CFTR)
mRNA [20]. Moreover, their participation in the control of the inflammation of CF airways has been
demonstrated, along with their potential role as circulating biomarkers [17]. Thus, the contribution
of miRNAs to disease progression and severity opens new and interesting scenarios for the clinical
management of CF patients.

In this review article, we will describe the pathogenesis of CF, followed by an overview of the
wide mutational spectrum harbored by the CFTR gene that translates into the large range of CF clinical
phenotypes. CF care is a race against time and against the progressive and aggressive degeneration
of multiple organs. Considering the benefits that non-coding RNAs could potentially offer for the
treatment of human diseases, we cover current knowledge on the impact of miRNAs on CF. Thus,
we will discuss the biological regulatory role of miRNAs in the progression of the disease. Moreover,
we will describe circulating miRNAs as potential non-invasive biomarkers (i.e., for monitoring lung
disease progression), as well as the role of single nucleotide polymorphisms (SNPs) associated with
miRNAs in modulating CF phenotypes. Finally, we will summarize the therapeutic potential of
miRNAs in CF.

2. Cystic Fibrosis

2.1. Cystic Fibrosis, A Multisystemic Deadly Disease

CF, also known as mucoviscidosis, is one of the most common Mendelian autosomal recessive
genetic disorders [21,22]. Its incidence varies according to ethnicity, affecting approximately 1 in about
2500 newborns in Europe [23].

CF is caused by mutations in CFTR, which belongs to the ATP binding cassette (ABC) gene
family [22,24]. Environmental factors, as well as non-CFTR gene modifiers, influence the manifestations
and progression of the disease [25].

The CFTR gene is located on the long arm of the chromosome 7 [25]. The CFTR protein is mostly
located at the apical membranes of a variety of secretory ephitelia (which produce mucus, sweat,
and digestive juices) harbored in multiple organs, including sweat glands, lungs, and pancreas, as well as
the gut [21,25]. CFTR mainly functions as an anion channel; it acts as a cyclic adenosine monophosphate
(cAMP)-dependent chloride channel and as bicarbonate channel. Moreover, the involvement of CFTR
in the modulation of other ion channels, such as the epithelial sodium channel (ENaC), has been also
described, not without controversy [26]. CFTR transports chloride and bicarbonate across secretory
epithelia, thus regulating both the secretion and the absorption of salt and water and maintaining
epithelial surface hydration.
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Mutations in CFTR lead to the impairment of the expression, as well as of the function and
stability at the mRNA and CFTR protein levels [27], thus unbalancing fluid and electrolyte homeostasis.
For instance, an abnormal excessive secretion of salt from the sweat glands that has not been reabsorbed
by the sweat duct cells is one of the main symptoms of CF [25]. At present, the measurement of chloride
excreted in sweat is the gold standard to diagnose CF.

Another deleterious effect, which is due to the reduction of the bicarbonate release, is the formation
of thickened and viscous secretions in bronchi, pancreas, biliary tract, intestine, and the reproductive
system. Although mucus is an alley of innate immunity due to its composition made, inter alia,
of antibacterial defensins and immunoglobulins, its hyperviscous form is pathogenic in CF [28].

Concerning the respiratory tract of CF patients, defects in fluid secretion and the reduced pH of
the airway surface liquid affect ciliary beating and compromise mucociliary clearance, thus increasing
the viscosity of the mucus but decreasing the activity of antimicrobial molecules [29]. As a consequence,
mucus accumulates and obstructs the airways (bronchiectasis), promoting chronic bacterial infections
and inflammatory lung damage. The airway microbiome changes across the ages [30]. Typically,
CF adults are persistently colonized by Pseudomonas aeruginosa (P. aeruginosa) [31]. Altogether,
these changes trigger acute pulmonary exacerbations and respiratory failure.

The gastrointestinal tract as well as the biliary ducts are also impacted by unbalanced ion
secretion [32,33]. The more acidic intestinal environment, along with the sticky and thickened mucus,
which is hardly cleared, alters the activity of digestive enzymes; this impairs the assimilation of
digestive products, delays the intestinal transit, and causes bowel obstructions [32]. Meconium ileus is
one of the earliest clinical manifestations and the most serious acute complication of CF at the intestinal
level [34]. Nonetheless, older CF patients may also present distal intestinal obstruction syndrome
(DIOS) and intussusception [33]. Furthermore, intestinal inflammation and dysbiosis occur in the
context of CF [32,35].

Severe inflammation, viscous secretions, and fibrosis lead to pancreatic insufficiency, leading
to abdominal pain, malabsorption, and weight loss [36]. Additionally, diabetes mellitus and male
infertility may become manifest [37–39]. Congenital aplasia of vas deferens (CAVD) contributes to
male infertility and obstructive azoospermia [40,41]. This abnormality of the urogenital tract has
different clinical presentations, according, inter alia, to its bilaterally (CBAVD) or unilaterally (CUAVD)
occurrence [40–42]. In women with CF, fertility is compromised due to thicker cervical secretions [37].

Although CF is a chronic multisystemic disease that is ultimately lethal, daily care and personalized
(expensive) treatments extend the life expectancy of most CF patients until 40 years of age [43].
The medical care for CF requires multiple interventions including high-calorie ingestion, therapy based
on the replacement of pancreatic enzymes and, most importantly, the management of the pulmonary
exacerbations [21,25,44]. For instance, airway-clearance techniques and aerosolized mucolytic agents,
along with administration of some specific antibiotics and anti-inflammatory drugs can avoid, reduce,
or eradicate bacterial infections and improve lung functions [25].

In addition, targeted therapies for CF patients with specific CFTR pathogenic mutations have
been developed [43–46]. These treatments are based on a class of compounds, the CFTR modulators,
which are able to modulate (enhance or restore) the expression, function, and stability of mutant
CFTR proteins [43,45]. Generally, CFTR modulators are grouped into five classes: (i) “potentiators”,
which restore the channel gating and conductance of the mutant CFTR protein; (ii) “correctors”,
which are drugs that rescue the protein folding, thus augmenting the traffic to the plasma surface of
CFTR mutant; (iii) “stabilizers” that avoid the removal and degradation by lysosomes of CFTR through
its stronger stabilization on the plasma membrane; (iv) “amplifiers” that increase the expression of
CFTR at the mRNA level, and, in turn, the amount of CFTR protein; and (v) “read-through” agents that
restore the functional full-length protein affected by premature termination codons. To date, only two
classes of modulators, potentiators and correctors, have been approved to treat CF patients [45].

Finally, lung transplantation is reserved for end-stage CF patients, but it extends survival by only
5 years on average [47].
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2.2. The Mutational Landscape of the Cystic Fibrosis

Since the discovery of the first CFTR mutation in 1989, to date, more than 2000 different genetic
variants have been identified (www.CFTR2.org). However, only a few of them (about 350 mutations)
are considered as pathogenic (www.CFTR2.org) [43].

According to the traditional classification system, mutations harbored by CFTR are grouped
into six classes, depending on their effect on the synthesis, function, or stability of the CFTR protein
(Table 1) [27,44].

Table 1. Classes of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene
according to the traditional classification system.

Class of
Mutation

CFTR
Molecular

Defect

Functional
Abnormal

Consequence

Mutation
Examples

Type of
Mutations

Clinical
Phenotype

Therapeutic
Strategy

I
No mRNA and

protein
synthesis

Absent protein G542X, R553X,
W1282X

Nonsense,
frameshift,
canonical
splicing

Severe Read-through
agents

II
Reduced protein
processing and

traffic

Misfolded
protein

F508del,
N1303K, I507del

Missense,
aminoacid
deletion,

Severe Correctors

III Impaired
channel gating

Reduced or
absent channel

opening
S549N, G551D

Missense,
aminoacid

change
Severe Potentiators

IV
Decreased

channel
conductance

Defect in ion
transport

R347P, R117H,
D1152H

Missense, amino
acid change Mild Potentiators

V Reduced protein
synthesis

Decreased
protein

3849 + 10 kb
C>T, A455E

Splicing defect,
missense Mild Potentiators,

correctors, ASOs

VI

Less protein
stability and

protein turnover
at cell surface

Decreased
half-life of the

protein

120del23,
G1412X

Missense,
aminoacid

change
Mild Stabilisers

ASOs, antisense oligonucleotides; CFTR, cystic fibrosis transmembrane conductance regulator.

Specific mutations in CFTR relatively influence the severity of the disease and, therefore, translate
into different clinical manifestations or CF phenotypes (Table 1) [27]. However, the severity of the
disease is also related to the heterozygosity or homozygosity of the CFTR mutation [48]. The molecular
diagnosis of CFTR mutations guides clinicians with regard to the management of the disease.

Severe mutations belonging to classes I, II, and III (Table 1) [27] lead to the loss of the CFTR
function. In particular, class I mutations abolish the synthesis of the protein. They include nonsense
mutations (i.e., premature termination codons). Class II mutations cause the retention of a misfolded
protein at the endoplasmic reticulum and its subsequent degradation by the proteasome. The most
common mutation in Europe, the F508del, which consists in the deletion of a phenylalanine at position
508, belongs to this class. Class III mutations affect the regulation and gating of the CFTR channel.

By contrast, class IV to VI mutations confer a milder CF phenotype (Table 1) [27]. Class IV
mutations decrease the conductance of chloride and bicarbonate ions. Class V mutations lead to a
reduction of the abundance (synthesis or maturation) of the normal CFTR protein. Class VI mutations
destabilize the protein at the cell surface by increasing the endocytosis and lysosomal degradation
of CFTR.

A new categorization of CFTR mutations into VII classes according to the therapeutic strategies
has been suggested by De Boeck and Amaral [46]. The only difference compared to the traditional
classification system consists in the addition of class VII mutations, which have the same functional
characteristics as class I mutations but cannot be rescued by pharmacological interventions [46].

www.CFTR2.org
www.CFTR2.org
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3. microRNAs in Cystic Fibrosis

Altered microRNAs in the Regulation of CFTR

One of the first studies on miRNAs in CF employed transcriptomic and miRNA array-based
approaches to show that altered levels of miRNAs correlated with the decreased expression of CFTR
under hypoxic conditions [49]. Likewise, in silico predictions, followed by in vitro validations, recently
described miR-200b as a potential negative regulator of CFTR mRNA levels in human airway epithelia
during hypoxia [50].

Over the years, different groups showed that a variety of miRNAs repress directly (i.e., miR-101,
miR-145, miR-223, miR-494, miR-509-3p and miR-1246) or indirectly (i.e., miR-9 and miR-138) the
expression of CFTR [51–58]. Concerning this latter point, miRNAs can bind to the 3’ UTR of
genes that modulate CFTR. For instance, miR-138 reportedly downregulates CFTR via targeting the
transcriptional repressor gene switch-independent 3 homolog A (SIN3A) [58]. Another example concerns
miR-9, the upregulation of which impaired the expression and activity of the gene anoctamin 1 (ANO1)
in bronchial epithelial cells, thus contributing to CF lung pathology [57]. ANO1, also known as
calcium-activated chloride channel (TMEM16A), may be involved in the activation and membrane
expression of CFTR [59].

By contrast, Gillen and collaborators demonstrated that miR-145 and miR-494 directly target the
3’ UTR of CFTR mRNA [54]. Interestingly, miR-384, miR-494, and miR-1246 are also implicated in the
regulation of chloride channel transport by regulating the gene solute carrier family (SLC) 12 member 2
(SLC12A2) [51]. Other investigations confirmed the deregulation of miR-101, miR-145, and miR-494 in
different specimens from CF patients [51–53]. miR-101 was also found to be upregulated in the lung
of patients with chronic obstructive pulmonary disease; this condition is characterized by low CFTR
protein levels [52].

Concerning the involvement of the well-known miR-145 in the dysregulation of CFTR, a variety
of mechanisms have been identified. For instance, elevated levels of miR-145 were found in CF versus
non-CF nasal epithelial tissues and inversely correlated with the expression of SMAD family member
3 (SMAD3). Furthermore, miR-145, along with miR-494 and miR-223, was increased in bronchial
brushing from CF patients bearing the F508del mutation. Functional experimentation showed that the
corresponding premiRs downregulated and antimiRs upregulated CFTR gene and protein expression.
Moreover, defective chloride ion conductance, inflammatory and infective insults altered the levels
of miR-145, miR-223, and miR-494 [60]. Recently, miR-145-5p and miR-223-3p were found to be
overexpressed in F508del homozygous CF bronchial epithelial cells and specimens from children
and adults with CF. High levels of these miRNAs were also found in CF and CFTR gene-corrected
induced pluripotent stem cell-derived CF lung organoids. Additional studies provided evidence
that the upregulation of miR-145 in CF might be partially secondary to the increased expression of
transforming growth factor-β (TGF-β) [61,62].

CF and chronic bronchitis, as well as tobacco smokers, present a similar lung inflammation [63].
In this context, it has been demonstrated that air pollution and cigarette smoke (CS) play an important
role in the progression of airway diseases by promoting CFTR dysfunction through miRNA deregulation.
For instance, CS increased the expression of miR-101 that consequently reduced CFTR in human
bronchial epithelial cells and in vivo [52]. Moreover, altered levels of miR-145-5p were involved in
the TGF-β-mediated suppression of CFTR and the chloride channel, SLC26A9 [64]. Additionally,
an antagomiR specific for miR-145-5p rescued CFTR and SLC26A9 expression in vitro, while the use of
a neutralizing aptamer against another target of miR-145-5p, namely TGFBR2, was able to restore the
suppression of CS- and TGF-β-mediated CFTR function in vivo [64].

Defective autophagy plays a critical role in the pathology of CF [65,66]. Therefore, the role
of deregulated miRNAs in impairing the autophagy machinery in CF has been explored. Indeed,
high levels of the cluster mirc1/mir17-92 contributed to the negative regulation of autophagy and CFTR
function in CF macrophages [67].
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4. microRNAs as Regulators of Inflammation in Cystic Fibrosis

Inflammation plays a critical role in the progression of CF [68]. As described before, the overproduction
of hyperviscous mucus obstructs airways and impairs mucociliary clearance. This creates a perfect
nutrient-rich environment for bacterial colonization as well as for pro-inflammatory modulators that lead to
the progressive structural damage of the lung (Figure 1).
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Figure 1. Airway inflammation in cystic fibrosis. Mutations in CFTR lead to imbalances in fluid and
electrolyte homeostasis characterized by the lack of transport of chloride (Cl−) and excessive sodium
(Na+) reabsorption. This impairs mucociliary clearance and increases the viscosity of the mucus,
thus promoting chronic bacterial colonization (i.e., by Staphylococcus aureus and Pseudomonas aeruginosa).
The resultant shedding of microbial molecules, known as pathogen-associated molecular patterns
(PAMPs) (i.e., lipopolysaccharide, LPS), being recognized by the Toll-like receptors (TLRs), constitutively
activates the NF-κB and causes the consequent production of inflammatory cytokines (i.e., IL-8), as well
as the accumulation of polymorphonuclear neutrophils (PMNs) into the airways. CFTR, cystic fibrosis
transmembrane conductance regulator; IL-8, interleukin-8; LPS, lipopolysaccharide; NF-κB, nuclear
factor κ light-chain enhancer of activated B cells; PMNs, polymorphonuclear neutrophils; TLRs,
toll-like receptors.

miRNAs can contribute to the maintenance of a pro- (mainly) or anti-inflammatory phenotype in
CF patients via different ways [20]. Thus, the modulation of the abundance of miRNAs involved in
these pathways may prevent lung disease and offer clinical applications in the future.
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Essential fatty acid-derived lipoxins (LX), resolvins (Rv), protectins, and maresins are lipid
mediators that control several aspects of the acute inflammation and resolution via specific G
protein-coupled receptors (GPCRs) [69]. LXA4 and RvD1 activate a specific GPCR termed lipoxin A4
receptor (ALX)/formyl peptide receptor 2 (FPR2), which signals to inhibit NF-κB activation [69,70].

The role of the ALX/FPR2 receptor has been explored in relationship with CF. Interestingly,
the ALX/FPR2-dependent pathway of inflammation resolution was altered by the overexpression of
miR-181b in CF respiratory cells and macrophages [71].

It has been demonstrated that a variety of altered miRNAs are able to regulate the expression of
several pro-inflammatory messengers, including interleukin (IL)-6 and IL-8. For instance, miR-146a
upregulation is involved in CF inflammation. Thus, the elevation of miR-146a causes macrophages
isolated from CF patients to overproduce IL-6 in response to lipopolysaccharide (LPS) stimulation [72].
IL-8 is produced by macrophages and bronchial epithelial cells in the CF lung in response to infectious
(i.e., Pseudomonas aeruginosa and Staphylococcus aureus) and inflammatory (i.e., IL-1β or tumor necrosis
factor-α, TNF-α) stimuli via different signaling pathways (i.e., NF-κB) [73,74]. The main function of IL-8
is to attract and activate neutrophils, which dominate the inflammatory response in the CF airway [74].
The secretion of IL-8 could be directly or indirectly impaired by deregulated miRNAs. For instance,
IL-8 was identified as a direct target of miR-17 and miR-93 [75,76]. Particularly, low levels of miR-17
were found in CF cell lines, also when treated with P. Aeruginosa-conditioned medium, in CF bronchial
brushings, and in βENaC-overexpressing (βENaC-Tg) mice with spontaneous airway neutrophilia,
as well as in mucus obstructions [75]. miR-93 was identified as significantly downregulated in bronchial
epithelial cells infected with P. aeruginosa through a microarray technique [76]. For both microRNAs,
luciferase assays, along with other in vitro experiments, demonstrated that their deregulation directly
increased the production of IL-8.

Concerning indirect modulations, high levels of miR-155 in CF cells inhibited the translation of the
gene SH-2 containing inositol 5’ polyphosphatase 1 (SHIP1), thus leading to the activation of the signaling
pathway mediated by phosphatidylinositol-3 kinase/protein kinase B (PI3K/AKT) and the consequent
secretion of IL-8 [77]. The same authors showed that the expression of miR-155 in CF was suppressed
by tristetraprolin (TTP) through the induction of miR-1 but enhanced by KH-type splicing regulatory
protein (KSRP) via promoting its maturation in vitro [78]. Moreover, miR-155 may also regulate the
fibrosis of CF lungs. In fact, it can suppress the expression of regulatory associated protein of mTOR
complex 1 (RPTOR), thus consequently increasing the abundance of connective tissue growth factor
(CTGF) in CF lung epithelial cells [79].

Recently, miRNome and transcriptomic analyses showed that miR199a-3p was less expressed
in CF bronchial explants extracted from CF patients than in non-CF individuals [80]. Moreover,
wet-lab experimentations revealed that the downregulation of miR-199a-3p was associated with the
hyperactivation of the NF-κB pathway and, therefore, with the increased secretion of IL-8 via targeting
the inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) [80].

miRNAs can also control other signaling pathways to trigger inflammation in CF. High levels
of miR-199a-5p were detected in human and murine CF macrophages and murine CF lungs [81].
The aberrant expression of miR-199a-5p, mediated by PI3K/AKT signaling, reduced the expression
of caveolin 1 (CAV1), which is a mediator of inflammation processes, and in turn increased Toll-like
receptor (TLR) 4. Moreover, the downregulation of miR-199a-5p was able to reduce the inflammation
in CF macrophages via restoring the expression of CAV1. Furthermore, in vitro and in vivo studies
demonstrated that the administration of the non-steroidal anti-inflammatory drug celecoxib rescued
the altered pathway mediated by AKT/miR-199a-5p/CAV1 in CF macrophages and reduced lung
inflammation in CFTR-deficient mice, respectively [81].

An elevated expression of miR-145, found in nasal airway cells from CF patients when compared to
non-CF controls, correlated with the downregulation of SMAD3 [82]. SMAD3 is a negative modulator
of the NF-kB–IL-8 pathway mediated by TGF-β1; therefore, miR-145 may contribute to CF-related
inflammation [82].
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Differently from the aforementioned miRNAs, miR-126 has an anti-inflammatory role in CF. It has
been the first miRNA identified as deregulated in CF in 2010 [83]. In particular, low levels of miR-126
were found in CF airway epithelial cells. This downregulation correlated with the upregulation of
the target of Myb protein 1 (TOM1), which is a negative regulator of TLR2, TLR4, IL-1, IL-1β, TNF-α,
and NF-kB. When CF cells were stimulated with LPS and IL-1β, the knockdown of TOM1 significantly
increased the NF-kB-mediated IL-8 secretion [83]. In addition, another study reported that miR-1343
attenuated the pathway of fibrosis by decreasing levels of activated TGF-β effector molecules, including
phosphorylated (p) SMAD3 (pSMAD3) as well as pSMAD2 and consequently disturbing the cell
migration and epithelial–mesenchymal transition [84].

Some miRNAs may also participate in chronic inflammation by affecting the remodeling of the
pulmonary epithelium or by impacting the expression of genes involved in mucus hypersecretion.
The role of miR-146a in CF inflammation has been linked to its negative impact on the production
of the mucin 5AC (MUC5AC), which is a major component of the airway mucus [85]. Moreover,
the knockdown of miR-146a in human bronchial epithelial cells resulted in the activation of the NF-kB
and Jun N-terminal kinase (JNK) pathways [85].

In bronchial epithelial cells, miR-145, miR-494, and particularly miR-221 regulate the transcription
factor 6 (ATF6), which is implicated in the airway inflammation through endoplasmic reticulum
stress [86,87].

The deregulation of miR-31 enhanced the production of the cathepsin S (CTSS) via the direct
inhibition of the interferon regulatory factor 1 (IRF-1) in CF epithelial cells [88]. CTSS is an elastinolytic
and collagenolytic cysteine protease. High levels of CTSS in CF patients increased pulmonary
neutrophilic infiltration of the lung, as well as the inactivation of antimicrobial proteins, such as
lactoferrin and members of the β-defensin family, therefore contributing to lung inflammation and
infection, and determining lung damage [89].

5. Circulating microRNAs as Potential Biomarkers in Cystic Fibrosis

miRNAs can be quantified in non-invasive specimens such as body fluids, which renders them
easily detectable biomarkers [13,90–92]. Indeed, miRNAs are highly stable and circulate in the
bloodstream as cell-free miRNAs or packaged inside microvesicles, such as exosomes [9,93]. Advances
in liquid biopsy technologies (i.e., digital PCR and microfluidic single-cells technologies) enable their
accurate detection [94].

Although newborn bloodspot screening (NBS) offers the opportunity of early diagnosis, CF is a
pediatric disorder that most often begins as a silent disease. Thus, along with the clinical examination,
the detection and the assessment of the levels of expression of a single specific miRNA or signature of
miRNAs in easily obtained biological sources, could be beneficial for the care of patients affected by CF.
The potential role of miRNAs as circulating CF biomarkers has been explored in a few studies.

The Mirc1/Mir17–92 cluster has been identified as a potential biomarker for CF disease
progression [95]. In particular, high levels of the Mirc1/Mir17–92 cluster in CF sputum correlated with
pulmonary exacerbations, lung function, and age.

Recently, a profiling study comparing plasma miRNAs in CF patients versus non-CF controls
identified a total of 11 deregulated miRNAs. In particular, 10 miRNAs (miR-16-5p, miR-92a-3p,
miR-103a-3p, miR-103b, miR-107, miR-191-5p, miR-3613-5p, let-7a-5p let-7b-5p, and hsa-let-7d-5p)
were overexpressed, while only miR-598-3p was reduced in CF [96]. Furthermore, bioinformatics
analyses revealed that the target genes of these miRNAs were enriched in transduction pathways,
such as the mTOR and PI3K/AKT, as well as Wnt/β-catenin signaling pathways [96].

CF presents, inter alia, a gender dichotomy [97,98]. Women are affected by poorer lung function
as well as lower median survival. To study this gender gap, circulating miRNAs were profiled in male
and female pediatric CF plasma samples [99]. miR-885 was increased in samples from girls under six
years. Moreover, in silico analyses suggested that the severity of the disease in CF females could be
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related to a Ras-related C3 botulinum toxin substrate 1 (RAC1)-mediated process. However, functional
experiments need to validate these theoretical predictions [99].

The involvement of circulating miRNAs in CF-related diabetes (CFRD), as well as in CF-associated
liver disease (CFLD), has also been explored [100–103].

CFRD is the major extra-pulmonary co-morbidity in CF patients [38]. It significantly accelerates
lung damage, leading to early mortality. The deregulation of miR-146a has been documented in
CFRD [103]. In particular, high levels of the circulating miR-146 in serum samples from CF patients
correlated with the onset of the CFRD. In addition, another study reported a significant increase of
miR-146 expression in peripheral blood mononuclear cells cultured with CF plasma [104].

CFLD is a complication of CF that affects up to 40% of CF patients [105–107]. CFLD has been
attributed to ductal cholestasis [106]. The pathogenetic mechanism of CFLD has not been fully
elucidated yet. Moreover, the diagnostic criteria, captained by invasive liver biopsy, as well as the
methods to monitor the progression of the disease are still inadequate [108]. In this context, miRNAs
could be useful biomarkers in the management of CFLD.

Changes in the levels of circulating miR-122, miR-21, and miR-25 were able to identify CF patients
affected by liver disease [100]. In detail, miR-122 was more expressed in CFLD patients when compared
to CF patients without liver symptoms, as well as to healthy individuals. Moreover, miR-21 and miR-25
were overexpressed in CF patients with liver fibrosis compared to CF patients without fibrosis or
controls. Additionally, circulating miRNA levels were also able to stratify CFLD patients according to
the hepatic fibrosis stage (F0 = no fibrosis; F1–F4 = any histological evidence of fibrosis; F3–F4 = severe
fibrosis). In particular, the combination of six miRNAs (miR-122, miR-21, miR-25, miR-210, miR-148a,
and miR-19a) identified CF patients with early liver fibrinogenesis (F0–F1) and differentiated CFLD
children without (F0) from those with any liver fibrosis (F1–F4) [100].

In order to diagnose and assess CFLD severity, Calvopina and collaborators investigated the
combined use of serum miRNAs and aspartate aminotransferase (AST) to platelet ratio (APRI) [102].
An miRNA sequencing approach identified the circulatory miRNA signature of a total of 124 children
(CF and CFLD patients, and healthy controls). Among the miRNAs detected, CFLD patients presented
high levels of miR-122-5p, miR-365-33p, and miR-34a-5p, while low levels of miR-142-3p and let-7g-5p
were detected with respect to CF children without liver disease. Moreover, the combination of
miR-365a-3p, miR-142-3p, and let-7g-5p with APRI was able to predict liver disease in CF patients
with high specificity (83%) and sensitivity (92%). Furthermore, the abundance of miR-18a-5p in
serum specimens discriminated CF patients presenting severe (F3-F4) from mild/moderate (F0-F2)
fibrosis [102].

In summary, emerging evidence suggests that circulating miRNAs may contribute to the diagnosis
of CF complications. However, it will be important to overcome technical limitations (i.e., in sample
collection, processing, and data analysis) and to obtain cognitive insights into the disease-modulatory
role of such miRNAs.

6. Single Nucleotide Polymorphisms (SNPs) in microRNAs Targeting the CFTR Gene

As described above, CF is characterized by a large clinical heterogeneity. The variability of CF
phenotypes is further accentuated by SNPs in the 3’ UTR of miRNA-targeted genes, as demonstrated
by Amato and colleagues [56]. In particular, the SNP rs10234329, which is characterized by an adenine
to cytosine (A>C) base substitution, was identified within the 3′UTR of the CFTR gene in a patient
with a CFTR-related disease. Interestingly, in silico analyses demonstrated that this SNP was located
in the target site of two miRNAs, including miR-433 and miR-509-3p. Moreover, in vitro experiments
showed that this SNP reduced the expression of CFTR [56]. Thus, the 3′ UTR region of CFTR should
be examined in CF patients that present clinical symptoms but lack mutations in the exons coding for
the CFTR protein.

Another investigation identified polymorphisms in the region of a miRNA cluster (miR-99b/let-7e/

miR-125a) by examining CF F508del patients [109]. In particular, two SNPs detected (rs376594280 and
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rs41275794) modulated the maturation and, therefore, altered the expression of the miR-99b/let-7e/

miR-125a cluster. These results shed light on the variability of CF severity in patients bearing the same
CFTR genotype.

7. Therapeutic Modulation of microRNAs in Cystic Fibrosis

7.1. microRNA Therapeutics

The modulation of the abundance of miRNAs may constitute a therapeutic strategy [11,12,110].
This can be achieved by using miRNA mimics or antimiRs [11,12,111].

miRNA mimics are synthetic double-stranded small RNAs used to re-establish the concentration
of a specific downregulated miRNA [11,12]. Inversely, antimiRs suppress the function of overexpressed
miRNAs. Generally, the function of miRNAs can be inhibited by three different approaches:
(i) small-molecule inhibitors, which comprise specific compounds that repress the expression of
a specific target miRNA (i.e., azobenzene for miR-21); (ii) miRNA sponges (expression vectors),
which are transcripts that contain multiple, tandem binding sites to a microRNA of interest [112,113],
thus acting as decoys of the target miRNA; and (iii) antisense oligonucleotides (ASOs) that competitively
block the binding of a miRNA to its mRNA target [11,111,114].

Oligonucleotides are vulnerable to degradation by RNases present in serum or inside cells,
resulting in poor pharmacokinetics [111]. Therefore, it is necessary to enhance their stability and
binding affinity through two specific complementary strategies [11,111]: (i) chemical strategies
relying on sugar and RNA backbone modifications, such as the addition of 2’-O-methyl (2-O’-Me)
or phosphorothioate-like groups, locked nucleic acids (LNA), morpholinos, or peptide nucleic acids
(PNA); and (ii) delivery strategies (i.e., viral vectors, polymer- and lipid-based delivery systems)
aiming to encapsulate miRNAs, thus favoring their nuclease resistance and endosomal escape. Overall,
methylation is often used for the generation of miRNA mimics, while LNA is mostly chosen for
antimiRs. However, for in vivo applications, the phosphorothioate substitution is preferable [12].
In fact, this latter is not only particularly resistant to nucleases but also enhances the binding affinity
with plasma proteins, so being quickly absorbed into the bloodstream [12]. To date, oligonucleotides
are only administered via intravenous infusion or subcutaneous injection [12].

In spite of the interest of pharmaceutical companies for miRNA therapeutics, a variety of challenges
need to be overcome, including tissue-specific targeting, toxicities, and off-targets effects [12,115].
For instance, chemical modifications could lead to adverse toxic effects in vivo, such as immune cell
activation, altered coagulation, as well as hepatotoxicity [12,111]. Moreover, accurate tissue-specific
delivery strategies need to be developed to minimize the risk of side effects in normal tissues as well as
to attenuate the immune response.

The optimization of the design of miRNA-based drugs is another obstacle. Design factors include
the size and lipophilicity of the molecules to ensure efficient adsorption by the target tissue but to
avoid fast renal clearance [12].

7.2. microRNA Therapeutics in Cystic Fibrosis

Endogenous miRNAs may affect the expression of CFTR, thus exacerbating the symptoms of
CF [15,17]. Thus, miRNA mimics and antimiR agents could represent an appealing therapeutic
strategy [116,117]. However, because each miRNA may simultaneously target several mRNAs,
this approach could lead to unpredictable off-target effects. Moreover, the tissue-specific delivery
and the stability of miRNA mimics and antimiRs are critical hurdles for this approach. An example
concerns the miR-138 mimic. As previously mentioned, miR-138 indirectly impairs CFTR through the
downregulation of SIN3A [58]. This latter is a transcriptional repressor of CFTR. The manipulation
of the expression of miR-138 was able to restore CFTR abundance, as well as the chloride channel
permeability in CF bronchial epithelial cells via upregulating SIN3A [58]. Nevertheless, this strategy
led to undesired side effects on other genes regulated by SIN3A.
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Polymeric nanoparticles may be used to effectively deliver miRNA mimics. The pro-inflammatory
miR-126, the downregulation of which leads to the overexpression of TOM1 in CF airways, has been
used as a proof-of-concept [118]. Cationic nanoparticles successfully delivered miR-126-mimics into
CF cell lines, thus significantly decreasing the expression of TOM1.

PNAs are also considered a valid anti-miR strategy [111]. PNAs are DNA analogues in which
the sugar–phosphate backbone of the nucleic acid has been replaced by a synthetic achiral peptide
backbone [111]. PNAs may be used to target specific miRNAs that are involved in the regulation of the
expression of the CFTR gene [119,120]. For instance, PNAs designed to target miR-145, miR-509-3p,
and miR-101-3p restored the expression of CFTR in vitro [61,121–123]. Additionally, PNAs can also
be used as miRNA target protectors. In particular, PNAs can increase the expression of CFTR
by competitively inhibiting the interaction of miRNAs with their mRNA targets [124]. However,
these PNA-mediated approaches may present off-target effects on other miRNAs as well as on other
target genes [122,125].

Another strategy involves target site blockers (TSBs) [111]. TSBs are locked nucleic acid antisense
oligonucleotides that may have comparatively few off-target effects [111]. Indeed, TSBs compete
with miRNAs for the binding to the miRNA target site at an mRNA. TSBs have been used to target
miR-101 and miR-145 in the CFTR 3′ UTR, thus increasing CFTR expression and function in CF nasal
epithelial cells as well as correcting chloride efflux mediated by ANO1 [53,57]. Thus, TSBs were
successfully designed to prevent the binding of miR-9 to the 3’ UTR of ANO1 mRNA [57]. Recently,
De Santi and colleagues reverted the inhibition of CFTR mediated by miRNAs via CFTR-specific TSBs
in CF bronchial epithelial cells [126]. In particular, TSBs targeting the binding sites of miR-223-3p
and miR-145-5p in the 3’ UTR were encapsulated in poly-lactic-co-glycolic acid (PLGA) nanoparticles.
Their delivery via nebulization, alone or in combination with CFTR modulators (ivacaftor/lumacaftor
and ivacaftor/tezacaftor), effectively enhanced the protein levels of CFTR. Due to the high specificity
of TSBs for CFTR and the biocompatibility of PLGA, this strategy has low off-targets, toxicity,
and immunogenicity with respect to other approaches.

Manipulation of miRNAs may also be relevant to achieve F508del CFTR correction. As mentioned
above, the upregulation of TGF-β increased the expression of miR-145, which consequently caused the
inhibition of CFTR [61,62]. In addition, functional experiments revealed that high levels of miR-145
nullified the effects of the CFTR modulators. Thus, an antimiR strategy directed against miR-145 was
able to enhance the benefits of F508del CFTR correction in CF airway epithelia.

8. Conclusions

Every CF patient is unique with respect to her or his clinical manifestations as a result of the
heterogeneity of CFTR mutations. Over the past decade, major advances have been achieved in the
comprehension and treatment of CF, thus allowing the implementation of personalized medicine.
Patients are stratified according to their CFTR mutations, which determine the therapeutic strategy [43].
Nonetheless, the phenotypic variability in patients with the same CFTR genotype remains a major
therapeutic challenge. Moreover, many rare pathogenic mutations still lack efficient therapeutic
options. Future progress in CF research requires, inter alia, appropriate cellular and animal models.
In vivo models (i.e., mice, pigs, and ferrets) are particularly useful to explore the pathophysiology
of CF and therapeutic strategies [127]. Nevertheless, their use in research has many limitations and
disadvantages [127]. CF murine models fail to spontaneously develop lung disease, as well as bacterial
infections, due to their short life span [128]. Meanwhile, pigs, which are highly attractive candidates,
are substantially more complicated to manage (i.e., facility spaces, food, and costs) compared to other
models [128]. The advent of organoid technology provides a unique platform to study a variety of
human disorders, including CF. Organoid models created from patient cells are an affordable and
simple way to explore disease mechanisms and to evaluate drug effects [129]. For example, Dekkers
and colleagues demonstrated that the forskolin-induced swelling of rectal organoids isolated from
small endoscopic biopsies from CF patients varied according to the specific CFTR mutation [130].
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Deregulated miRNAs have a significant impact on the clinical course of CF [117]. The altered
abundance of miRNAs affects multiple aspects of CF pathology. Indeed, miRNAs directly modulate
the expression of CFTR (as this is the case for miR-101, -145, -223, -494, and -509) or indirectly affect
CF (as this is the case for miR-138) by regulating other channels or proteins that act downstream of
CFTR. Moreover, miRNA deregulation critically contributes to the inflammatory process (the case for
miR-126, 199a-5p) or facilitates airway obstruction by altering the composition of mucus (the case of
miR-17 and miR-146).

In human pathologies, miRNAs may serve as diagnostic, prognostic, and predictive biomarkers
due to their intrinsic properties, such as stability, facile detection, and disease-specific expression in
non-invasive specimens [92]. There are no reliable biomarkers to monitor CF progression. It is possible
that circulating miRNAs will help with evaluating and predicting fluctuations in lung inflammations as
well as treatment responses. Currently, an ongoing clinical trial is measuring miRNAs extracted from
blood specimens in order to stratify CF patients affected by mild or severe lung disease (NCT02992080,
clinicaltrials.gov). Thus far, only a few studies have attempted to identify miRNAs as CF biomarkers.
Large validation cohorts will be necessary to confirm the preliminary results obtained in these studies.

Understanding miRNA deregulation, distribution, targets, and function could unravel the
biological processes that drive CF pathogenesis and, in addition, prepare the grounds for therapeutic
interventions on miRNAs. Due to their small size and low antigenicity, miRNAs constitute attractive
pharmacological agents for regulating the abundance of target mRNAs/proteins and pathways of
interest. Most miRNA-relevant strategies rely on the use of synthetic, sequence-specific molecules
that mimic or repress the expression of miRNAs. Some studies have already identified interesting
miRNA-based therapeutics (i.e., TSBs targeting the binding sites of miR-223-3p and miR-145-5p) that
could be used either alone or in combination with CFTR modulators [126]. However, several challenges,
which include safe and organ-specific delivery, long-term efficacy, as well as side effects of prolonged
treatments, need to be overcome. Pending the resolution of these issues, it is reasonable to hope that
miRNA-targeting agents will eventually be introduced into the clinics.
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