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Objective: To develop a model for accurate prediction of axillary lymph node (LN) status after neoadjuvant chemotherapy (NAC) in
breast cancer patients with nodal involvement.
Methods: Between October 2018 and February 2024, 671 breast cancer patients with biopsy-proven LNmetastasis who received
NAC followed by axillary LN dissection were enrolled in this prospective, multicenter study. Preoperative ultrasound (US) images,
including B-mode ultrasound (BUS) and shear wave elastography (SWE), were obtained. The included patients were randomly
divided at a ratio of 8:2 into a training set and an independent test set, with five-fold cross-validation applied to the training set. The
authors first identified clinicopathological characteristics and conventional US features significantly associated with the axillary LN
response and developed corresponding prediction models. The authors then constructed deep learning radiomics (DLR) models
based on BUS and SWE data. Models performances were compared, and a combination model was developed using significant
clinicopathological data and interpreted US features with the SWE-based DLR model. Discrimination, calibration and clinical utility of
this model were analyzed using the receiver operating characteristic curve, calibration curve, and decision curve, respectively.
Results: Axillary pathologic complete response (pCR) was achieved in 52.41% of patients. In the test cohort, the clinicopathologic
model had an accuracy of 71.30%, while radiologists’ diagnoses ranged from 64.26 to 71.11%, indicating limited to moderate
predictive ability for the axillary response to NAC. The SWE-based DLR model, with an accuracy of 80.81%, significantly
outperformed the BUS-based DLRmodel, which scored 59.57%. The combination DLRmodel boasted an accuracy of 88.70% and
a false-negative rate of 8.82%. It demonstrated strong discriminatory ability (AUC, 0.95), precise calibration (P-value obtained by
Hosmer–Lemeshow goodness-of-fit test, 0.68), and practical clinical utility (probability threshold, 2.5–97.5%).
Conclusions: The combination SWE-based DLR model can predict the axillary status after NAC in patients with node-positive
breast cancer, and thus, may inform clinical decision-making to help avoid unnecessary axillary LN dissection.
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Introduction

Neoadjuvant chemotherapy (NAC) followed by surgery is
recommended for breast cancer patients with lymph node (LN)
metastasis[1]. NAC offers advantages of reducing the tumor
burden, increasing the likelihood of breast and axilla conserva-
tion, and improving survival in patients with a pathologic com-
plete response (pCR) in either the breast or axilla. Axillary LN
metastasis can be eradicated by NAC in ~40–50% of patients
with breast cancer[2]. For these breast cancer patients who
experience a pCR in axillary LNs, omission of axillary lymph
node dissection (ALND) could prevent the associated morbidity
and complications such as decreased range of motion and arm
pain[3].

Several clinical trials have investigated the performance of
sentinel LN biopsy (SLNB) for the evaluation of axillary LNs
after NAC in breast cancer patients with nodal involvement.
Their results indicated that the overall false-negative rates (FNRs)
of SLNB after NAC in patients with node-positive breast cancer
ranged from 12.6–14.1%, which is unacceptably high for clinical
utility[2,4]. Additionally, targeted axillary dissection (TAD) is
increasingly being considered after NAC in breast cancer patients
with LN metastasis, but challenges persist in terms of the iden-
tification rate and FNR[5–7]. Moreover, there is a lack of large-s
cale studies on SLNB and TAD for breast cancer patients with
clinical N2-3 stage, and specific criteria for the clinical assessment
of axillary LNs after NAC in patients with node-positive breast
cancer have not been established[8]. Consequently, there is no
consensus on axillary management after NAC in breast cancer
patients with nodal involvement[9]. An accurate strategy for
identifying breast cancer patients likely to achieve an axillary
pCR after NAC will be of great clinical significance for axillary
management decision-making following NAC.

In the clinical practice, ultrasound (US) is the preferred
imaging modality for evaluating residual disease in the axillary
LNs after NAC in breast cancer patients[10–12]. However, in
patients with node-positive breast cancer, axillary US shows
limited diagnostic performance in determining LN status fol-
lowingNAC[11]. Shear wave elastography (SWE), a relatively new
US technology, has been proven valuable in predicting the
response to NAC in breast cancer patients[13–15]. Additionally,
several studies have reported that the stiffness of breast tumor
tissue before treatment can serve as a predictor of axillary LN
status[16,17]. Furthermore, it has been proven that SWE is superior
to conventional US in predicting axillary status after NAC, how
ever, it should be noted that SWE still has a FNR of more than
10%[18].

Unlike conventional image analysis approaches, radiomics
provides data regarding high-dimensional quantitative char-
acteristics that are not visible to the naked eye[19]. Radiomics
techniques based on B-mode US (BUS) and SWE images of breast
cancer have been reported to be useful in predicting LN
status[17,20]. Further, deep learning can improve the handcrafted
pipeline of traditional radiomics analysis by automatically
extracting quantitative and high-throughput features from medi
cal images, based on which features show outstanding perfor
mance in image recognition tasks[21,22]. Indeed, deep learning
radiomics (DLR) has shown promise in predicting axillary LN
status in early-stage breast cancer[16]. However, accurately iden
tifying residual metastasis in axillary LNs after NAC remains a
significant challenge in patients with node-positive breast cancer.

We hypothesized that DLR based on BUS or SWE images can
extract valuable information and thus offer improved accuracy for
predicting the nodal response toNAC in breast cancer patients. To
test this hypothesis, we developed a DLRmodel to predict residual
metastasis in axillary LNs after NAC in breast cancer patients with
pathologically positive node (pN+). Considering the complexity of
the response to NAC and the challenges in determining axillary
status solely based on imaging data from DLR, we added
clinicopathologic characteristics and interpreted US features of
axillary LNs to construct a combination DLR model for com-
prehensive assessment of axillary status after NAC.

Methods

Ethics

This prospective study was registered on the Chinese Clinical
Trial Registry (http://www.chictr.org/cn/, number: ChiCTR240
0085035) and approved by the ethics committee of the institu-
tional review board (number: B2022-373-X01). Written
informed consent was obtained from all patients.

Patients

A total 671 breast cancer patients receiving NAC were con-
secutively recruited form Sun Yat-Sen University Cancer Center
and Sun -Yat-SenMemorial Hospital between October 2018 and
February 2024. The inclusion criteria were: (a) axillary LN
metastasis proven by core needle biopsy before NAC; and (b)
completion of standardized NAC regimen. The following exclu-
sion criteria were applied: (a) no residual breast lesions observed
on US; (b) no axillary surgery at our institutions; (c) history of
previous axillary surgery; (d) low-quality SWE images; and (e)
missing clinicopathologic or imaging data. As a result, a total of
540 women with node-positive breast cancer were included in
this study, as shown in Figure 1.

US examinations

Following the completion of NAC, patients underwent US exam-
ination one day before operation. The US examination included
both conventional US and SWE, using a 7.0–12.0 linear array
transducer (Siemens S2000, Siemens Medical Solutions). First, US

HIGHLIGHTS

• Accurately assessing axillary status after neoadjuvant
chemotherapy (NAC) in patients with node-positive breast
cancer remains a significant challenge.

• Our observations revealed that a deep learning radiomics
(DLR) model based on shear wave elastography (SWE)
images remarkably outperformed the clinicopathologic
model, radiologists’ diagnoses, and the B-mode ultrasound
(BUS)-based DLR model in predicting axillary response
to NAC.

• The combination DLR model, incorporating the SWE-
based DRL model with significant clinicopathological data
and interpreted US features of nodes, demonstrated excel-
lent diagnostic performance and practical clinical utility for
axillary restaging after NAC in patients with pathologically
confirmed positive nodes.
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features of the breast tumors and axillary LNs were recorded
according to the Breast Imaging Reporting and Data System (BI-
RADS) lexicon. The following US characteristics were recorded for
the axillary LNs: long diameter, short diameter, ratio of long/short
diameter (L/S ratio), cortical thickness, ratio of cortical thickness/
medullar thickness (C/M ratio), shape, margin condition, fatty
hilum status, echogenicity status, blood-vessel architecture, and

color score. Second, SWE was performed at least twice at the
maximal-diameter plane of the breast tumor with sufficient cou-
pling material while the probe was held still. SWE data were
generated while patients were asked to suspend respiration for
~5 s. The quality map was obtained first to assess the reliability of
SWE data. Then the velocity map was obtained, and the image
with the best quality was selected for further analysis.

Figure 1. Flowchart of the study population. LN, lymph node; NAC, neoadjuvant chemotherapy; SWE, shear wave elastography; US, ultrasound.

Figure 2. Flow chart depicting the study construction of the combination DLR model. BUS, B-mode ultrasound; CDFI, color Doppler flow imaging; DLR, deep
learning radiomics; LN, lymph node; SWE, shear wave elastography; US, ultrasound.
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Pathological evaluation

Before treatment, the breast cancer and axillary LN metastasis
were confirmed through pathological examination of samples
obtained via US-guided core needle biopsy. Specimens of breast
tumor tissue were stained to detect the expression of estrogen
receptor (ER), progesterone receptor (PR), human epidermal
growth factor receptor 2 (HER2), and Ki-67. After completion of
NAC, all patients underwent breast surgery accompanied by
ALND. The number of removed axillary LNs and the number of
positive LNs were recorded. A pCR of the axilla was defined as
the absence of metastasis in all resected axillary LNs.

Region of interest (ROI) delineation

As illustrated in Appendix Figure 1 (Supplemental Digital
Content 1, http://links.lww.com/JS9/D489), tumor segmentation
was performed manually on BUS images by a radiologist with
eight years of experience in breast US interpretation using Pair
software (https://www.aipair.com.cn/), and each annotated
region of interest (ROI) was registered to the corresponding SWE
images. Rectangular ROIs were cropped from raw US images
using the minimum external rectangle according to the tumor
segmentation mask, resized to 224×224 pixels using bilinear
interpolation, and then normalized.

Radiomics analysis

Handcrafted radiomic feature were extracted from each ROI
using the Pyradiomics package (http://www.radiomics.io/pyr

adiomics.html). The morphology, intensity wavelet, and texture
features were extracted from BUS and SWE images. These
extracted radiomic features were normalized to a standard unit.
Feature selection methods were used to minimize overfitting and
identify the features that were most effective for final prediction.
The t-test or Mann–Whitney U test was used to select radiomics
features that were significantly predictive of the NAC response.
The selected features were then input into a least absolute
shrinkage and selection operator (LASSO) regression algorithm
for the removal of redundant features.

DLR model construction

The included patients were randomly divided at a ratio of 8:2 into
a training set and an independent test set. The training set was
used to optimize the model parameters. Five-fold cross-validation
was performed in the training set to guide the choice of hyper
parameters. Figure 2 presents a diagram of the study workflow. A
simplified DenseNet37 was chosen as the base network. The
pathologic results of ALND were encoded to one-hot, which was
the label. Square ROIs extracted from SWE images using masks
were fed into the network without deformation to update model
parameters. Random rotation and flip were used for data aug-
mentation to alleviate the influence of overfitting and sample
imbalance. In the training process, the Adam optimizer was used
to update the model parameters, and the initial learning rate was
set to 1e-3 with a batch size of 16.

Additionally, the interpreted US features of LNs and clin-
icopathologic features in addition to selected SWE radiomics

Figure 3. Proposed network scheme for DLR. DLR, deep learning radiomics; SWE, shear wave elastography; US, ultrasound.
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features were encoded separately into a fully connected layer to
obtain their feature vectors. As shown in Figure 3, features from
three modalities were encoded into the model and fused together
tomake the prediction. Because features from different modalities
may contribute differently to the prediction task, for each feature
vector, a keyless attention mechanism was applied to learn the
weight of the importance of each dimension and control its
expressiveness. The final feature vector was obtained via the
concatenation operation.

We also visualized the features of DLR based on SWE to fur-
ther explore how DLR models interpret US data for the predic-
tion of axillary LN status. The gradient-weighted class activation
mapping (Grad-CAM) was used to produce heat maps to visua-
lize the areas of an image most indicative of axillary status. The
feature map required to generate the Grad-CAM was extracted
from the final convolutional layer.

Statistical analysis

Univariate analysis of features associated with the nodal response
to NAC was performed using a t-test or Mann–Whitney U test to

compare continuous quantitative variables. Categorical variables
were analyzed using either the χ2 test or Fisher exact test.
Multivariable analysis was used to identify independent predictor
of nodal response to NAC. Receiver operating characteristic
(ROC) curve analysis was applied to evaluate the predictive per-
formances of models. For the assessment of axillary LN status
following NAC in breast cancer patients, a cut point of 10% was
defined as an acceptable FNR[2,4]. A calibration curve was devel-
oped to show the association between the predicted and observed
axillary LN status. The clinical practicability of the combination
DLR model was analyzed by decision curve analysis. The work
has been reported in line with the Standards for the Reporting of
Diagnostic accuracy studies (STARD) (Supplemental Digital
Content 2, http://links.lww.com/JS9/D490) criteria[23]. Statistical
analyses were performed using MedCalc version 16.2. and
Python version 3.6.5. All statistical tests were two-sided, and
P< 0.05 indicated statistical significance.

Results

Clinicopathologic characteristics

A total of 540 patients (mean age, 47.68 ±10.54 years; range,
28–70 years) were included (Table 1). Of them, 283 (52.41%)
cases with pN+ breast cancer achieved axillary pCR, and 257
(47.59%) cases had residual metastasis in axillary LNs after
NAC. Patients with residual nodal metastasis after NAC were
significantly more likely to have higher clinical nodal stage at
initial, positive ER expression, negative HER2 expression, and a
low Ki-67 score. The above clinicopathologic characteristics were
applied to construct a model for predicting the axillary response
to NAC, and this model performed with an area under the ROC
curve (AUC) of 0.79, an accuracy of 71.30%, a sensitivity of
64.55%, a specificity of 77.50%, and a FNR of 35.45% in the test
cohort (Appendix Table 1, Supplemental Digital Content 1, http://
links.lww.com/JS9/D489 and Appendix Figure 2, Supplemental
Digital Content 1, http://links.lww.com/JS9/D489).

Axillary US diagnosis

The kappa values for interobserver and intraobserver agreement
for the US characteristics of axillary LNsweremedium-high, with
interobserver agreement kappa values ranging from 0.40 to 0.84
(P< 0.050) and intraobserver agreement kappa values ranging
from 0.51 to 0.92 (P< 0.001). A thickened cortex [odds ratio
(OR), 5.93; 95% CI: 4.11–8.57), round shape (OR, 3.09; 95%
CI: 1.15–8.30), irregular shape (OR, 4.88; 95%CI: 2.15–11.03),
and nonhilar flow (OR, 14.82; 95% CI: 1.75–125.72) of LNs
after NAC for breast cancer were negative predictors of axillary
pCR (Appendix Table 2, Supplemental Digital Content 1, http://
links.lww.com/JS9/D489).

Table 1
Baseline clinicopathological characteristics.

Characteristics
pCR

(n= 283)
Residual metastasis

(n= 257) P

Age, years 47.14± 10.53 48.26± 10.52 0.218
Menopausal status, n (%) 0.364
Pre/perimenopausal 176 (62.2) 150 (58.4)
Postmenopausal 107 (37.8) 107 (41.6)

Tumor stage, n (%) 0.090
1 31 (11.0) 18 (7.0)
2 164 (58.0) 138 (53.7)
3 53 (18.7) 53 (20.6)
4 35 (12.4) 48 (18.7)

Nodal stage, n (%) < 0.001
1 151 (53.4) 97 (37.7)
2 86 (30.4) 82 (31.9)
3 46 (16.3) 78 (30.4)

ER expression, n (%) 0.011
Negative 100 (35.3) 65 (25.3)
Positive 183 (64.7) 192 (74.7)

PR expression, n (%) 0.138
Negative 128 (45.2) 100 (38.9)
Positive 155 (54.8) 157 (61.1)

HER2 expression, n (%) < 0.001
Negative 84 (29.7) 205 (79.8)
Positive 199 (70.3) 52 (20.2)

Ki-67 score, n (%) < 0.001
≤ 14% 33 (11.7) 63 (24.5)
> 14% 250 (88.3) 194 (75.5)

ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; pCR, pathological complete
response; PR, progesterone receptor.

Table 2
Performance of BUS-based DLR model for predicting axillary LN status after NAC.

Cohort AUC ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) FNR (%)

Training 0.80 [0.76–0.83] 69.59 [66.36–73.14] 72.25 [68.05–78.85] 76.71 [72.30–81.16] 71.89 [68.09–76.67] 67.45 [63.01–70.91] 27.75 [21.15–31.95]
Validation 0.76 [0.70–0.82] 68.52 [63.24–74.59] 70.64 [59.39–81.06] 73.78 [65.59–82.18] 67.78 [59.13–76.77] 69.32 [61.41–76.65] 29.36 [18.94–40.61]
Test 0.62 [0.47–0.76] 59.57 [49.32–68.50] 61.88 [40.84–78.31] 60.21 [45.13–75.48] 54.55 [37.15–69.94] 64.17 [52.87–79.41] 38.12 [21.69–59.16]

ACC, accuracy; AUC, area under the receiver operating characteristic curve; BUS, B-model ultrasound; DLR, deep learning radiomics; FNR, false negative rate; LN, lymph node; NAC, neoadjuvant chemotherapy;
NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; SPE, specificity.

Huang et al. International Journal of Surgery (2025)

225

http://links.lww.com/JS9/D490
http://links.lww.com/JS9/D489
http://links.lww.com/JS9/D489
http://links.lww.com/JS9/D489
http://links.lww.com/JS9/D489
http://links.lww.com/JS9/D489


In this study, the performances of board-certified radiologists
in the diagnosis of axillary LN status after NAC for pN+ breast
cancer based only on conventional US features were limited, with
accuracy values ranging from 64.26 to 71.11%, sensitivity values
ranging from 57.20 to 72.37%, specificity values ranging from
69.61 to 73.50%, and FNRs ranging from 27.63 to 42.80%.

DLR model based on BUS

Appendix Table 3 (Supplemental Digital Content 1, http://links.
lww.com/JS9/D489) summarizes the selected radiomics features
form BUS data. In the training and validation cohorts, the AUC
values for the BUS-based DLR model were 0.80 and 0.76,
respectively, and the AUC for the BUS-based DLR model in the
independent test cohort was 0.62, with an accuracy of 59.57%, a
sensitivity of 61.88%, a specificity of 60.21%, and a FNR of
38.12% (Table 2). Figure 4 shows the ROC curve for the per-
formance of the BUS-based DLR model for the prediction of
axillary response to NAC in pN+ breast cancer.

DLR model based on SWE

Appendix Table 4 (Supplemental Digital Content 1, http://links.
lww.com/JS9/D489) summarizes the selected radiomics features
form SWE data. We next developed a DLR model based on SWE
images for predicting axillary LN status after NAC for pN+
breast cancer. In the training and validation cohorts, the AUC
values for the SWE-based DLR model for the prediction of axil-
lary response were 0.95 and 0.89, respectively, and the corre-
sponding AUC for this model in the independent test cohort was

0.85, with an accuracy of 80.81%, a sensitivity of 78.21%, a
specificity of 84.39%, and an FNR of 21.79% (Table 3 and
Fig. 5). The SWE-based DLR model exhibited significantly
superior performance to the BUS-based DLR model for the pre-
diction of axillary response to NAC (Delong test, P<0.001).

Combination DLR model

Given the exceptional performance of the SWE-based DLR model
in accurately predicting the axillary status after NAC, we utilized
SWE images to construct the final prediction model. Additionally,
we incorporated clinicopathological characteristics and conven-
tional US features of axillary LNs into this combination DLR
model. As presented in Table 4 and Figure 6, excellent performance
was observed for the combination DLR model with AUC values of
0.98, 0.94, and 0.95 in the training, validation, and independent
test cohorts, respectively. In the test cohort, the combination DLR
model showed an accuracy of 88.70% with a sensitivity of
91.18%, specificity of 86.79%, and FNR of 8.82%. The P-value
obtained using the Hosmer–Lemeshow goodness-of-fit test was
0.68, indicating a good fit of the model. Calibration curve analysis
showed good agreement between the observations and predictions
for axillary LN status after NAC (Appendix Figure 3, Supplemental
Digital Content 1, http://links.lww.com/JS9/D489). Decision curve
analysis showed that clinical decision-making according to the
combination DLR model offered superior overall benefit to the all-
or-none strategy when the probability threshold was between 2.5
and 97.5%, as shown in Appendix Figure 4 (Supplemental Digital
Content 1, http://links.lww.com/JS9/D489).

Figure 4. ROC curve for the performance of the BUS-based DLR model. BUS,
B-mode ultrasound; DLR, deep learning radiomics; ROC, receiver operating
characteristic.

Table 3
Performance of SWE-based DLR model for predicting the axillary LN status after NAC.

Cohort AUC ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) FNR (%)

Training 0.95 [0.94–0.97] 86.15 [83.98–88.44] 84.47 [81.03–87.06] 88.71 [86.84–92.22] 87.57 [84.66–91.96] 84.83 [82.57–87.61] 15.53 [12.94–18.97]
Validation 0.89 [0.83–0.92] 80.73 [75.38–84.32] 79.24 [73.05–85.00] 85.05 [80.04–90.49] 84.44 [78.32–90.54] 77.24 [69.99–83.52] 20.76 [15.00–26.95]
Test 0.85 [0.74–0.94] 80.81 [72.17–88.70] 78.21 [63.62–91.16] 84.39 [68.61–93.27] 83.64 [74.12–91.43] 78.33 [61.27–93.47] 21.79 [8.84–36.38]

ACC, accuracy; AUC, area under the receiver operating characteristic curve; DLR, deep learning radiomics; FNR, false negative rate; LN, lymph node; NAC, neoadjuvant chemotherapy; NPV, negative predictive
value; PPV, positive predictive value; SEN, sensitivity; SPE, specificity; SWE, shear wave elastography.

Figure 5. ROC curve for the performance of the SWE-based DLR model. DLR,
deep learning radiomics; ROC, receiver operating characteristic; SWE, shear
wave elastography.
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The SWE images and heat maps for two representative cases,
one with residual metastasis and one with pCR in axillary LNs
after NAC, are shown in Figure 5. In the heat maps, the red and
yellow regions reflect areas activated in the DLR model and have
the greatest predictive value, while the green and blue back-
grounds areas represent the regions with weak predictive sig-
nificance. These maps show that in the cases with residual
metastasis in axillary LNs, the DL network focuses more on the
features of the tumor periphery (Appendix Fig. 5A–C,
Supplemental Digital Content 1, http://links.lww.com/JS9/D489),
whereas the prediction of the axillary pCR depends more on the
features of the tumor itself (Appendix Fig. 5D–F, Supplemental
Digital Content 1, http://links.lww.com/JS9/D489).

Discussion

Accurately predicting axillary pCR is a critical clinical require-
ment tominimize unnecessary surgical overtreatment of the axilla
in breast cancer patients undergoing NAC. In our study, we made
an important observation that a DLR model based on SWE
images significantly outperformed a DLR model based on BUS
images in predicting the axillary status after NAC. Building on
this finding, we developed the final combination DLR model by
integrating the superior SWE-based DLR model with the clin-
icopathological characteristics and conventional US features. The
resulting combination DLR model exhibited excellent diagnostic
performance for axillary LNs status after NAC in patients with
initially involved LNs. The results suggest that this developed
model has the potential to aid clinicians in surgical decision-
making regarding the axilla in order to optimize of overall benefit
of treatment for patients.

The tumor response to NAC is highly heterogeneous and
complex, posing challenges in distinguishing between residual
metastasis and treatment-related changes of axillary LNs. NAC
can induce various changes in the tumor microenvironment, such
as fibrosis and inflammation, which can increase difficulty in the
interpretation of imaging findings. Additionally, the presence of
small metastatic deposits in LNs, which may not be easily
detectable on imaging, further complicates the situation. In recent
years, many models have been developed to predict axillary LN
status after NAC in patients with breast cancer, including
nomograms and scoring systems based on clinicopathologic
characteristics, US features, andMRI findings[24–26]. In agreement
with previous studies[24,25], our analysis suggested that the clin
icopathologic model demonstrated moderate performance for
predicting nodal pCR. Additionally, insufficient predictive per
formance was also observed for the conventional axilla US
among radiologists with different levels of experience, with
accuracy values ranging from 64.26 to 71.11% and FNRs ran
ging from 27.63 to 42.80%. Consistently, previous studies
exploring the value of US in axillary evaluation after NAC also
reported variable and mediocre performance[11,26]. Thus, even as
the most recommended imaging modality[10], conventional US
does not currently have the potential to completely replace the
surgical staging procedure for determining axillary LN status
after NAC.

Previous research demonstrated that tumor stiffness as asses-
sed by UE can be added to predictive models to increase their
accuracy regarding axillary LN status[16,18]. The study by Huang
et al. found that, in patients with biopsy-proven node-positive
breast cancer, a higher shear wave velocity within breast tissue
after NAC indicated a greater risk of residual metastasis in axil-
lary LNs. The use of SWE data improved the predictive perfor-
mance of the model for axillary LN assessment after NAC
compared with the use of conventional US data. However, SWE
characteristics interpreted by radiologists still showed unsa-
tisfactory performance for assessing axillary LNs after NAC,
with an accuracy of 73–83% and a FNR of 15–20%[18]. In this
context, DLR, a relatively new field with great potential in
medical image analysis, can provide more useful information
for prediction of classification and decision-making. Recently,
DLR based on MRI or BUS images was shown to effectively
predict the tumor response to NAC in patients with breast cancer,
and thus, to have potential for facilitating individualized treat
ment strategies[27–30]. Our study focused on the prediction of
nodal response to NAC using DLR models based on BUS and
SWE data. This study represents the first investigation into the
role of SWE-basedDLR in predicting axillary response toNAC in
pN+ breast cancer cases. The results indicate that the SWE-based
DLR model notably outperformed the BUS-based DLR model in
this context. The tumor tissue stiffness obtainedwith UE is largely
determined by the composition of the microenvironment of

Table 4
Performance of the combination DLR model for predicting axillary LN status after NAC.

Cohort AUC ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) FNR (%)

Training 0.98 [0.96–0.99] 92.23 [88.41–95.73] 91.46 [89.07–97.98] 92.98 [85.79–96.49] 92.43 [82.19–96.02] 92.06 [90.76–98.26] 8.54 [3.01–8.01]
Validation 0.94 [0.89–0.96] 86.57 [80.78–89.61] 87.00 [81.60–93.43] 87.07 [75.47–89.41] 85.56 [74.79–88.23] 87.47 [82.57–93.46] 13.00 [6.57–18.40]
Test 0.95 [0.90–0.99] 88.70 [81.74–96.86] 91.18 [74.68–98.33] 86.79 [75.21–98.03] 84.55 [71.47–97.67] 92.50 [85.09–98.67] 8.82 [1.67–25.32]

ACC, accuracy; AUC, area under the receiver operating characteristic curve; DLR, deep learning radiomics; FNR, false negative rate; LN, lymph node; NAC, neoadjuvant chemotherapy; NPV, negative predictive
value; PPV, positive predictive value; SEN, sensitivity; SPE, specificity.

Figure 6. ROC curve for the performance of the combination DLRmodel. DLR,
deep learning radiomics; ROC, receiver operating characteristic.
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cancer cells, which plays a vital role in the response to chemother
apy for breast cancer[31]. Additionally, studies have reported that
the pathogenesis of tumor invasion and metastasis is also
associated with increased matrix stiffness[32,33]. Thus, UE has
the potential to reflect the status of axillary LNs after NAC in
patients with node-positive breast cancer. Our study established
the SWE-based DLR model with good discriminatory ability for
the preoperative prediction of axillary response to NAC in breast
cancer patients, but the overall FNRs did not meet the prespeci
fied study end point[2,4].

As clinicopathological characteristics were significant pre-
dictors of the nodal response to NAC while axilla US is the most
recommended imaging modality for assessing axillary LN status
after NAC[10,24,25], a combination DLR model integrating clin-
icopathologic characteristics and interpreted US features of LNs
with SWE-based DLR was established in this study by analyzing
images of breast SWE through a DLR approach[14]. This combi
nation DLR model demonstrated excellent predictive perfor
mance for axillary LN status after NAC in patients with pN+
breast cancer, with an AUC of 0.95, an accuracy of 88.70%, and
a FNR of 8.82% in the test cohort. For the preoperative assess
ment of axillary LNs after NAC, compared with previously
described methods[11,15,24–26], our combination DLR method
yielded superior performance, which can complement image data
with more information and make the model more robust by
restraining the features extracted from images[16,34]. Moreover,
for patients with breast cancer receiving NAC, US is a routine
examination for preoperatively characterizing breast lesions and
axillary LNs. SWE has the advantages of being cost-effective and
noninvasive without the need for ionizing radiation. Also, the
clinicopathologic characteristics incorporated in the combination
DLRmodel are readily available in routine clinical practice. Thus,
the combination DLR model developed in our study does not
require additional procedures, and decision curve analysis further
suggested its satisfactory clinical utility in facilitating individua
lized treatment strategies for axillary LNs management
after NAC.

The present study had several limitations. First, while it was a
prospective, multicenter study, the sample size was relatively
small with the lack of an external test set. Although we
strengthened our findings by establishing cross-validation and
independent test cohorts and using several approaches for data
augmentation to decrease overfitting in our study, further studies
with a larger sample size and inclusion of an external test set are
crucial to enhance the robustness and generalization of the
developed model. Second, the DLR model constructed in this
study was based on US images of residual breast lesions after
NAC for breast cancer, and cases with a clinical CR on US were
not included in this study. Third, manual delineation of ROIs is
time-consuming and labor-intensive. In future studies, automatic
segmentation methods can be developed to improve the efficiency
and applicability of the developed model.

Conclusion

The SWE-based DLR demonstrated promise in predicting nodal
pCR in patients with node-positive breast cancer. Furthermore,
the combined DLR model developed in this study accurately
predicted axillary LN status after NAC, suggesting it may serve as
a valuable tool for informing treatment decisions related to the

management of axillary LNs. A study with a larger sample size
and an external test set is anticipated to offer more compelling
evidence for the clinical application of the developed model in
future investigations.
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