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The intramolecular cyclization of a C-3-tetrasubstituted furanoid sugar amino acid-derived linear tetrapeptide afforded an

oxazolone pseudo-peptide with the formation of an oxazole ring at the C-terminus. A conformational study of the oxazolone

pseudo-peptide showed intramolecular C=0---HN(II) hydrogen bonding in a seven-membered ring leading to a y-turn conformation.

This fact was supported by a solution-state NMR and molecular modeling studies. The oxazolone pseudotetrapeptide was found to

be a better Cl -selective transporter for which an anion—anion antiport mechanism was established.

Introduction

Tetrasubstituted a-amino acid (TAA)-derived peptidomimetics
offer well-defined turn structures due to the presence of a
stereochemically stable quaternary carbon center [1]. For exam-
ple, TAA-derived peptides containing a cyclopropane ring and
L/p-dimethy] tartrate showed an a-turn and form 3;¢-helical
conformations in higher oligomers [2-4]. While, TAA-derived
peptides having a tetrahydrofuran ring demonstrated a -turn
type conformation [5]. Amongst these, the use of sugar-derived
TAAs in peptidomimetics is less explored. The linear tri-/
tetrapeptides and spiro-peptides at the anomeric position of

mannofructose are known [6-8]. Stick and co-workers have re-

ported the synthesis of tetrasubstituted sugar furanoid amino
acid (TSFAA)-derived homologated linear pentapeptide which
showed a well defined intramolecular hydrogen-bonding-stabi-
lized helical array [9-11]. Our group has reported a trans-
vicinal p-glucofuranoroic-3,4-diacid with a TAA framework
and incorporated it into the N-terminal tetrapeptide sequence
(H-Phe-Trp-Lys-Thy-OH) to get a glycopeptide which acts as
an o-turn inducer [12]. Over the last several years, synthetic
peptides are known to play a significant role in the design of
artificial ion transport systems [13-16]. Recently, our group has

synthesized fluorinated acyclic and cyclic peptides from C-3
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fluorinated p-glucofuranoid amino acids and demonstrated their
selective anion transport activity [17,18]. In continuation of our
interest in sugar-derived cyclic peptides [19], we aimed to
synthesize cyclic peptides I and II from the corresponding
linear di- and tetrapeptides, however, we obtained an oxazolone
ring containing pseudo peptides 1 and 2a, respectively
(Figure 1) The NMR studies of pseudotetrapeptide 2a indicated
a y-turn conformation stabilized by the intramolecular hydro-
gen bonding [(I[)NH---O=C] in a seven-membered ring. The
oxazolone pseudotetrapeptide 2a demonstrated better selective
CI” ion transport activity as compared to the pseudodipeptide 1.
To the best of our knowledge, this is the first report on the for-
mation of oxazolone peptides from TSFAA that induces a

y-turn and demonstrate ion transport activity.

Results and Discussion

At first, p-glucose was converted to C-3-tetrasubstituted fura-
noid sugar azido ester 3 as per our reported protocol [12].
Hydrolysis of the ester functionality in 3 with LiOH at room
temperature afforded azido acid 4a in 92% yield, while hydro-
genation of 3 using 10% Pd/C in MeOH at room temperature
for 3 h afforded the amino ester 4b in 86% yield (Scheme 1).
The coupling of 4a and 4b using 2-chloro-1-N-methylpyri-
dinium iodide (CMPI), as a coupling reagent, in the presence of
Et3N in dichloromethane at 40 °C for 12 h gave azido ester
dipeptide 5 in 75% yield. Hydrogenation of 5 using 10% Pd/C
in methanol gave amino ester dipeptide 6a in 82% yield, while
hydrolysis of § using LiOH gave azido acid dipeptide 6b in
88% yield. Coupling of 6a and 6b using CMPI in the presence
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of Et3N in dichloromethane afforded azido ester tetra-peptide 7
in 73% yield. [20].

The linear azido ester dipeptide 5 and tetrapeptide 7 were indi-
vidually converted to amino acid di- and tetrapeptides 8 and 9,
respectively, using hydrolysis followed by a hydrogenation
reaction protocol (Scheme 2). In order to get cyclic peptides I
and II (Figure 1), an individual intramolecular coupling reac-
tion of linear dipeptide 8 and tetrapeptide 9 was attempted.
Thus, coupling reactions of 8/9 with different reagents (HATU,
TBTU, PyBOP, EDC-HCl), under a variety of solvents (DMF,
acetonitrile, dichloromethane) and reaction conditions
(25-80 °C for 24 h) were unsuccessful. This could be due to the
stable helical conformation of 8 and 9 in which reactive acid
and amino functionalities are apart from each other. However,
an individual intramolecular coupling reaction of 8 and 9 using
CMPI as a coupling reagent, in the presence of Et3N in
dichloromethane, afforded pseudodipeptide 1 and pseudote-
trapeptide 2a, respectively, with oxazolone ring formation at the
C-terminal of the peptides [21-23]. The free amino group in 2a
was acetylated with Ac,O/pyridine in dichloromethane to get
—NHACc derivative 2b (Scheme 2).

The single crystal formation of oxazolone psudopeptides 1, 2a
and 2b were unsuccessful under a variety of solvent conditions.
The 'H and 3C NMR spectra of 1, 2a and 2b showed sharp and
well-resolved signals in CDClj solution indicating the absence
of rotational isomers (Figures S1, S3, and S4 in Supporting
Information File 1). The oxazolone pseudodipeptide 1 is devoid

Figure 1: Oxazolone pseudodipeptide 1 and tetrapeptide 2a.
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Scheme 1: Synthesis of linear azido ester dipeptide 5 and tetrapeptide 7.
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Scheme 2: Synthesis of oxazolone pseudopeptides 1, 2a and 2b.

of amide linkages and is therefore not considered for conforma-
tional studies [24]. In the case of 2a, the assignment of chemi-
cal shifts to different protons was made based on IH,1H-COSY,
IH,13C-HMBC/HSQC, NOESY, and 'H,'"N-HSQC/HMBC
studies (Figures S5-S10 in Supporting Information File 1) and

values thus obtained are given in Table S1 in Supporting Infor-
mation File 1. The IR spectrum of 2a showed a broad band at
3444-3421 cm™! indicating the presence of -NHs of amine/
amide functionalities. The bands at 1740 and 1688 cm™! were

assigned to the lactone carbonyl and amide (as well as imine)

2421



groups, respectively. In the "H NMR spectrum, the downfield
signals at 8 9.03 and 8.52 ppm were assigned to the amide
NH(I) and NH(II), respectively. The signal at d 1.80 ppm, inte-
grating for two protons, was assigned to the presence of an NH,
functionality. In the 13C NMR spectrum, the appearance of
signals at 8 170.8, 170.6 and 166.7 ppm were assigned to the
lactone/amide carbonyl functionalities. The signal at
0 163.0 ppm was assigned to the -C=N functionality. The
TH,’>N-HSQC and 'H,'SN-HMBC spectra showed a signal at
0 246.0 ppm that was assigned to the imine (C=N-) nitrogen.
The signal at  26.2 ppm was assigned to the amine (NHj)
nitrogen. The signals at & 112.8 and 6 114.1 ppm were due to
the nitrogen of amide (CONH) groups. Based on the >N NMR
spectra, the presence of the oxazolone ring at the C-terminus in
2a was confirmed [21-23].

The 'H NMR spectra of N-acylated compound 2b showed three
downfield signals at d 8.24, 8.19 and 8.09 ppm due to the three
amide NHs. An additional singlet at § 2.0 ppm, integrating for
three protons, was assigned to the NHCOCH3. In the !3C NMR
spectrum, the appearance of five signals in the downfield region
(at d 171.6, 170.9, 167.5, 165.0, and 164.0 ppm) indicated the
presence of three amides, lactone carbonyl and imine carbon
(-C=N) suggesting the presence of oxazolone ring in 2b.

Conformational study of 2a

The downfield shift of amide NH protons § > 7.5 ppm in 2a
suggested the possible involvement of intramolecular hydrogen
bonding [25]. The observed NOESY cross peaks of
NH(I) < NH, indicated closer proximity and orientation on the
same side (Figure 2). This is likely to involve (I)NH---NH,
weak intramolecular hydrogen bonding. The amide NH(II)

R
4 Hu.|aO H1
H
( H2N Y ~—ring A
| £
HNAO 7-membered

H-bond y-turn

/
ring B s /\'
"\ R
X0 1
~——ring C
[
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H

~— strong NOE
weak NOE
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Figure 2: Characteristic NOEs of 2a.
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showed strong cross peaks with H-2, H-5 of ring C, H-4 of ring
B and weak cross peaks with H-1, H-6 of ring C indicating
closer proximity and orientation of these protons on the same
side. Appearance of strong NOE between NH(II) & H-4 and
weak NOE between NH(II) «© H-2 of ring B indicated the orien-
tation of NH(II) towards the carbonyl group of ring A with the
formation of intramolecular hydrogen bonding in a seven-mem-

bered ring leading to the y-turn conformation (Figure 2).

The involvement of amide NHs in intramolecular H-bonding
was supported by the DMSO-dg titration studies. Thus, 5 uL of
DMSO-dg was sequentially added (up to 50 pL) to the CDClj
solution of 2a and change in 6 value of NH protons was moni-
tored by the 'H NMR [26]. The NH(I) proton showed the
higher change in chemical shift A = 0.2 ppm indicating weak
(DNH---NH, intramolecular H-bonding. The NH(II) showed
smaller Ad = 0.13 ppm suggesting strong (I[)NH:--O=C intra-
molecular bonding (Figure 3).

NH(I) | NH(Ih

55mLDMSO ||
. 45mLDMSO /|

- 35mLDMSO

S 25mLDMSO
15 mL DMSO

10 mL DMSO
5 mL DMSO
0 mL DMSO

9.15 9.05 8.95 8.85 8.65 8.55 8.45 835

8.75
f1 (ppm)
Figure 3: DMSO titration study of 2a.

This fact was further supported by a temperature-dependent
'H NMR study [27,28]. The temperature-dependent 'H NMR of
2a in CDClj as solvent at 283-323 K was recorded that showed
a higher AS/AT value of 6.2 x 1073 ppm/K for NH(I) indicating
its involvement in weak intramolecular H-bonding. For NH(II)
the lower AS/AT value of 3.7 x 1073 ppm/K supported its asso-
ciation in strong intramolecular hydrogen bonding with C=0

leading to the y-turn formation (Figure 4).

The "H NMR dilution study of 2a in CDCl3 solution showed
the negligible change (A5 = 0.01) in the chemical shift of NH(I)
and(II) protons (Figure S17, Supporting Information File 1),
further supporting their intramolecular hydrogen bonding with

the free NH, and C=O0, respectively. These studies thus
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Figure 4: 'H NMR temperature study of 2a.

supported the presence of y-turn helical type conformation of
2a.

Molecular modeling studies

In order to corroborate our results, obtained from the NMR
studies, the molecular modeling study was performed using
Spartan’ 14 software [29,30]. The initial geometry of 2a, gener-
ated from the NOESY study, was subjected to geometry optimi-
zation using a semi-empirical PM6 method. The resulted
optimized structure of 2a indicated considerable crowding
due to the presence of the oxazolone ring and two acetonide
rings of sugar ring D (Figure 5A). To accumulate the
oxazolone ring, the sugar ring C is pushed towards the

Figure 5: Optimized helical conformations of (A) 2a, (B) 2b and (C) 9.
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A and B rings. The y-turn conformation is stabilized by the
intramolecular (I)NH---O=C hydrogen bonding in a seven-
membered ring [bond distance (d) = 2.61 A and bond angle
(NH:--O) = 114.06°]. To understand the role of the oxazolone
ring in stabilizing the y-turn, we performed geometry optimiza-
tion on TFSAA linear tetrapeptide amino acid 9 (Figure 5C).
The optimized geometry of 9 showed a change in helical con-
formation overcome the crowding due to acetonide groups. The
N- and C-terminals are further away, thus precluding the y-turn
conformation [(bond distance (d) = 3.11 A) and bond angle
(NH---O) = 98.90°]. The comparison of geometrically opti-
mized models of 2a and 9 showed small structural changes with
respect to the helical pitch length. The distance between
C=0--N(II) is 3.18 A in 2a and 3.43 A in 9. The distance be-
tween Cal--Ca4 is 9.67 A in 2a and 9.84 A in 9 (Figure S18 in
Supporting Information File 1). Similarly, the distance between
N1---C4 is 9.44 A in 2a and 10.47 A in 9. This suggested an
elongated helical structure of linear tetrapeptide 9 than 2a.
Thus, the compact helical architecture of 2a is due to the pres-
ence of the oxazolone ring leading to a y-turn conformation.
The molecular modeling study of N-acetylated compound 2b
also indicated the presence of a seven-membered hydrogen
bonding between NH(II) and —C=0 [bond distance (d) = 2.74 A
and bond angle (NH--O) = 112.98°] suggesting the presence of
a y-turn conformation (Figure 5B).

lon transport activity
The cation and anion transport across lipid bilayer membranes
plays a crucial role in various biological processes [31,32].
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Amongst these, the transport of anions is useful in regulating
intracellular pH, membrane potential, cell volume, and fluid
transport [33]. Any dysfunction in these processes led to
various diseases such as cystic fibrosis, Dent disease, Bartter
syndrome, and epilepsy [34-37]. In order to mimic the regula-
tory functions in living systems, a wide range of anion trans-
porters have been investigated that include peptides [38-43],
oligoureas [44,45], anion-m slides [46,47], steroids [48,49],
calixpyrroles [50,51], calixarenes [52,53], and other scaffolds
[54-56]. In particular, peptide based transmembrane anion
transporters have attracted great interest. For example, Ghadiri
[38], Ranganathan [39], and Granja [40] have independently re-
ported different types of cyclic peptides as anion transporters.
Gale, Luis, and co-workers [41] have separately reported the
linear pseudopeptides as receptors and transporters of chloride

and nitrate anions.

Inspired by our recent ion transport studies with fluorinated
acyclic and cyclic sugar derived peptides [17,18], we investigat-
ed the ion transport activity of 1 and 2a across lipid bilayer
membranes. In this study, the collapse of the pH gradient
(pHout = 7.8 and pH;, = 7.0), created across egg yolk L-a-phos-
phatidylcholine (EYPC) vesicles with entrapped 8-hydroxy-
pyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) dye (i.e.,
EYPC-LUVsDHPTS) [57-61] was monitored by measuring
the fluorescence intensity of the dye at Aepy = 510 nm
(Aex = 450 nm) with time (Figure S11, Supporting Information
File 1). Thus, the addition of 2a (10 uM) resulted in the signifi-
cant increase in HPTS fluorescence within 200 s (Figure 6B),
while oxazolone pseudodipeptide 1 was found to be lesser
active (Figure 6A).

From the dose-response data of 2a, the calculated effective
concentration ECsq = 0.72 uM indicated good ion transport ac-
tivity of 2a (Figure S12 in Supporting Information File 1). The
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Hill coefficient n value of 1.26 indicated that one molecule of
2a is involved in the formation of the active transporter. The
promising ion transport activity of 2a encouraged us to explore
its cation and anion selectivity study by varying either cations
(for MCI, M* = Li*, Na*, K*, Rb*, and Cs™) or anions (for
NaA, A" =F,Cl,Br, I, NO3;, SCN™, AcO™ and ClO4") of
the extravesicular salt, respectively. Thus, variation of external
cations, in the presence of 2a (0—10 uM), showed minor
changes in the transport activity with the sequence: Na* >
Rb* > Li* > K ~ Cs* (Figure 7A), which suggest lesser influ-
ence of alkali metal cations in the transport process. However,
variation of extravesicular anions demonstrated the changes in
the transport behaviour with the following selectivity sequence:
Cl~ >> AcO™ = SCN™ = F~ > NO3~ >> Br ~ I, showing
highest selectivity for the C1~ ion (Figure 7B). Overall, anion
variation had more influence in the ion transport rate compared
to the cations.

Chloride leakage study

In order to know the role of the free NH, group in 2a for CI~
recognition during the transport of the ion, we monitored the
CI™ transport activities of the amino compound 2a and its
N-acylated derivative 2b. The influx of CI” ion by these trans-
porters were monitored using EYPC-LUVs>lucigenin. Addi-
tionally, compound 9, which has a free amino group and a free
carboxylic acid group, was also subjected to the CI~ transport
study. The C1~ sensitive dye lucigenin, was entrapped within the
lipid vesicles and the rate of quenching in fluorescence at Ag, =
535 nm (Aex = 455 nm) was monitored using transporter 2a by
creating a CI~ gradient across the lipid membrane by applying
NaCl in the extravesicular buffer (Figure S14 in Supporting
Information File 1). The compound 2a showed a significant de-
crease in the fluorescence rate of lucigenin and the change in
fluorescence upon the addition of 2a (Figure 8A and 8B). We
observed that the N-acetylated compound 2b was observed to

w
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o
T

o]
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[«2]
o

Normalized fluorescence (a.u.)

300

Figure 6: lon transport activity (A) for 1, (B) for 2a, across EYPC-LUVs HPTS.
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across EYPC-LUVsolucigenin (B). Transport activity of 2a (20 uM) by changing extravesicular cations (C). Transport activity of 2a (20 uM) in the
presence and absence of valinomycin (1 pM) across EYPC-LUVs>lucigenin (D).

be inactive (Figure 8A), indicating that the free amine group is
necessary for the transport activity. Compound 9 did not exhib-
it any transport activity even at very high concentration (Figure
S16 in Supporting Information File 1).

Further, the variation of cations in the extravesicular buffer
using different salts of MCl (M* = Li*, Na*, K*, Rb*, and Cs*)
does not make any change in the transport rate of 2a (20 uM)
which excludes any role of cation in an overall transport

process (Figure 8C). Finally, to evaluate the mechanism of ion

transport, the transport of C1™ using compound 2a (20 uM) was
monitored in the presence and absence of valinomycin (a selec-
tive K* transporter, 1 uM). There was a significant increase in
the transport rate of 2a in the presence of valinomycin
confirming the transport process occurring through an antiport
mechanism via CI"/NO3;~ exchange (Figure 8D). Such anion-
selective transport can be rationalized based on the binding of
anions with the terminal amino group of the transporter through
hydrogen bond interaction. However, the role of the neigh-

boring amido groups cannot be ruled out. Moreover, the hydro-
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phobic outer surface of the transporter helps the anion bound
complex to permeate efficiently through the lipid bilayer mem-

branes.

Conclusion

In conclusion, the intramolecular cyclization of linear di- and
tetrapeptides 8 and 9 led to the formation of the oxazolone ring
at the C-terminal giving pseudopeptides 1 and 2a, respectively.
The pseudotetrapeptide 2a showed a y-turn conformation that is
stabilized by a seven-membered intramolecular hydrogen bond-
ing. The pseudotetrapeptide 2a was found to facilitate selective
anion transport that occurs by an anion—anion antiport mecha-
nism. The absence of the y-turn conformation as well as ion
transport activity in linear tetrapeptide 9 — the precursor of 2a,
suggest that the oxazolone ring in 2a is a y-turn inducer as well

as responsive for selective anion transport activity.

Supporting Information

Supporting Information File 1

Experimental procedures, 'H and '3C NMR data, HRMS
and 2D NMR spectra.
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supplementary/1860-5397-15-234-S1.pdf]
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