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Abstract

The widespread use of genetically altered mouse models of experimental asthma has stimulated the
development of lung function techniques in vivo to characterize the functional results of genetic
manipulations. Here, we describe various classical and recent methods of measuring airway
responsiveness in vivo including both invasive methodologies in anesthetized, intubated mice
(repetitive/non-repetitive assessment of pulmonary resistance (R ) and dynamic compliance (Cg,);
measurement of low-frequency forced oscillations (LFOT)) and noninvasive technologies in
conscious animals (head-out body plethysmography; barometric whole-body plethysmography).
Outlined are the technical principles, validation and applications as well as the strengths and
weaknesses of each methodology. Reviewed is the current set of invasive and noninvasive methods
of measuring murine pulmonary function, with particular emphasis on practical considerations that
should be considered when applying them for phenotyping in the laboratory mouse.

Background

The widespread use of genetically altered mouse models
of experimental asthma has stimulated the development
of lung function techniques in vivo to characterize the
functional results of genetic manipulations. The ability to
determine in vivo the respiratory function in laboratory
mice is of great interest because of the prominent role
played by these animals in biomedical, pharmacological
and toxicological research. Mice are, at present, the pre-
ferred species used as an experimental model of allergic
airway disease. This is largely due to a number of advan-
tages including a well characterized genome and immune
system, short breeding periods, the availability of inbred
and transgenic strains, suitable genetic markers, the ability
to readily induce genetic modifications and pragmatically,

relatively low maintenance costs. The development of via-
ble mouse models has largely contributed to a better
understanding of the pathomechanisms underlying aller-
gic airway inflammation and airway hyperresponsiveness
(AHR) [1-3].

To fully explore the value of mouse models of experimen-
tal asthma, however, it is necessary to develop sensitive
physiological methodologies that allow the quantitative
assessment of airway responsiveness in intact organisms.
Measurement of pulmonary function in mice clearly
presents significant challenges due to the small size of
their airways. In recent years, considerable progress has
been made in developing valid and suitable measures of
mouse lung function. Accordingly, several different inva-
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sive and noninvasive lung function techniques have been
developed to characterize the phenotype of experimental
models of lung disease [4-7]. Table 1 lists some of the
principal advantages and limitations of invasive and non-
invasive lung function methods.

It is important to recognize that each approach represents
a compromise between accuracy, noninvasiveness, and
convenience. As a result, a correlation exists between the
invasiveness of a measurement technique and its preci-
sion [8]. The less invasive a measurement, the less likely it
is to produce consistent, reproducible and meaningful
data.

Invasive monitoring of lung function using parameters
such as pulmonary resistance (R;) or dynamic compliance
(Cayn) 1s the classical method for accurate and specific
determination of pulmonary mechanics. R is the sum of
airway (Raw) and tissue (Rti) resistance, which are fairly
comparable at normal breathing rate. Drawbacks of con-
ventional invasive methodologies particularly include the
surgical instrumentation of the trachea thus often exclud-
ing the practicality of repeated measurements. Modifica-
tions of the invasive approach involving orotracheal
intubation, however, now have enabled repetitive moni-
toring of pulmonary mechanics in anesthetized, sponta-
neously breathing mice [9,10]. This approach still
requires anesthesia as well as a good deal of technical skill
to achieve reproducible consistency.

Even more detailed measurements of pulmonary mechan-
ics can be obtained with the low-frequency forced oscilla-
tion technique (LFOT) [4,11]. In mice, LFOT is applied in
anesthetized, paralyzed, tracheostomized animals to
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measure the complex input impedance (Z) of the lungs.
The low-frequency impedance (Z) reflects the characteris-
tically different frequency dependencies of the airway and
tissue compartments. One of the major advantages of this
approach is the ability to differentiate between airway and
tissue mechanics in the lung.

To circumvent the significant technological challenges
associated with direct measurements of pulmonary
mechanics in mice, more convenient but less specific non-
invasive plethysmographic methods have been studied in
conscious animals [4,5,10,12,13].

This report attempts to review some of the invasive and
noninvasive technologies currently used for measuring
pulmonary function in intact mice with special attention
to practical considerations. This review reflects our own
practical experience with several different currently used
lung function methods in mice. In this context, we
describe the different technologies including their experi-
mental validations, practical applications, as well as the
feasibility and limitations of each methodology.

Invasive methods for studying pulmonary function in mice
Techniques used to directly measure pulmonary mechan-
ics in mice represent the "gold standard", but generally
require anesthesia, intubation and expertise in handling.

Determination of pulmonary resistance (R;) and dynamic
compliance (C,,,) in tracheostomized and mechanically
ventilated mice

The classical approach to determine lung function in mice
is the measurement of pulmonary resistance (R;) and
dynamic compliance (Cgy,) in response to non-specific

Table I: Principal advantages and drawbacks of invasive and noninvasive methods

Method Pros cons
Invasive « sensitive and specific analysis of pulmonary mechanics * technically demanding (instrumentation of the trachea,
technical equipment)
* based on physiological principles * need for anesthesia and tracheal instrumentation
* intact anatomical relationships in the lung * time-consuming
* bypassing of upper airway resistance, controlled ventilation, * no repetitive measurements in tracheostomized animals
and local administration of aerosols via the tracheal tube
« ease of broncho-alveolar lavage samplings « expertise in handling
* repetitive and long-term measurements in orotracheally
intubated mice
« applicable to the assessment of obstructive and restrictive®
lung disorders (*requires additional hard- and software)
noninvasive ¢ quick, easy-to-handle * no direct assessment of pulmonary mechanics

* repetitive and/or longitudinal measurements of airway
responsiveness in the same animal

 normal breathing pattern with no need for anesthesia or

tracheal instrumentation

* prone to artifacts (movements, temperature)

* contribution of upper airway resistance (changes of glottal
aperture, nasal passages)

* uncertainty about the exact magnitude and localization of
bronchoconstriction
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bronchoconstrictors. In 1988 Martin et al. demonstrated
the feasibility of R and Cg,, measurement in anesthe-
tized, tracheotomized and mechanically ventilated mice
[14]. To assess R and Cyy, determination of transpulmo-
nary pressure and flow are required. In mice the chest wall
has been shown to present little mechanical load com-
pared to the mechanical load of the lung [15], unless there
is some pathology of the chest wall. Thus direct measure-
ment of transpulmonary pressure is generally not manda-
tory [16]. Tidal flow is commonly derived from the
differentiation of the volume signal. R; and Cygy, can then
be calculated by fitting an equation of motion to the
measurements of pressure, flow and volume [4]. In this
equation, Py =V x R+ VI/Cyyp,, Py is transpulmonary
pressure (or in the mouse ~ transrespiratory pressure), V is
tidal airflow, R; is pulmonary resistance, V; is tidal vol-
ume, and Cyy,, is the dynamic pulmonary compliance. The
invasive measurement of R; and Cyy,, by body plethys-
mography normally requires surgical instrumentation of
the trachea in anesthetized animals. It is common to use
pentobarbital sodium (70-90 mg/kg) administered intra-
peritoneally as anesthetic because it normally provides an
adequate depth of anesthesia for at least 30 minutes.
Alternative anesthetic regimens in mice have been
described [6,7]. It is important not to disturb and agitate
the animal beforehand, as this may impact the quality of
the subsequent measurement. Useful reflexes to ensure
that an adequate depth of anesthesia has been attained
include loss of the righting reflex (lost during the onset of
anesthesia) and of the toe-pinch reflex (lost during
medium to deep anesthesia). If the animal attempts to
withdraw its limb, then it is not sufficiently anesthetized
and should be administered an additional dose (~10-
20% of the initial dose).

Determination of R; and Cgy,, not only provides the classi-
cal determination of airway responsiveness, but also pro-
vides a more detailed insight into pulmonary mechanics.
R, reflects both narrowing of the conducting airways and
parenchymal viscosity. In contrast Cg, is considered to
primarily reflect the elasticity of the lung parenchyma, but
is also influenced by surface tension, smooth muscle con-
traction and peripheral airway inhomogeneity. Numerous
methods for determining R and Cyy,, have been described
in anesthetized and instrumented mice [4,5,7]. One
option is to use a (mass-constant) body plethysmography
box with the tracheal cannula leading out of the plethys-
mograph [17,18]. When mechanical ventilation is indi-
cated, tracheostomy is usually performed for endotracheal
intubation of the deeply anesthetized animal. The surgi-
cally exposed trachea is viewed directly and the incision is
made in the upper third of the trachea to allow proper
insertion of the cannula and to avoid measuring artifacts.

http://respiratory-research.com/content/8/1/63

The tracheostomy tube can then be attached to a four-way
connector, where two ports of the connector are attached
to the inspiratory and expiratory sides of a ventilator and
the remaining tube to a pressure transducer that measures
tracheal pressure. Ventilation should then be set at a rate
comparable to normal breathing (around 150 breaths/
min, tidal volume ~ 8-10 ml/kg) with a positive end-
expiratory pressure (PEEP) of 2-5 cm H,O. It is important
to use PEEP in mice even with the chest closed, since func-
tional residual capacity (FRC) in conscious mice is nor-
mally maintained with active inspiratory muscle tone that
is minimal or eliminated in the anesthetized animal [16].
Lung volume changes must be assessed by calibrating the
plethysmographic pressure. To stabilize the volume signal
for thermal drift the body plethysmograph chamber can
be connected to a large bottle filled with copper gauze.

To assess airway responsiveness, cholinergic bronchocon-
strictive agents such as methacholine (MCh) are adminis-
tered to the animal at increasing doses either by aerosol
inhalation or systemically by intravenous administration
via the tail or jugular vein. Airway responsiveness is
assessed either as the change in R; compared to baseline
or as the peak response after challenge. Before each series
of challenge doses the lung should be briefly hyperin-
flated to standardize the volume history. Measurements
are made of the absolute values of the responses of Cyy,,
and R, and as a percentage of baseline, determined from
an initial vehicle challenge.

The key advantage of the invasive approach is the repro-
ducible and precise assessment of transient changes in
pulmonary mechanics in mice. The insertion of a tracheal
tube also avoids measurement of changes in the upper air-
ways, and provides the opportunity for taking broncho-
alveolar lavage (BAL) samples after lung function meas-
urements. Disadvantages of conventional invasive meas-
urements include surgical tracheostomy thus precluding
repeated measurements, the need for anesthesia, mechan-
ical ventilation and expertise in handling.

Repetitive assessment of R and C, , in orotracheally
intubated mice

As outlined above, the utility of invasive determination of
murine lung function is generally limited by several fac-
tors. Recent methodological advances, however, have
improved the ability to measure lung mechanics on
repeated occasions [19]. These modifications involving
direct laryngoscopy have now enabled repetitive determi-
nation of pulmonary mechanics (R; and Cyy,) in combi-
nation with local aerosol administration via an
orotracheal tube in intact animals [9,10,20].

With one of these approaches, intubation is done with a

standard 20G x 32 mm (1 1/4 inch) teflon cannula (e.g.
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Abbocath®T cannula, Abott, Ireland) in anesthetized
mice that are suspended by their upper incisors from a
rubber band and the midthorax held by an elastic band on
a 65° incline Plexiglas support to facilitate intubation. We
have made positive experience using anesthesia plus anal-
gesia with 20-30 mg/kg etomidate and 0.05 mg/kg fenta-
nyl given intraperitoneally (i.p) with minimal
supplementations as required or volatile anesthesia with
halothane 1.5 % plus propofol 70 mg/kg i.p. Paralysis is
not mandatory. A metal laryngoscope (length 12 cm plus
an additional 1.8 cm at an angle of 135°, with 0.3 cm) is
used as a tool to allow visualization of the tracheal open-
ing which is transilluminated below the vocal cords by a
halogen light source. The direct visualization of the tra-
chea allows gentle insertion of the cannula into the tra-
cheal opening [19,21]. Orotracheal intubation of the
anesthetized mouse takes about five minutes and has also
been successfully applied in mouse cardiac surgery [21].
Alternatively, a Seldinger technique has been described
using a 0.5 mm optical light fiber as an introducer over
which the cannula is slid down into the proximal trachea
[22]. The intubated, spontaneously breathing animal is
then placed in supine position in a thermostat-controlled
whole-body plethysmograph (Figure 1). The orotracheal
tube is directly attached to a pneumotachograph/differen-
tial pressure transducer unit to record tidal flow. To meas-
ure transpulmonary pressure (PTP), a water-filled
polyethylene (PE)-90 tubing is inserted into the esopha-
gus to the level of the midthorax and attached to a pres-
sure transducer. R; and Cy,,, are calculated over a complete
respiratory cycle with an integration method over flows,
volumes and pressure [10,23]. The resistance of the oro-
tracheal tube (0.63 cm H,O -s- ml!) is subtracted from R}
recordings.

This approach was validated in several groups of BALB/c
mice [10]. The results showed that dose-related increases
in Ry and Cgg, to inhaled cholinergic challenge with MCh
were reproducible over short and extended intervals with-
out causing significant cytological alterations in the BAL
fluid or relevant histological changes in the proximal tra-
chea and larynx regardless of the number of orotracheal
intubations.

A key advantage of this method which combines orotra-
cheal intubation via direct laryngoscopy and local admin-
istration of aerosols directly into the lung is the repetitive
assessment of classical measures of pulmonary mechanics
to defined inhalation challenges in intact individual mice.
Because the orotracheal cannula is tapered, a tight seal
develops as it is inserted into the proximal trachea. This
enables use of this method in spontaneously breathing as
well as in mechanically ventilated mice. Orotracheal intu-
bation further offers the opportunity to collect BAL sam-
ples in vivo on multiple occasions in the same animals

http://respiratory-research.com/content/8/1/63
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Diagram of the plethysmograph used for pulmonary
function testing of anesthetized, orotracheally intu-
bated mice. A thermostat-controlled water basin (37°C)
built in the plethysmograph chamber ensured a body temper-
ature of 34-35°C as measured by rectal thermometer.
Defined aerosol concentrations of methacholine, as meas-
ured by an aerosol photometer, were delivered into the air-
ways via the orotracheal tube. For calculation of pulmonary
resistance (R,), transpulmonary pressure (P;p) was recorded
via an esophageal tube, and tidal flow was determined by a
pneumotachograph attached directly to the orotracheal tube.
PT, pressure transducer. Taken from [10] with permission.

[24]. Limitations include the need for anesthesia, instru-
mentation of the trachea and expertise in handling.

Low-frequency forced oscillation technique

Another approach for invasive assessment of airway func-
tion in mice is the low-frequency forced oscillation tech-
nique (LFOT). The LFOT was derived from similar
techniques used in humans and larger animals and pro-
duces estimates of lung impedance (Z) which can be con-
sidered the most detailed measurement of pulmonary
mechanics currently available [4,8,11,25,26].

Different parts of the impedance frequency spectrum
reflect different parts of the respiratory system. Impedance
data can be further analyzed using the Constant Phase
Model which provides a suitable assessment of pulmo-
nary mechanics [27]. Fitting the Constant Phase Model to
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oscillatory data allows airway and tissue mechanical com-
ponents to be distinguished.

Until recently, little was known about lung impedance of
mice, particularly because of technical difficulties of meas-
uring lung impedance precisely. Lung impedance consists
of two parts. One part of impedance, resistance (R),
describes essentially the resistance of the conducting air-
ways (Raw) and tissue (Rti). The second part of imped-
ance, referred to as reactance (X), reflects respiratory
compliance (1/elastance) and characterizes the lung
parenchyma. The contribution of the inertance (I) of the
gas in the murine airways, however, is only significant at
frequencies > 20 Hz. The main advantage of this approach
for measuring lung function, compared to the classical
methods of assessing airway resistance and dynamic com-
pliance, is that the more sophisticated mathematical mod-
els may better represent the complexity of the intact lung.

Two different methods have been developed to assess
lung impedance in small animals. One technique uses a
small plastic wave tube that is placed into the trachea and
is attached to a loudspeaker [4,28].

The properly miniaturized wave tube has a precisely
known geometry and material constant. During the meas-
urement ventilation is paused and the setting is switched
from the ventilation to the measurement circuit. The
loudspeaker produces an oscillatory flow through the
tube and lung impedance is assessed from flow and pres-
sure measurements along the tube. From the pressure
spectra along the tube lung impedance can be assessed
[29]. This technique is particularly useful for the precise
measurement in very young mice, where other techniques
such as the piston pump oscillator may be critical [30].
The second method uses a computer-controlled piston
pump. This system not only allows for mechanical venti-
lation of the animal but also for precise frequency and
amplitude control of the applied oscillations. The con-
stant phase model is then fit to the data obtained from the
multiple frequencies simultaneously applied at the airway
opening, thereby enabling determination of the airway
and lung tissue impedance. This model involves three
independent variables: airway resistance (R) as a marker
of central airway resistance, tissue damping (G) is related
to tissue resistance and reflects the dissipative properties,
while tissue elastance (H) describes the elastic properties
of the lung tissue.

LFOT correlates well with classical measures of lung resist-
ance and has been successfully used to assess airway
responsiveness in mouse models of allergic airway disease
[4,15,25,28,31-33]. The computer-controlled ventilator
also allows the assessment of quasi-static compliance. As
with other invasive techniques, the animals need to be

http://respiratory-research.com/content/8/1/63

anesthetized, tracheally intubated and then connected to
the computer-controlled ventilator (e.g. set at a rate of 150
breaths per minute and a tidal volume of 10 ml/kg), with
application of 2-5 cm H,O PEEP. Mice can then be chal-
lenged with bronchoconstrictors by inhalation or via
intravenous routes. It should be considered that while
LFOT can be employed during apnea only, paralysis is not
mandatory in anesthetized mice.

The main advantage of this technique is the detailed anal-
ysis of airway function and particularly the clear distinc-
tions between central airways and more peripheral
changes. This approach, however, also shares similar dis-
advantages with other invasive techniques as shown in
Table 1. In addition, at least for assessing airway hyperre-
sponsiveness it is still unclear what additional value lung
impedance recordings provide over simpler measures of
pulmonary mechanics [34].

Noninvasive methods for studying pulmonary function in
mice

Noninvasive plethysmographic methods of monitoring
pulmonary function are preferred for long-term serial
study designs as well as for screening large numbers of
conscious mice. In many instances, a combination of
invasive and noninvasive techniques is required to fully
understand the physiologic significance of a respiratory
phenotype.

Barometric whole-body plethysmography

In barometric whole-body plethysmography mice are
placed in a closed chamber and the pressure fluctuations
that occur during the breathing cycle are recorded [35]. In
contrast to invasive measurements of airway function ani-
mals are neither anesthetized nor instrumented and are
relatively unrestrained. The major benefit of this noninva-
sive technique is that repetitive measurements can be
done in the same mouse. Using a pressure transducer the
pressure differences between the main chamber of the
plethysmograph where the animal is placed and a refer-
ence chamber are assessed (Figure 2).

From this pressure time curve several parameters can be
determined including breathing frequency, inspiratory
and expiratory time as well as the maximum box pressure
during inspiration and expiration. None of these variables
is specific nor sensitive enough for being a suitable marker
of airway responsiveness. From the box pressure signal
during inspiration and expiration, and the timing com-
parison of early and late expiration, a dimensionless
parameter called "enhanced pause" (Penh) has been cal-
culated. It is notable that we do not refer to the as yet non-
validated method of measuring Penh in freely moving
mice.
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Figure 2

Diagram of the barometric whole-body plethysmo-
graph (taken from [35] with permission). (A) Main chamber
containing the animal (B) connected to a pressure transducer
(C) which is also connected to the reference chamber (B).
(D) Pneumotachograph. Main inlet for aerosol. The bias air-
flow at 0.2 L/min was discontinued during aerosol challenges.

To monitor responsiveness mice are exposed to a neb-
ulized bronchoconstrictor such as MCh and changes in
Penh are recorded for ~2-5 minutes for each aerosol chal-
lenge. Usually the response is expressed as fold increase of
Penh for each MCh concentration compared with Penh
values after an initial buffer challenge with the aerosolized
vehicle.

Early studies in mice and other species showed a correla-
tion between changes in Penh following methacholine
challenge and lung function parameters determined by
invasive lung function measurements and the technique
has been widely used [18,36-39]. Based on this early work
and because of the convenient handling of the animals,
this method gained popularity in many research labs. An
increasing amount of observations, however, have now
cast doubt on the validity of Penh to reflect airway nar-
rowing. Several reports found discrepancies in the amount
of airway responsiveness when comparing Penh to con-
ventional parameters of pulmonary mechanics [40-42].
Further evaluation of Penh demonstrated that events
completely unrelated to lung mechanics such as humidi-
fication and warming of inspired gas, hyperoxia, and the
timing of ventilation, have a major effect on the measure-
ment [31,41]. These more careful and theoretical findings
have thus led to a justifiable scepticism for using Penh as
a reliable marker of airway obstruction [43-45].

Nevertheless, in principle and consistent with current cau-
tionary warnings, Penh may be useful for gross screening
of overall lung function in small animals [43]. Seen by
itself, however, Penh says nothing about airway respon-
siveness and researchers who use it should corroborate the
measurements with parallel, independent direct measure-
ments of pulmonary mechanics [5,7,44,45]. Pros and
cons of this method are summarized in Table 2.

http://respiratory-research.com/content/8/1/63

Head-out body plethysmography

Recent emphasis on the benefits of noninvasive technol-
ogy has renewed interest in analyzing expiratory tidal flow
patterns as a tool in the assessment of airway obstruction.
Although noninvasive measurement of murine respira-
tory function has virtually become synonymous with the
widely used barometric whole-body plethysmography
method [35], some other noninvasive methods have been
described [13,46-48].

The noninvasive measurement of midexpiratory flow
(EFs,) as measured by head-out body plethysmography
(Figure 3) was first described as an appropriate instrument
to measure airway responsiveness in conscious mice by
Alarie et al [48]. With this method, airway constriction
induces characteristic changes in the tidal flow pattern,
which are best revealed by a decrease in tidal midexpira-
tory flow (EFs,, [ml/s]) (Figure 4). The change in EF; is

nose r»pneumotachograph! pressure
transducer

—

adapter ring dental dam conus calibration screw screw  moveable
(neck collar) port  thread cap glass cylinder

neck collar |—b pneumotachograph/pressure

transducer

ring moveable
glass cylinder

Figure 3

Schematic drawing of the head-out body plethysmo-
graph. The figure illustrates the attachment of the neck col-
lar (made of dental dam with a central hole of 7-8 mm for a
20-25 g mouse) to the plethysmograph. The adapter is put in
the front opening of the plethysmograph and a viscoelastic
ring is slipped over the fixed rubber dam at the nose of the
plethysmograph thus fixing the collar. The conscious animal
is then placed in the glass plethysmograph and attached via
the conus to a ventilated head exposure chamber. A move-
able glass cylinder built in the screw cap enables atraumatic
positioning of the mouse. Volume calibration (1-1.5 ml air) of
the plethysmograph (front and back opening sealed) is done
before each measurement. Before data collection, mice are
allowed to acclimatize for at least about 10 minutes in the
body plethysmographs.
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Table 2: Pros and cons of noninvasive barometric whole-body
plethysmography

pros cons

* minimal restraint of the
animal

* enhanced pause as an empirically
derived value with unclear physiological
relevance

* influenced by a number of factors
unrelated to bronchoconstriction

* potential to overestimate or
underestimate the real degree of airway
responsiveness

* data need to be confirmed by invasive
methodology

typically linked with a reduction in tidal volume (VT),
breathing rate (f) and prolonged expiratory time (TE).
EFs5, can be determined with a glass head-out body
plethysmography system. Animals are gently placed in the
body plethysmographs while the head of each animal
protrudes through a neck collar into a ventilated head
exposure chamber. Aerosols can be delivered directly
through the head exposure chamber. Tidal flow measure-
ment is made with a calibrated pneumotachograph and a
differential pressure transducer attached to the top port of
each body chamber. The amplified and digitized flow sig-
nals are integrated with time to obtain tidal volume. From
these signals several standard respiratory parameters,
including tidal volume, breathing frequency, time of
inspiration and expiration, and EF;, can be derived from
software analysis.

Validation studies in mice have demonstrated that the
decline in EFs, to inhaled cholinergic and allergic chal-
lenge closely reflects the decreases in simultaneously
recorded pulmonary conductance (G, = 1/R;) and
dynamic compliance (Cgy,) [10]. The EF5, method has
been applied in several experimental situations, including
animal models of experimental asthma, post-pneumon-
ectomy, hyperoxia, and to study the effects of airborne

Table 3: Pros and cons of noninvasive tidal midexpiratory flow
measurement

pros cons

* underestimation of the
magnitude of airway
responsiveness as compared with
direct measures of pulmonary
mechanics

* restraint by neck collar

* based on physiological principles

* acceptable agreement with
simultaneous invasive
measurements of pulmonary
mechanics

* physical meaning enables
comparability of data from animal
to animal

http://respiratory-research.com/content/8/1/63
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Figure 4

Characteristic modifications to the normal breathing
pattern in conscious BALB/c mice. A: normal breathing
pattern of BALB/c mice breathing room air. B: characteristic
pattern of airway obstruction during aerosol challenge with
MCh, illustrating the decline in EF5,. A and B, top tracings:
pneumotachograph airflow signals. A and B, bottom tracings:
corresponding integrated VT signal. A horizontal line at zero-
flow separates inspiratory (Insp; upward; +) from expiratory
(Exp; downward; -) airflow. V, tidal flow. VT, tidal volume. Tl,
time of inspiration. TE, time of expiration. Figure taken from
[49] with permission.

toxicologic agents [31,39,48-54]. Advantages of this
approach are its noninvasiveness and its allowing simple,
rapid and repeatable measurements of several conscious
animals at a time. Moreover, EFs is based on physiologi-
cal principles and has a physical meaning [ml/s] that is
directly related to airway resistance, thus enabling quanti-
tative interpretation of airway changes between animals
[55]. In principle, head-out body plethysmography as
described by Alarie et al. also enables evaluation of the
sensory irritation potential of inhaled agents by recording
the prolongation of the postinspiratory pause in mice
[48,51].

Concerns include the uncertainty about the potential con-

tribution of upper airway resistance. To minimize effects
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of restraint stress on responses, monitoring of respiratory
function should not be started until animals and individ-
ual measurements have settled down to a stable level.
Because it has been shown that EF;;, may underestimate
the magnitude of bronchoconstriction [9,10] it is still
unclear how much this limits its use in detecting less pro-
nounced changes in airway hyperresponsiveness. Accord-
ingly, when such circumstances are present, EF;,
measurements should be confirmed by more direct assess-
ments of pulmonary resistance. Table 3 summarizes the
pros and cons of EFs;, measurements.

Conclusion

In this manuscript we have tried to provide a review of the
advantages and disadvantages of different methods of
assessing pulmonary function in mice. Although mice
may be far from perfect models of human lung disease,
the advantages of using mouse models has made them the
choice for many experimental studies, e.g. experimental
asthma. In these models measuring lung function and
particularly airway responsiveness is a major outcome
parameter. To this end it is critically important to have
suitable methods of phenotyping lung function. Although
many of the methodologies for measuring pulmonary
function have been developed, there are important limita-
tions and considerations such as expertise, technical diffi-
culty of the procedure, and costs, which should be
recognized when applying them in the mouse. Unfortu-
nately, at the present time, there is no gold standard for
measuring lung function in mice, since none of the avail-
able methods is optimal in all regards. Some investiga-

http://respiratory-research.com/content/8/1/63

tions require more detailed measurement of the
individual mechanical properties, and these studies nor-
mally require invasive determination of pulmonary
mechanics. The ability to make longitudinal measure-
ments in intact conscious mice, however, allows investiga-
tors to make use of more powerful statistics with smaller
numbers of animals. We have discussed the merits of sev-
eral of these approaches that may be useful for investiga-
tors requiring this approach. In particular in situations
where the measurements are applied to develop a poten-
tial therapeutic or clinical trial design, these should always
be confirmed by the more conservative invasive method-
ologies.
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Table 4:

Parameter Abbr. Description

lung resistance R, quantitatively assesses the level of obstruction in the lungs and comprises the resistance of the conducting
airways (R,,,) and tissue (R;)

lung conductance G_ reciprocal of lung resistance (1/R)

dynamic compliance Cayn primarily reflects the elasticity of the lung parenchyma, but is also affected by surface tension, smooth muscle
constriction, and peripheral airway inhomogeneities. In contrast, static compliance is measured at true
equilibrium, when resistances and compliances are not uniform throughout the lung, e.g. in the absence of any
motion.

methacholine MCh non-specific cholinergic bronchoconstrictor used to assess airway responsiveness

elastance E captures the elastic rigidity of the lungs.

reactance X reflects respiratory compliance (l/elastance) and characterizes the lung parenchyma

input impedance z expresses the combined effects of resistance, compliance and inertance as a function of frequency.

inertance | represents the inertive properties of the gases in the airways. The majority of | resides in the central airways
bypassed by the tracheal cannula. Inertance can be ignored in the mouse below 20 Hz.

tissue damping G is closely related to tissue resistance and reflects the dissipative properties of the lung tissues.

tissue elastance H reflects the elastic properties of the lung tissues.

enhanced pause Penh is a unitless, empirical measurement derived from box pressure signals during inspiration and expiration and
the timing comparison of early and late expiration and is used as a non-invasive measure of
bronchoconstriction.

tidal midexpiratory EF5, is defined as the tidal flow at the midpoint of expiratory tidal volume and is used as a non-invasive measure of

flow airway constriction.

positive end- PEEP is the amount of pressure above atmospheric pressure present in the airway at the end of the expiratory

expiratory pressure

cycle. PEEP improves gas exchange by preventing alveolar collapse, recruiting more lung units, and increasing
functional residual capacity.
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