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A B S T R A C T

The prevalence of multimorbidity has been increasing in recent years, posing a major burden for health care
delivery and service. Understanding its determinants and impact is proving to be a challenge yet it offers new
opportunities for research to go beyond the study of diseases in isolation. In this paper, we review how the field
of machine learning provides many tools for addressing research challenges in multimorbidity. We highlight
recent advances in promising methods such as matrix factorisation, deep learning, and topological data analysis
and how these can take multimorbidity research beyond cross-sectional, expert-driven or confirmatory ap-
proaches to gain a better understanding of evolving patterns of multimorbidity. We discuss the challenges and
opportunities of machine learning to identify likely causal links between previously poorly understood disease
associations while giving an estimate of the uncertainty on such associations. We finally summarise some of the
challenges for wider clinical adoption of machine learning research tools and propose some solutions.

1. Introduction

Advances in medicine have led to an increase in life expectancy and
reduction of major disabilities. These achievements have also con-
tributed to the rise in chronic conditions (that are more prevalent in
older ages) and their co-occurrence, a phenomenon known as multi-
morbidity, that is, the simultaneous presence of two or more chronic
conditions in the same individual) (The Academy of Medical Sciences,
2018). Indeed, research has shown that the proportional increase in
multimorbidity over the past few years is only partially explained by
population ageing, stressing its relevance to young and middle-aged
adults (Fig. 1).

Medical research commonly focuses on the study of diseases – and
their prevention and management – in isolation. Many such conven-
tional approaches are likely to remain relevant to narrower questions
relating to multimorbidity and testing of specific hypotheses, but are
unlikely to be sufficient to answering questions relating to clustering of
multiple diseases and their interactions as an important step towards
identification of strategies for their prevention and management (The
Academy of Medical Sciences, 2018).

Multimorbidity is characterised by a high degree of complexity
arising from the presence of multiple diseases, their biological and non-

biological determinants and consequences, and multiple interactions
over time. Although such complexities are not unique to multi-
morbidity, they have not been sufficiently leveraged or embraced in
prior research in the field. For instance, most previous studies of mul-
timorbidity have been cross-sectional, which renders them unsuitable
for the investigation and characterisation of how a disease progresses
over time, taking into account how the trajectory interacts with its
broader context (e.g., presence of other diseases, use of medications,
and, more broadly, a patient’s entire medical history). Studies have
often been based on small samples sizes or have focused on a small
subset of conditions, hampering their ability to mine the disease clus-
ters and phenotypes that are less frequent and, hence, poorly under-
stood (The Academy of Medical Sciences, 2018). Thus, the complex
temporal dynamics of multiple interactions inherent to multimorbidity
has highlighted the importance of employing alternative methods that
are better suited for tackling this complexity.

Outside multimorbidity research, one can draw parallels to the
growing number of studies that aim to discover and characterise the so
called “computable phenotypes” (Bennett et al., 2017), using various
modalities of medical data that go beyond diagnoses, and considering
additional information such as medications, interventions, physical
measurements, and laboratory results. Most such studies aim to help the
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emerging field of precision medicine with the optimal care pathway for
patients, based on their stratification into population subgroups that
they have derived. Although faced with the similar challenge of com-
plexity, the key difference to multimorbidity research is that such deep
phenotyping studies have been aiming to define more homogeneous
groups among patients with the same single diagnosis. Viewed from this
perspective, the study of multimorbidity could be diagnosis-wide phe-
notyping, when multiple diseases within the same individual are con-
sidered simultaneously, or as comprehensive multi-modal phenotyping,
when in addition to multiple diseases, information about the broader
context in which diseases occur is also taken into account. In other
words, complex multimorbidity modelling would ideally consider the
entire medical history of an individual into account in an effort to re-
veal hidden patterns within the population without necessarily starting
with a single condition.

Of course, the comprehensive discovery of such phenotypic classes
(including, but not limited to multimorbidity classes) and their trans-
lation into clinical care, will depend on a number of constraints and
choices – from study design and data availability, to the computational
paradigms (or models) employed by researchers. In recent years, rapid
developments in machine learning (ML), including deep learning (DL),
have led to outstanding results (and at times superhuman performance)
in previously difficult tasks, such as autonomous driving (El Sallab
et al., 2020), machine translation (Devlin et al., 2018), computer vision
(He et al., 2016), strategic decision making (Silver et al., 2017), and in
domains with vast search spaces (Chen et al., 2016). Despite their re-
latively recent adoption in healthcare, ML methods have started to
show promising results in drug discovery and development (Ekins et al.,
2019), large-scale gene expression profiling (Chen et al., 2016) histo-
pathological diagnosis (Litjens et al., 2016), brain MRI segmentation
(Akkus et al., 2017), and disease prediction using electronic health
records (EHR) (Ayala Solares et al., 2020; Hassaine et al., 2019; Li et al.,
2020) (readers are referred to (Rajkomar et al., 2019) for a more
comprehensive review of ML in medicine).

Given the importance of methodology in multimorbidity research,
and the latest developments in the field of machine learning, this paper
aims to review the state of relevant methodology and introduce some of
the latest ML developments that have the potential to further advance
this field. We will start in Section 2 by describing some of the key
methodologies that have been employed for the study of multi-
morbidity (e.g., those that are based on network analysis and matrix/

tensor factorisation). In section 4 we describe some of the methodolo-
gical challenges and suggest potential solutions for them. In section 4
we will introduce some of the recent advances in matrix and tensor
factorisation, deep learning, and topological data analysis. Despite their
high potential for impact meaningful contribution to in the field, these
latter methods have not yet been employed and evaluated for multi-
formbidity research. We will then conclude with summary of the ap-
proaches presented and suggestions for future research.

2. Current state of methodology

The field of multimorbidity research has already seen the use of a
wide range of techniques for mining multimorbidity patterns - from
network modelling, to probabilistic models and matrix (and tensor)
factorisation techniques. This section provides an overview of how
these methods have been applied in multimorbidity research.

2.1. Pairwise methods

Some of the earlier research using this method take an approach by
initially assessing diseases as pairs and then combining the results
across a wider range of diseases. In the pairwise class of techniques,
disease pairs that show co-occurrence frequencies that are higher than
their predicted individual frequencies in the population, are considered
to be “connected”. In one of the early works in this category, Hidalgo
et al. (2009) built a disease network in which the nodes and edges re-
presented diseases and their connectivity, respectively. To overcome
the challenge of missing temporal information in the resulting network,
the authors carried out correlation analyses to decide whether a node
property spreads along the links of the network and modelled how
diseases propagate over time through the network. In another landmark
study, Jensen at al. (Jensen et al., 2014) proposed a temporal disease
network in order to provide pairwise methods with the ability to ex-
plicitly deal with time. In this approach, each edge represented a
pairwise connectivity plus the time difference between the incidence of
diseases that the edge connects. In a similar approach, Giannoula et al.
(2018) used the pairwise connectivity plus the disease-timing data to
cluster the diseases using dynamic time warping. The use of pairwise
methods for mining multimorbidity patterns and phenotyping was not
limited to disease data alone. (Goh et al. (2007) built a bipartite graph
of genes and diseases, as a framework for the study of phenotype- and

Fig. 1. Annual crude and age/sex-standardised prevalence of number of comorbidities in incident cardiovascular disease patients (credits to Tran et al. (2018));
Number labels for each line refer to the number of comorbidities. (A) Crude prevalence. (B) Age/sex-standardised prevalence.
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disease-gene associations.
While pairwise methods are valuable in generating comorbidity

hypotheses for disease pairs, their inability to address conditional
probabilities of multiple diseases directly (Pearl, 2009) can make the
resulting multi-disease networks potentially misleading.

2.2. Probabilistic methods

Another class of models that have been employed for mining mul-
timorbidity patterns can be referred to as “probabilistic methods”.
Instead of simply looking at pairs of diseases, these methods provide a
wholistic view of the relationships among diseases. For instance,
(Strauss et al. (2014)) applied latent class growth modelling to a small
UK EHR dataset, to identify clusters of multimorbidity trajectories. The
authors clustered patients based on how many chronic conditions they
developed over time, into 4 different groups ranging from no recorded
chronic problems to increasing number of chronic morbidities. Al-
though this work provided important insights about the accumulating
number of diseases over time, it was not designed to assess the temporal
relationships of diseases with each other or other patient covariates,
which is a key aspect in the study of multimorbidity. Another approach
to modelling multimorbidity trajectories is the use of computationally
intensive Hidden Markov Models. Such models can learn progression of
an individual’s health trajectory while incorporating time as a con-
tinuous variable. In an early example, (Wang et al. (2020a)) applied
this method to patients with chronic obstructive pulmonary disease and
showed how different patient groups developed additional comorbid-
ities over time. The discovery of such distinct trajectories, as the au-
thors argued, could assist decision makers to better understand the
heterogeneity in disease progression and help researchers to potentially
identify more targeted interventions. Although focused on the pro-
gression of a single disease, the modelling approach could potentially
be applied for analysis of multiple disease trajectories over time.

2.3. Factorisation methods

Factorisation methods have seen a growing popularity in many
fields including the study of multimorbidity. They have been ex-
tensively used to extract latent factors in many domains including
image segmentation (Zhang et al., 2019) recommender systems (Abdi
et al., 2018) and finance (Sun et al., 2016). Factorisation assumes that
each patient’s medical record is the result of combining multiple “un-
derlying factors” that are common across the population; the variability
from one patient to another is due to the extent to which such factors
are expressed in each patient, at each time/age. A factor can be thought
of as a unique combination of concepts (such as diagnoses and medi-
cations) that can be found in EHR; for example, while one factor can
denote ophthalmological disorders, another might be hypertensive
diseases, and in patients with diabetes, both factors are likely to show a
high expression. Factorisation allows the reduction of the multiple in-
dividual diseases or other features into a smaller set of factors that can
explain the correlation between them.

In one of the simplest forms of these approaches, one starts by re-
presenting the data using a matrix D, where patients and diseases are
the two dimensions: D(i,j) = 1 if patient i had disease j at some point in
their life, and D(i,j) = 0 otherwise. The factorisation is the process of
decomposing D into two matrices A and B such that ≈ ×D A B. The
rank R, which is equal to the number of columns in A and the number of
rows in B, is generally set through search and optimisation or based on
empirical evidence. B is usually called the basis matrix, where each row
r represents the belonging of every disease to the r’th component (i.e.,
the r’th disease cluster, or disease-based phenotype). A, on the other
hand, is called the mixing matrix, it shows how a linear combination of
R clusters that can explain the diagnoses for each and every patient (see
Fig. 2.a for an illustration).

This family of methods have seen a growing popularity in the field,

as unlike previously described methods, they do not require much ex-
pert knowledge and hence have the potential to lead to novel dis-
coveries. In addition, they are capable of incorporating a large set of
information and different modalities at the same time. In one study, for
instance, Holden et al. (2011) and (Kirchberger et al. (2012) applied
matrix factorisation to extract multimorbidity patterns from self-re-
ported diagnoses. Schäfer et al. (2010) applied factor analysis to extract
multimorbidity patterns of elderly patients. Similar studies have also
been proposed on different datasets, such as the work of Roso-Llorach
et al. (2018) who concluded that clusters of diseases obtained from an
older patient cohort with multimorbidity using hierarchical cluster
analysis and exploratory factor analysis were not always similar. The
authors suggested factor analysis to be more useful for analysing mul-
timorbidity patterns whereas hierarchical cluster analysis (a more
conventional statistical approach that assigns diseases to different
clusters) could serve in generating new hypotheses for inter-cluster and
intra-cluster associations.

The aforementioned factorisation studies only considered diseases
when forming D, and hence cannot untangle the relationships that
other clinical concepts (such as medications, procedures, or lab tests)
could have on the natural history of the disease. In an attempt to al-
leviate such issues, Ho et al. proposed to add procedures as a third
dimension (Ho et al., 2020), and Wang et al. added medications (Wang
et al., 2020b); this process will change the problem from matrix fac-
torisation (i.e., with a 2D input) to tensor factorisation (i.e., with a 3D
input) – see Fig. 2.b for an illustration.

The methods described above produced factors that show disease-
disease associations, as well as associations among diseases and other
clinical concepts (such as medications and procedures), but as they did
not account for temporal evolution of these factors over time, their
clinical usability remains somewhat limited.

2.4. Temporal phenotyping

To account for the temporal aspects of multimorbidity, Zhou et al.
(2020) represented each patient’s EHR using a matrix, where the two
dimensions were diagnoses and time. One of the strengths of their ap-
proach is its ability to handle missing data, which is common in EHR.
The authors showed that the obtained phenotypes are useful in pre-
dicting the onset of new diseases, such as congestive heart failure or end
stage renal disease. However, the clinical relevance of the derived
phenotypes remains uncertain. In a different approach, Perros et al.
(2019) considered the chronological order of encounters (as opposed to
the time/age at which they actually happened). Their method has re-
cently been extended by Afshar et al. (2019) to jointly account for
dynamic and static information (such as demographics information).
The authors showed that this method produces clinically meaningful
phenotypes that yielded accurate heart failure prediction, but given
that the intervals between two consecutive encounters can contain
important medical information and vary greatly from patient to patient
(and even for the same patient), explicitly accounting for the time in
these methods – as opposed to order – can be a natural improvement.

In another study, (Zhao et al. (2019)) incorporated the time to the
onset of cardiovascular disease as a dimension in the tensor. The phe-
notypes obtained from this approach, while temporally profiled, are
specific to cardiovascular disease patients (see Fig. 3.b for an illustra-
tion of this method).

In another study that looked at all recorded primary and secondary
care diagnoses, matrix factorisation was used to temporally profile the
multimorbidity clusters (Hassaine et al., 2019). In this approach, each
patient’s EHR results in a matrix; instead of representing patients in a
third dimension, it concatenates the patient matrices along the time
dimension and, hence, stays in the matrix domain (Fig. 3.c). The au-
thors showed how the temporal characteristics of the disease clusters
that result from this model could help mine multimorbidity networks
and generate new hypotheses on how multimorbidity patterns may lead
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to one another over time. (Fig. 4)
As a complementary material to this section, Table 1 provides a non-

exhaustive list of recent multimorbidity studies that were not cited in
this section but have introduced new methods that fall within one of the
four categories we mentioned earlier.

3. Methodological challenges

There are a number of areas where further application of metho-
dological developments can be beneficial; this section aims to discuss a
few of these challenging areas and share ideas on how to potentially
tackle them.

3.1. Big, comprehensive, and longitudinal data

Characterising each disease’s dynamic relationship with its context
could be very informative, hence, the consideration of a more com-
prehensive range of concepts or modalities in studies of multimorbidity
should be relevant. However, the number of all possible relationships in
such data is of a super-exponential size with respect to the number of
concepts in the data, so the feasibility of handling such large data needs
to be considered. For instance, in ICD-10 coding scheme, there are
nearly 9800 diseases at the 4-character level; nearly 96 % of these
diseases have a prevalence of less than 1%. On the other hand, multi-
morbidity analysis is interested in co-occurrences; for less frequent dis-
eases, their co-occurrences are likely to be even rarer. Therefore, the

Fig. 2. Two common types of factorisation methods employed in the multimorbidity literature; (a) Matrix factorisation, and (b) Tensor factorisation. Note that, one
can change the concept that each dimension represents; in these illustrations, we show a very common way of choosing the dimensions.
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larger the sample size (or, N), the more likely for the data to include
more cases of occurrences and co-occurrence of many diseases (see
Fig. 5).

One of the ideal sources of such large-scale data are EHR, which
contain mixed-type multimodal sequences of concepts, that occur in
irregular intervals (see Fig. 6). When dealing with EHR data, one should
also consider practical challenges. One such challenge is the skewed

distribution of disease frequencies (incidence or prevalence). This
means that any modelling technique aiming to explain the occurrence
and cooccurrence of diseases in patients’ EHR, is likely to be biased
towards more frequent diseases. Methods such as DF-IPF (disease fre-
quency, inverse patient frequency) (Hassaine et al., 2019) have been
suggested which aim to alleviate this risk. Inspired by a commonly used
technique in information retrieval (when dealing with rare words), DF-

Fig. 3. Examples of temporal phenotyping. (a) using a tensor where time is mapped to a dimension, (b) using a tensor where the encounters are mapped to a
dimension (c) using concatenated matrix representations.
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Fig. 4. Network showing how male disease clusters (DC) may lead to one another over time. Edges are coloured with the colour of the nodes they originate from.
Credits to (Hassaine et al., 2019).

Table 1
A summary of the papers that introduced a new method for the study of multimorbidity patterns.

Study Method Context Data

Hernández et al. (2019) (Hernández et al., 2019) Pairwise correlations 6101 Irish adults aged 50+ years Self-reported conditions
Aguado et al. (2020) (Aguado et al., 2020) Pairwise correlations 500 K adults in Spain with Type 2 diabetes

mellitus.
EHR

Jin et al. (2018) (Jin et al., 2018) Pairwise correlations 21,435 adults from Jilin province, China Self-reported conditions
Khorrami et al. (2020) (Khorrami et al., 2020) Latent class analysis 10,069 adult Iranian people Self-reported conditions
Wang et al. (2019) (Wang et al., 2019) Principal Component Analysis 2713 adults in São Paulo, Brazil Self-reported conditions
Schiltzet al. (2017) (Schiltz et al., 2017) Classification/regression trees and

random forest
5771 people from US aged 65+ years Self-reported conditions linked to

Medicare claims
Haug et al. (2020) (Haug et al., 2020) Hierarchical clustering 5M patients in Austria EHR
Bueno et al. (2018) (Bueno et al., 2018) Hidden Markov Models Dutch patients with comorbidities related

to atherosclerosis
EHR

Violán et al. (2018) (Violán et al., 2018) K-means non-hierarchical cluster
analysis

400 patients aged 45−64 years from Spain EHR

Marengoni et al. (2019) (Marengoni et al., 2019) Fuzzy c-means cluster algorithm 2931 individuals in Sweden aged 60+
years

EHR

Medlock-Brown et al. (2019) (Madlock‐Brown and
Reynolds, 2019)

Pairwise correlations 574,172 patients with obesity in the US EHR
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IDF multiplies the frequency of each disease by the “inverse patient
frequency” factor, which assigns higher weights to rarer diseases and
can be particularly useful for studies that aim to discover new me-
chanisms of disease propagation (as opposed to description of absolute
risks or frequencies in populations).

Another practical aspect of using routine large-N data such as EHR
is the time window it covers for each individual. Many disease co-oc-
currences and interactions take years to develop whereas others have a
more immediate effect on each other. Therefore, in order to draw
meaningful conclusions such as disease A leads to disease B, long-
itudinal properties of the data are extremely important and one needs to
choose a dataset that has multiple years of follow up for a large number
of patients. Finally, it is important to note that most EHR datasets were
established for clinical, administrative or audit purposes and, as a
consequence, such datasets may have missing information, be subject to
ascertainment bias, or contain inaccurate or erroneous information,
hence the need to be adapted and ‘transformed’ for research purposes
(Nissen et al., 2019).

3.2. Incorporation of prior knowledge

Medicine often accumulates (and updates) its knowledge-base over
several centuries, thus, developing areas of expertise and specialist
knowedge. On the other hand, one of the greatest advantages of ML has
been its minimal reliance on domain expertise (e.g., automatic feature
engineering). In recent years, however, multiple studies have shown
how an optimal combination of domain knowledge and data-driven ML
can lead to superior results – better than each of them individually (K M

et al., 2020). For instance, one of the challenges in multimorbidity re-
search is the preparation of the input data (e.g., matrix or tensor),
which leads to questions such as, ‘Will diseases only be assigned to patients
through disease codes, or can certain medications and test results in the
record also indicate a diagnosis?”, “Which disease coding scheme should one
use (e.g., ICD-10, Read Code, SNOMED) and at what level of granularity?”,
“How should one consider the incidence, recurrence, or recovery and cure
from diseases?”, or “Should one denote and deal with chronic diseases
differently, compared to acute conditions?”.

These are just a few example questions that a researcher might face
at the start of their modelling work, which is likely be helped with some
level of the medical knowledge. This issue is highlighted, for example,
when making a distinction between chronic and acute conditions;
available annotations, such as the Chronic Condition Indicator
(Research, U.S.A.f.H), could be used. Given that multimorbidity studies
tend to focus on chronic conditions, filtering of the information ac-
cordingly might be appropriate.

Multimorbidity studies represent patients differently in many as-
pects, which greatly hampers their ability to compare their results.
Defining diseases may be as granular as 3 or 4 characters of ICD-10
codes or as broad as ICD-10 blocks, CALIBER codes (Kuan et al., 2019),
Clinical Classification codes (Elixhauser et al., 2014), Hierarchical
Condition Category (Abdi et al., 2018) or SNOMED-CT codes (Donnelly
and informatics, 2006). Patients may also be represented based on their
other clinical features, and standardised approaches could be useful.
Time has also dealt with in different ways as mentioned earlier (see
section 2.4), efforts are still needed to reach a unified way for modelling
the temporal aspect.

Fig. 5. Occurrence and co-occurrence of diseases as a function of the size of the dataset, error bars correspond to 95 % CI estimated using 10 bootstrapped samples.
Experiments conducted on CPRD (Herrett et al., 2015).

Fig. 6. Illustration of a patient’s multimodal health record, where events/encounters tend to happen at irregular intervals.
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Open-sourcing code related to multimorbidity research contributes
greatly toward making different methods comparable, it is encouraging
to see that many scholars in the field are making their code available (Li
et al., 2020; Beam et al., 2020; Choi et al., 2016a; Cai et al., 2020). The
use of standard data models such as the Observational Medical Out-
comes Partnership (OMOP) (Stang et al., 2010) is likely to result in a
wider clinical adoption than internal data models which are often based
on ad-hoc local decisions on how to store, load and represent the data.
Studies that compare different methods on the same dataset are also
important to tackle this issue, although first efforts have been made to
assess the predictive power of different methods (Ayala Solares et al.,
2020; Barbieri et al., 2020), further research is needed to compare
multimorbidity patterns and trajectories derived from different models.
Finally, further work is needed in order to establish the best practices
for ML related research in multimorbidity.

3.3. Evaluation of results

Multimorbidity research has usually been carried out as an un-
supervised learning task, in which conclusions are drawn from models
which are not labelled with the outcome of interest. This will make the
quantitative evaluation of the goodness of the results a big challenge; it
will rather rely on manual profiling and qualitative assessments, and,
hence, risks the influence of subjective options.

A potential solution for such quantitative assessments can emerge
from translating medical texts (in areas such as comorbidities) to
knowledge graphs and other formats that can be used to quantify the
correspondence between the mined relationships and well-established
medical knowledge. In an example work in this area, Beam et al.
compiled a set of disease pairs which are either known to be associated
or as having a causal relationship (Beam et al., 2020). In another study
(Hassaine et al., 2019), authors used these disease pairs to evaluate the
clinical meaningfulness of multimorbidity patterns that they derived
from the data. Furthermore, they extracted another set of comorbidity
pairs from a Danish EHR study as a clinically accepted reference
(Jensen et al. (2014)) to quantitively compare their results.

4. Emerging ML opportunities

Despite the diversity of methods that the field has employed so far,
there are many new developments in ML that have not yet been used for
the study of multimorbidity. These methods have the potential to im-
prove the state of methodology research in multimorbidity. In this
section, we provide an overview of such opportunities and share ideas
as to how the field can benefit from them.

4.1. Alternative factorisation techniques

Most factorisation methods used in the multimorbidity research are
related to Non-negative Matrix and Tensor Factorisation approaches
(i.e., NMF and NTF); both techniques take a non-negative input and
factorise them into non-negative matrices, for which the multiplication
should reconstruct the original input. The resulting patterns, due to
non-negativity, are pushed to be sparse and, therefore, easier to inter-
pret (Hassaine et al., 2019; Ho et al., 2020; Wang et al., 2020b; Afshar
et al., 2019; Zhao et al., 2019). However, we know that some diseases
are likely to have a suppression (negative) effect on each other; diseases
A and B can be said to have suppressive effect on each other if the
presence of disease A leads to lower risk (or prevention) of disease B,
perhaps because of shared risk factors and clinical management (e.g.
treatment of disease A has also some clinical benefit to disease B, or
assessment of disease A also identified disease B) (Lagu et al., 2008;
Magnan et al., 2015; Min et al., 2007). The non-negative factorisation
techniques, while effective in mining coincidence patterns (e.g., where
each disease belongs to disease clusters with a non-negative membership
score), are not able to mine such suppressive patterns (e.g., where each

disease belongs to disease clusters with either a negative or non-negative
membership score). In addition to disease clusters, a similar effect can
exist for their expressions, i.e., the expression of a particular disease
cluster in a patient, can reduce the risk of the expression of another
disease cluster. Independent Components Analysis (ICA) is an example
factorisation technique that not only can mine disease clusters that are
statistically independent (plus their corresponding expressions), but
also has the potential to learn both co-occurrence and suppression re-
lationships (Hyvärinen, 2013). It has been successfully applied in fields
such as magnetic resonance imaging (fMRI) to help model spatial ac-
tivation and deactivation maps (Beckmann and Smith, 2004), or as
feature extraction method on gene expression data (Mollaee and
Moattar, 2016).

Another important property that can be added to factorisation
methods is their probabilistic implementation. For instance, when
considering a disease cluster resulting from a non-probabilistic im-
plementation of ICA or NMF, one cannot say if a particular disease’s
score for a given cluster is significant (i.e., stronger than what can occur
by chance alone); this hampers the field’s ability to define an effective
null model or hypothesis, under which the numbers resulting from the
factorisation methods can be evaluated. There are multiple probabilistic
implementations of commonly used factorisation techniques (e.g., PCA,
ICA, NMF), and the field can benefit from these implementations in
order to estimate the statistical significance of the obtained associa-
tions. One such technique is the probabilistic ICA, s a common ap-
proach for exploratory analysis of MRI data where one can map the
coefficients to Z-stats and probabilities (Beckmann and Smith, 2005).

In addition to hypothesis testing, and going beyond dealing with
non-negative values, recent developments in deep learning (DL) have
led to improvements in matrix and tensor factorisation methods. Chen
et al. used an attention mechanism to combine several implementations
of NMF for breast cancer prognostication using gene expression and
clinical data (Chen et al., 2019). In another study, Schreiber et al.
proposed a multi-scale deep tensor factorisation for learning latent re-
presentations of the human epigenome that shows a promising perfor-
mance in both imputation and prediction tasks (Schreiber et al., 2019).
Many of such deep matrix and tensor factorisation techniques have
shown superior results when compared to their more traditional
counterparts so their use in multimorbidity research has the potential to
improve the results. In particular, when considering multimorbidity
analysis as a multi-modal phenotyping, which is expected to result in
temporal patterns (i.e., multi-modal temporal phenotyping) techniques
such as temporal regularised matrix factorization (Yu et al., 2016) can
provide a unique opportunity. In this technique, one can define a reg-
ulariser such as AR (autoregressive model) or GP (Gaussian process),
which will force the time courses resulting from the factorisation to
have certain properties that are aligned with our prior knowledge (e.g.,
that disease clusters emerge smoothly over time, rather than suddenly
going on and off).

4.2. Representation learning

Unlike traditional ML, where one needs to represent the inputs by a
number of expert-defined features (or markers), DL models have shown
tremendous success in learning useful representations from raw or
minimally processed data across layers of neural networks (hence, the
names “representation learning” (Bengio et al., 2013) and “distributed
representations” (Hinton, 1986)). They achieve these representations
by using many linear and nonlinear transformations of their inputs,
across multiple layers of neural networks. For example, one can use
such techniques to learn new representations for individual medical
concepts (such as diseases or medications (Choi et al., 2016b)) or a
sequence of medical concepts (e.g., patient2vec (Zhang et al., 2018),
cui2vec (Beam et al., 2020)). There have been multiple studies that
showed the usefulness of such new representations for medical tasks,
such as generating representations of biological sequences (Asgari and
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Mofrad, 2015), or extraction of insights about possible disease asso-
ciations (Gligorijevic et al., 2016).

The learned representations resulting from such models can help
map medical concepts such as diseases and medications to vector
spaces, in which algebraic operations (such as computing similarity)
can be carried out. For instance, word embeddings (i.e., learning vector
representations of words) has enabled the field of Natural Language
Processing (NLP) to learn the relationship among words given the
context, and use this learning to generate sentences, and perform
human-like (or at superhuman level) in various other NLP tasks; the
famous anecdote “king - male + female = queen” (Mikolov et al.,
2015) is one of the best examples to explain this concept. To illustrate
the potential of such methods, we show in Fig. 7.a the Uniform Mani-
fold Approximation and Projection (UMAP) (McInnes et al., 2018) of
Continuous Bag of Words (CBOW) embeddings (Mikolov et al., 2013)
extracted from the UK EHR (Herrett et al., 2015). Using such ap-
proaches, one can find disease clusters which may be known to medical
experts or could be new. Furthermore, the distance calculated in these
vector spaces, can be a useful approach to mine comorbid diseases from
the data (Beam et al., 2020). For instance, Fig. 7.b, shows cosine si-
milarities of some of the disease vectors that result from the same
CBOW analysis. Note that the cosine similarity between similar/related

diseases, such as type 1 and type 2 diabetes, is much higher when
compared to that of a priori known to be unrelated diseases such as
diabetes and pneumonia.

Another useful development in representation learning is transfer
learning: exploiting commonalities between different learning tasks to
transfer knowledge from one task to another (Tan et al., 2018). This can
be especially helpful in populations and fields where large-N data are
not easily accessible or when training requires big computational re-
sources. In such cases, one can learn the likes of disease embeddings in
an available large-N data and assess how diseases sequences lead to
certain other disease/outcomes in the small-N data. Furthermore,
transfer learning has the potential to unravel multimorbidity in rare
diseases which are often under-investigated due to the lack of data
availability and to generalise the learned multimorbidity patterns from
a large population dataset to smaller ones.

The field of deep representation learning has seen many other de-
velopments in recent years. For the rest of this section, we will focus on
the development of deep generative models (e.g., generative adversarial
networks, or GANs), and attention-based sequence models. When ap-
propriately trained on real-world data, GANs can generate realistic (but
simulated) data, which will have similar properties to the data they
were trained on. For instance, GANs have been successfully trained to

Fig. 7. (a) UMAP projections of ICD-10 disease embeddings extracted using CBOW algorithm from CPRD. Note that diseases within the same ICD-10 chapter are very
close in the embedding space. (b) Cosine similarity between vector embeddings of a selected group of diseases.
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generate realistic EHR data (Choi et al., 2020); such a development has
the potential to create dynamic contexts that over time will lead to the
appearance of certain disease clusters (i.e., multimorbidity trajectories).
Furthermore, they can alleviate the previous obstacles in data sharing
and patient privacy, which might have slowed down the research in this
field and hampered its ability to use large-N data. However, models
reported are still in their infancy and their suitability for modelling
multimorbidity at scale remains to be further explored.

Given the sequential nature of disease progression, multimorbidity
trajectories, and patients’ records, one can employ the latest develop-
ments in this field and the latest developments in deep sequence
models, neural networks with attention mechanism can be another
great area of exploration for the field. Attention mechanisms, for in-
stance, allow the network to take into account past events as it sees
relevant, without giving recent events a higher weight that is commonly
implemented in traditional sequence models, such as Recurrent Neural
Networks (RNN) and Long Short Term Memory (LSTM). This is ex-
tremely useful in medicine, where we know of many long-range de-
pendencies: an operation in young ages might prevent one from being
given a treatment in their older ages. For instance, an early example of
such models for EHR data (Li et al., 2020), showed how the prediction
of diseases in future can be accurately achieved through attention
mechanism; mining diseases that might co-occur in a patient’s life-long
medical history. Fig. 8 illustrates the attention mechanism in BEHRT by
showing the diseases for which the model paid a particular attention
(right column) when predicting the outcome of interest (left column).

4.3. Interpretable and causal ML with uncertainty estimation

While the use of ML has provided various fields, including medicine,
with great accuracy in various prediction tasks, trust in ML and its use
in action will require a higher degree of interpretability in some use
cases. Topological data analysis (TDA) is an area of mathematics that
has shown a great degree of synergy with ML. TDA provides mathe-
matical, statistical and algorithmic methods to infer, analyse and ex-
ploit the topological and geometric structures underlying the data. The
early use of TDA has led to a promising start; it has been used for un-
supervised clustering of sub-phenotypes of conditions, such as diabetes
and breast cancer (Li et al., 2015; Nicolau et al., 2011); it has also been
used for tracking resilience to infections in mice by mapping their
disease space (Torres et al., 2016). These studies show that TDA has the
potential to unravel further relationships between diseases and offer an
alternative representation of multimorbidity and contributes towards a
better understanding of its patterns. TDA methods can be applied on the
top of other ML techniques in order to produce visual outputs that can
greatly contribute towards the interpretability of the results and hence
build trust in the system.

As step further from interpretability is to investigate causal re-
lationships (or mechanisms); this is an important goal for ML models’
success in medicine, where clinical evidence has been informed by well-
conducted studies, such as randomised clinical trials. Causal inference
from observational data is often a controversial issue (Collins et al.,
2020) but many developments in the field have shown to be successful
in tackling some of its limitations, such as the causal Bayesian networks
which have been used to model disease progression mechanisms (Koch
et al., 2017) or predict disease complications (Yousefi et al., 2020).
Causal inference tools are also used to analyse the relationships

between the learned deep learning phenotypes and patient outcomes
and diseases of interest (Kale et al., 2015). Other interesting develop-
ments in the field include the introduction of causal effect variational
autoencoders which make use of proxy variables as well as latent
variable models for estimating individual and population causal effects
(Louizos et al., 2020), the use of matrix factorisation to infer con-
founders from noisy covariates (Kallus et al., 2018), the use of em-
beddings to correct for confounding in networks (Veitch et al., 2019)
and the analysis of networks of disease clusters to understand how
multimorbidity patterns may lead to one another (Hassaine et al.,
2019). All these developments can contribute towards distinguishing
between possible causal and non-causal disease associations.

Lastly, most DL models are not good at estimating uncertainty and
providing well-calibrated prediction; this property may lead to over-
confident predictions in case of a dataset shift or a distributional change
(Amodei et al., 2016). Therefore, finding a solution to assign a degree of
uncertainty to their predictions will be an important step in making
them usable in real-world clinical settings. In recent years, there has
been multiple solutions that introduced the use of dropout Bayesian
approximation (Gal and Ghahramani, 2020), Gaussian processes (Liu
et al., 2020; Snelson and Ghahramani) and other improvements; some
of these techniques have been used for uncertainty estimation in pre-
dicting trends in temporal disease networks using EHR data
(Gligorijevic et al., 2018).

5. Conclusions

The field of medical research is showing a growing interest in un-
derstanding diseases in their context; while most such studies have
defined the context as how diseases occur with respect to other dis-
eases, one can take this further and employ the full richness of modern
large-N data advanced ML techniques to define context as a multi-
modal concept. Particularly, given the growing prevalence of multi-
morbidity in various populations, the result of such research can help
the field improve our understanding of disease pathways and the range
of approaches for treating them.

In this article, we reviewed a broad range of techniques that have
been used, for both disease-only and multi-modal phenotyping; we
highlighted the importance of accounting for the temporal information
and showed how ML helps extract insights about the temporal evolution
of multimorbidity patterns. We also discussed how considering all
diseases at once instead of pairwise correlations yields more gen-
eralisable results and stressed that handling large quantities of data
from different modalities, including drugs and procedure, is important
for obtaining more informative phenotypes. We also shared ideas on
how ML or DL models can provide us a range of solutions to go beyond
cross-sectional, expert-driven and confirmatory approaches, and gain a
better understanding of evolving patterns of multimorbidity that is
hidden in EHR sequences.

Furthermore, we listed some of the latest trends in ML in both
matrix/tensor and deep representation learning that have the potential
to further unravel the complexities underlying multimorbidity; while
factorisation methods tend to be easier to interpret, deep learning ap-
proaches have shown an unprecedented level of improvement in per-
formance of medical predictive models. As explained in the paper, some
of such deep neural models can be employed to mine the relationship
between diseases and their broader context, e.g., using attention

Fig. 8. Illustration of the self-attention
in BEHRT. The left column shows the
outcome of interest, the right column
shows the corresponding associations
that “attracted” the attention of the
model, the darker the colour, the more
relevant was the disease in predicting
the outcome of interest.
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mechanism. Generative adversarial networks can be employed to gen-
erate realistic EHR datasets alleviating previous obstacles in data
sharing and patient privacy; a combination of Bayesian ML/DL and
causal ML/DL can help estimate uncertainties in models’ results and
help with mining truly causal relationships, which in the long run can
lead to a broader clinical adoption. Topological data analysis, on the
other hand, has been shown an effective way to extract the topological
and geometric structures underlying the data, which through its visual
interrogation tools, can enable a broader group of health researchers to
scrutinise the results and generate new hypotheses. Lastly, other tech-
niques such as probabilistic factorisation can help distinguish between
spurious and significant disease associations (i.e., co-occurrences that
can happen by chance alone vs those that are truly meaningful); adding
temporal regularisation to matrix factorisation techniques can provide a
way to take into account temporal autocorrelations in diseases’ re-
lationships with each other and their expression over time (and in
various ages). All these methodological advances have a high potential
to be used in mining computable phenotypes and multimorbidity pat-
terns, but have yet to be fully explored and applied in multimorbidity
research.

In addition to improving the state of data analytics, there are ad-
ditional challenges that the field is still facing: data preparation and
processing, incorporation of prior expert-knowledge, and mapping the
final results to clinical use and medical guidelines. The last point can
potentially be improved by the introduction of techniques that can
evaluate such models’ results by comparing against existing clinical
knowledge.
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