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Abstract: Myocardial infarction (MI) is one of the most prevalent cardiovascular diseases worldwide
and most patients suffer from MI without awareness. Therefore, early diagnosis and timely treatment
are crucial to guarantee the life safety of MI patients. Most wearable monitoring devices only provide
single-lead electrocardiography (ECG), which represents a major limitation for their applicability in
diagnosis of MI. Incorporating the derived vectorcardiography (VCG) techniques can help monitor
the three-dimensional electrical activities of human hearts. This study presents a patient-specific
reconstruction method based on long short-term memory (LSTM) network to exploit both intra- and
inter-lead correlations of ECG signals. MI-induced changes in the morphological and temporal wave
features are extracted from the derived VCG using spline approximation. After the feature extraction,
a classifier based on multilayer perceptron network is used for MI classification. Experiments on
PTB diagnostic database demonstrate that the proposed system achieved satisfactory performance to
differentiating MI patients from healthy subjects and to localizing the infarcted area.

Keywords: electrocardiography; vectorcardiography; myocardial infarction; long short-term memory;
spline; multilayer perceptron

1. Introduction

Myocardial infarction (MI) has long been recognized as the main cause of death worldwide.
According to the data from the World Health Organization (WHO) [1], cardiovascular diseases,
including MI, were estimated to account for 31% of deaths worldwide in 2017. In the United States,
about 110,000 Americans died of MI in 2015 and the estimated annual incidence of MI is 605,000
new attacks [2]. MI results from an occlusion of the coronary artery and insufficient blood supply
to the myocardium. It can be further classified into various subtypes depending on the localization
of infarcted area. In clinical setting, MI is diagnosed using 12-lead electrocardiography (ECG) [3] as
well as 3-lead vectorcardiography (VCG) [4]. ECG signals are recorded from different locations of
the body to capture the three-dimensional view of the human heart. The standard ECG has 12 leads,
including six limb leads (I, II, III, aVR, aVL, aVF) and six chest leads (V1 to V6). Figure 1 shows the
three-dimensional view of 12 standard leads on the xyz-coordinate axis system. According to electrode
positioning, the 12 ECG leads can be used to localize different types of MI, such as inferior leads
(II, III, aVF), septal leads (V1, V2), anterior leads (V3, V4), and lateral leads (I, aVL, V5, V6). A typical
waveform of the ECG beat consists of a P wave, a QRS-complex, and a T wave. These characteristic
waves correspond to the sequence of depolarization and repolarization of the atria and ventricles.
ECG signs suggestive of MI include ST-segment deviation or changes in the shapes of Q-wave and

Sensors 2020, 20, 7246; doi:10.3390/s20247246 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5211-3117
https://orcid.org/0000-0003-2661-8901
https://orcid.org/0000-0003-3466-8941
http://dx.doi.org/10.3390/s20247246
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/24/7246?type=check_update&version=2


Sensors 2020, 20, 7246 2 of 18

T-wave, using which physicians can localize damage to specific areas of the heart. However, it may be
noted that 12-lead ECG requires ten electrodes for recording and some of the leads contain redundant
information. Instead, VCG requires a minimum of four electrodes and it monitors cardiac electrical
activity in three orthogonal planes of the body [5]. Generally, Frank leads (Vx, Vy, Vz) scanned in
orthogonal xyz axes are used for VCG measurements. The main advantage of VCG is that it uses fewer
leads than 12-lead ECG for medical diagnostic applications. Moreover, different studies [6–8] have
demonstrated that VCG provides a higher sensitivity for the diagnosis of MI as well as ischemic heart
diseases. In this study, VCG signal is processed to extract clinically significant features that will allow
for MI classification.

Figure 1. The three-dimensional view of 12 ECG leads on the xyz-coordinate axis system.

MI is also known as a silent heart attack that usually occurs without clear symptoms.
Hence, early diagnosis and timely treatment are crucial to improve the recovery rate of MI patients.
In recent years, several computer-aided diagnostic methods have been proposed for automatic
MI detection and localization [9–18]. Most of these approaches extract the clinically significant
features from the ECG signal and then apply an appropriate classifier in the classification stage.
Various informative features have been extracted to represent the ECG beats, such as morphological
features [10] as well as frequency and wavelet-based features [11,12]. Moreover, some studies have
attempted to use directly measured or derived VCG to identify changes in the VCG morphology such
as the QRS and T-wave loops [16–18]. For classification, different machine learning algorithms
have been investigated, including k-nearest neighbors (KNN) [10,12], artificial neural network
(ANN) [11], recurrent neural network (RNN) [13] and convolutional neural network (CNN) [14,15].
Furthermore, several researchers [13–15] have proposed end-to-end approaches for MI detection and
localization. These methods obviate the need to extract features at the cost of higher computational
complexity. ECG abnormalities due to MI may be observed in the ST-segment deviation or changes in
the shapes of T-wave and Q-wave. Generally, it is a prerequisite to identify characteristic waves of
ECG beats before performing the feature extraction. Although various methods have been proposed
for ECG wave delineation [19–22], they still have some limitations for characterization of MI beats.
To address this constraint, we apply spline curve fitting [23,24] to the entire heartbeat to model all of the
characteristic waves and use fitted coefficients as features. The advantage of using the entire heartbeat
is that the QRS complexes and P and T waves can be included in the curve fitting so that poor quality
features resulting from delineation errors can be avoided. Moreover, the VCG signal is semiperiodic in
nature and has numerous clinically relevant turning points in each heartbeat. Such signals require
a higher-order polynomial to fit, leading to severe oscillations of the fitted curve which cause the
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overfitting problem [25]. By contrast, the spline’s flexibility in approximating curves with different
degrees of smoothness at different locations is ideal for representing the semiperiodic VCG signal.

Another problem which requires further investigation is to test the feasibility of single-lead ECG
in classifying different types of MI. Several wearable devices which use single-lead ECG to facilitate
continuous ambulatory monitoring have recently appeared on the market [26]. While these devices
make regular ECG recording possible, their practical applicability for cardiac diagnostics remain
limited. This is because physicians need checking ECG patterns to diagnose by correlating information
from two or more ECG leads. For example, abnormalities in chest leads (V1 to V4) are suggestive of a
problem in the posterior wall of the heart and no abnormalities will be detected by a single lead [27].
The ability to transform from single-lead ECG to 12-lead ECG enables the wider use of wearable
devices for clinical diagnostic applications. However, prior attempts to synthesize 12-lead ECG or
3-lead VCG from a single lead have not been successful. Most existing lead transformation approaches
require at least two synchronously acquired leads [28–40], hampering their applicability to the present
context. This has motivated our investigation into trying to synthesize the 3-lead VCG from single-lead
ECG signal. Since lead I is provided by most wearable devices, we propose a derived VCG system by
considering the lead I ECG signal as input and three Frank leads as output of the system.

A lot of emphases have been recently put on derived ECG systems due to the increasing demand
of personalized healthcare applications. The methods of lead synthesis can be categorized in terms
of reconstruction algorithms and lead configuration. The lead configuration for ECG synthesis
can be divided into two groups: use of subsets of 12-lead ECG [28–31] and use of Frank VCG
leads [32–40]. A common assumption in previous works was that the heart-torso electrical system is
linear and quasi-static, which allows for the use of linear transformation to derive the 3-lead VCG from
reduced-lead set of the 12-lead ECG. These can either be patient-specific or generic transformation
of which the former is learned using data from a single patient, while the latter requires data from a
group of patients. Previous studies have shown the possibility to derive the 12-lead ECG from the
three Frank XYZ leads through Dower transformation [34] and vice versa through the inverse Dower
transformation [35]. Similarly, Kors et al. [36] derived the transformation matrix using the regression
analysis method. In [37], Dawson et al. derived the linear affine transformation between 3-lead
VCG and 12-lead ECG, which achieved higher accuracy than Kors and inverse Dower transformation.
Another strategy can be seen in [31,32], where nonlinear methods such as ANN were used to synthesize
the 12-lead ECG and 3-lead VCG from leads I, II, and V2. It was found that nonlinear transformation
are appropriate for ECG data with diversity resulting from variation in individuals and measurement
positions. A weakness for majority of the reviewed methods is that they only exploited the inter-lead
correlation between spatially aligned samples of the lead signals. It is important to note that, in addition
to spatially correlated information in different leads, temporally correlated information can also be
found between different waves within a single lead. System design approaches that consider both
intra- and inter-lead correlation are expected to provide better solutions to the VCG synthesis problem.
This task can be accomplished by using RNN [41] as it can use the learning capabilities of ANN and
could further improve it by representing the spatio-temporal correlations between the lead signals.
In this work, we proposed a patient-specific transformation for VCG synthesis by applying a long
short-term memory (LSTM) network [42] with sliding window approach.

This study focuses on two issues: synthesis of 3-lead VCG and extraction of VCG features,
to develop an MI classifier that is suitable for wearable devices with only a single lead recording.
The first part of this study focuses on developing a method of VCG reconstruction from lead I ECG
using a LSTM network to exploit both intra- and inter-lead correlations of ECG signals. The second
part of this study develops a novel spline framework for parametrically representing the derived
Frank lead signals. After extracting features by the spline approximation, a classifier is used for the
classification of healthy and 11 types of MI.
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2. Methods

This study proposes a new method for automatic MI classification using the single-lead derived
VCG. As shown in Figure 2, the proposed method consists of four stages, i.e., preprocessing,
VCG synthesis, feature extraction, and classification. The raw ECG signals are preprocessed to
remove various kinds of noise associated with them. Next, a patient-specific reconstruction method
is used to synthesize the 3-lead VCG from lead I ECG. In the feature extraction stage, the clinically
significant features are extracted from three derived Frank leads that quantify the VCG abnormalities
due to MI. Later in the classification stage, the most likely ECG class has to be predicted from the
analysis of the feature data.

Figure 2. Block diagram of the proposed MI classification system.

2.1. Preprocessing

The raw ECG signal is typically contaminated by high-frequency noises caused by power-line
interference, electromyographic noises due to muscle activity, motion artifacts caused by patient’s
movements, and radio frequency noises from other equipments. Moreover, baseline wander is
low-frequency (0–0.5 Hz) interference in the ECG signal caused by respiration, body movement and
changes in electrode impedance. These noises degrade the quality of ECG signals and introduce
ambiguity in the MI classification. Hence, the preprocessing is generally performed to to remove
various types of noises associated with the input signal. The guidelines for the standardization
and interpretation of ECG, published by the American Heart Association [43], advise using a cutoff
frequency of 0.05 Hz for the high-pass filter and 150 Hz for the low-pass filter in adults. Thus, in this
study, the raw ECG signal is down-sampled to 500 Hz and then filtered using a band-pass filter with
a bandwidth between 0.5 and 150 Hz to remove noise and baseline wander. A similar approach has
been used in several other studies [16,44].

2.2. VCG Synthesis

Synthesis of 3-lead VCG from reduced-lead set of 12-lead ECG [32,35–40] has been
investigated in the past to satisfy the need for more wearing comfort and ambulatory situations.
Most methods [35–40] are based on linear transformation and the differences between them are in
coefficients of transformation matrices. In [32], Vozda et al. used nonlinear methods such as ANN
to synthesize the 3-lead VCG from quasi-orthogonal leads I, II, and V2. Most current approaches
to VCG synthesis focus on the inter-lead correlation, with less emphasis placed on the intra-lead
correlation. The ECG signals from leads I, Vx, Vy, and Vz are shown in Figure 3. It can be observed that,
in addition to spatially correlated information in different leads, temporally correlated information
can also be found between different waves within a single lead. The lead signals are narrow angle
projections of the same electric heart vector and hence correlations can be found among the signals of
various leads. Moreover, the cardiac cycle is quasi-periodic in nature and hence intra-correlations are
evident between different characteristic waves. A model which can simultaneously learn the intra-
and inter-lead correlations of ECG signals is expected to further improve the reconstruction accuracy.
This is because synthesizing a VCG lead essentially involves estimating morphology of the waveform
and timings of the characteristic waves. The morphology information holds significant similarity
within a lead and hence it can be obtained by exploiting the intra-lead correlation. Similarly, inter-lead
correlation can be used to derive the temporal information because timings of the characteristic waves
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are highly correlated between synchronously recorded leads. This can be achieved by using RNN [41]
based models as they can combine information from the present and previous inputs to decide the
present output. Recognizing this, we propose a patient-specific VCG synthesis method based on a
sliding-window approach together with LSTM network [42]. At the model estimation stage, the LSTM
parameters were estimated for each individual by considering the lead I ECG as input and Frank XYZ
leads as output of the model.

Figure 3. ECG waveforms of measured lead I and Frank XYZ leads.

The LSTM network is commonly used for time series modeling because it solves the gradient
vanishing problem by incorporating gate units and memory cells. In an LSTM, the error information
is preserved and is back-propagated through the layers which essentially helps the model to learn
over a large number of time-steps. The system architecture of the proposed VCG synthesizer is
shown in Figure 4. The system starts by applying a sliding window which spreads a segment of
currently available lead I data across the input neurons of LSTM. Then, we use an LSTM network to
reconstruct three Frank leads by applying a transformation based on the data series in each window.
Let xt denote the lead I ECG data at time t and let y(1)t , y(2)t , y(3)t denote the Frank X, Y, Z lead data,
respectively. For a sliding window of size L, suppose that the pair (st, yt) at time t contains the data
series st = {xt−L+1, xt−L+2, . . . , xt} and its corresponding target output yt = {y(1)t , y(2)t , y(3)t }. Given a
set of T training data pairs {(st, yt), t = 1, 2, . . . , T}, learning the derived VCG model consists of
finding a function F which minimizes the mean square error between the original signal yt and its
reconstructed signal ŷt = F(st). Proceeding in this way, we transform the VCG synthesis problem into
a supervised learning problem.
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Figure 4. System architecture of the proposed VCG synthesizer.

An LSTM model has the units composed of a memory cell, an input gate, an output gate and a
forget gate. The structure of the LSTM unit is shown in Figure 5. An LSTM unit computes a mapping
from the input xt to output yt by calculating the network unit activations using Equations (1) to (5)
iteratively from t = 1 to T.

ft = σ(W f xt + U f ht−1 + b f ) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc) (3)

ot = σ(Woxt + Uoht−1 + bo) (4)

yt = ht = ot ◦ tanh(ct) (5)

where W, U, and b denote the weight matrices and bias vectors which need to be learned during
training. The operator ◦ denotes the element-wise product and σ is the sigmoid function. ct is the
cell state, ht is the hidden state, and ft, it, ot represent the forget gate, input gate and output gate,
respectively. A series of experiments were performed to optimize the LSTM topology used for the
VCG synthesizer. The networks with 1, 2, and 3 hidden layers and different number of neurons
in hidden layers were tested. It was found that a network with two hidden layers and 30 neurons
in each hidden layer achieved the best accuracy of transformation. The LSTM was trained using
backpropagation through time (BPTT) algorithm [45], combined with the stochastic gradient descent
algorithm. Adam optimizer was used in the model fine-tuning phase to further determine the LSTM
parameters. Selected through iterative experiments, a time-step of 1, a mini-batch size of 128, and an
epoch number of 300 were used to minimize the mean square error of the VCG synthesizer.
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Figure 5. Structure of the LSTM unit.

2.3. Feature Extraction

In the feature extraction stage, Frank XYZ leads of the derived VCG were individually processed
in the following steps. First, we detect the R peak in each QRS complex using the Pan-Tompkins
algorithm [20] and split the signals into heartbeat segments between two neighboring R peaks. Since the
heartbeats may have different lengths, each heartbeat is period normalized to a fixed length of
400 samples via cubic spline interpolation. This choice was based on the observation that the average
heartbeat length is about 0.8 s, which corresponds to 400 samples for a sampling frequency of 500 Hz.
To make different lead signals comparable to each other, the min-max normalization was applied to
scale both the amplitude and time in the range of [0,1], as described in [46]. For the i-th heartbeat with
length Ni, let αi = Ni/400 denote the time scaling factor and let β

(1)
i , β

(2)
i , β

(3)
i denote the amplitude

scaling factor of Frank X, Y, Z lead, respectively. Once the heartbeats have been segmented and
normalized, spline curve fitting [23] is applied to the entire heartbeat to model all of the characteristic
waves and fitted coefficients are used as VCG representing features. Two advantages are provided.
First, by using the entire beat, the method not only obviates the need for ECG wave delineation but also
provides better representation of all regions of ECG beats for MI classification. Second, splines provide
an efficient and accurate representation of VCG signals with semiperiodic patterns. VCG signals are a
special type of semiperiodic signal which exhibits different degrees of smoothness in different intervals.
Such signals require a higher-order polynomial to fit, leading to severe oscillations of the fitted curve
which cause the overfitting problem [25]. To address this problem, we develop a framework for an
efficient representation of Frank lead signals using splines.

Splines are piecewise polynomial approximations of a signal defined by constraint points on
each piecewise segment known as knots. Since VCG signal has numerous clinically relevant turning
points, the spline represented as a linear combination of p-degree B-spline basis function has been
chosen as the approximation function. The knot vector {ζ j}m

0 = {ζ j, 0 ≤ j ≤ m} is a non-decreasing
sequence, where the first (p + 1) knots are all equal to 0.0025 and the last (p + 1) knots are all equal
to 1. The knots from ζp+1 to ζm−p−1 correspond to interior knots which are generated via the knot
averages [25] according to Equation (6).

ζk =
(τk+1 + τk+2 + · · ·+ τk+p)

p
, p + 1 ≤ k ≤ m− p− 1 (6)

where {τp+1, τp+2, . . . , τm} is an arithmetic sequence with the first term τp+1 = 0.0025 and the last
term τm = 1. The spline curve approximation can be expressed in the form of Equation (7).

u(t) =
n

∑
i=0

aiBi,p(t), (7)



Sensors 2020, 20, 7246 8 of 18

where n = m− p− 1 and ai represents the i-th B-spline coefficient. Bi,p(t) denotes the i-th p-degree
B-spline basis function which is computed recursively [25] using Equations (8) and (9).

Bi,0(t) =

{
1, ζi ≤ t ≤ ζi+1
0, otherwise

(8)

Bi,j(t) =
t− ζi

ζi+j − ζi
Bi,j−1(t) +

ζi+j+1 − t
ζi+j+1 − ζi

Bi+1,j−1(t) (9)

The vector of coefficients {ai, 0 ≤ i ≤ n} is calculated by using the least square spline
approximation. Generally, the B-spline approximation of VCG signal yielded better performance
with an increase in the value of n. Figure 6 shows the original heartbeat and the spline fitting curve
with n = 23 using one MI sample and one healthy sample. Experimentally, it was found that the use of
n = 15 gives a good trade-off between computational efficiency and the quality of fit. Each normalized
heartbeat is transformed into 16 features {a0, a1, . . . , a15}, and three VCG leads during the time of
a given heartbeat have 48 features. Together with the time scaling factor αi and amplitude scaling
factors {β(1)

i , β
(2)
i , β

(3)
i }, the complete heartbeat of 3-lead VCG is transformed as a 52-dimensional

feature vector.

Figure 6. Comparison between original heartbeats (blue) and fitting curves (red) for healthy and
MI subjects.

2.4. Classification

The system performance of MI classification depends critically on the underlying classifier,
which builds a model of how to best predict which class a test ECG beat belongs. In this study,
a classifier based on multilayer perceptron network (MLP) is used for classification into 12 classes of
ECG beats. The MLP is a class of feedforward ANN model and widely used in many fields, such as
object recognition, pattern classification, and biological data analysis. Among the reasons for this
popularity are its nonlinearity, parallelism, learning and generalization capabilities [47]. A MLP
is a network composed of parallel layers of neurons. In building MI classifiers, the input layer
receives spline-fitted features from the derived VCG, and the output layer provides the predicted
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ECG classes. The relations between the input and output layers are expressed through the weights
and biases of the hidden layer. All of the weights were initialized to small random numbers and then
subjected to incremental changes by the error backpropagation algorithm based on the cross-entropy
loss function [48]. To optimize the classifier design, we tested the MLP with 1, 2, and 3 hidden
layers and the number of neurons in each hidden layer was tuned by a grid search from 50 to 500
in steps of 25. Based on the results, we chose the MLP network with 52 input nodes (one for each
spline-fitted feature), 12 output nodes (one for each ECG class) and two hidden layers which had
300 and 275 nodes, respectively. To describe the intensity of neural firing, a neuron output was
generally obtained by applying an activation function to the weighted sum of its inputs. Due to
its ability to enable fast training, the rectified linear unit (ReLU) activation function [47] was used
for the hidden layer. However, the ReLU nonlinearity is not applicable for the activation of the
present output-layer neurons because their respective output values represent a categorical probability
distribution. With this consideration, we applied the softmax function for the output layer to generate
values which are in the unit interval and summed to one. Since MI diagnosis involves the simultaneous
discrimination of several ECG classes, we considered the one-hot encoding [49] scheme for solving the
categorical data classification problem. Specifically, the MLP outputs are represented as binary vectors,
each vector consists of 0 s in all cells with the exception of a single 1 in an entry corresponding to the
most likely class.

3. Evaluation Parameters

In this study, ECG records were taken from the Physikalisch-TechnischeBundesanstalt (PTB) [50]
diagnostic database. The PTB database consists of 549 ECG records from 290 subjects and each
record contains 12 ECG leads and 3 Frank VCG leads. From the database, a total of 26,080 heartbeats
from 52 healthy subjects and 143 MI patients were included in the analysis. Table 1 shows the
number of heartbeats for each type of MI and healthy subjects in this study. These data were
further divided into 12 classes of ECG beats: anterior (AMI), anterior-lateral (ALMI), anterior-septal
(ASMI), anterior-septal-lateral (ASLMI), inferior (IMI), inferior-lateral (ILMI), inferior-posterior (IPMI),
inferior-posterior-lateral (IPLMI), lateral (LMI), posterior (PMI), posterior-lateral (PLMI), and healthy
control (HC).

Table 1. Number of beats for different types of MI and healthy subjects in this study.

Class Number of Beats

Anterior (AMI) 2800
Anterior-Lateral (ALMI) 2534
Anterior-Septal (ASMI) 4114

Anterior-Septal-Lateral (ASLMI) 134
Inferior (IMI) 4569

Inferior-Lateral (ILMI) 3143
Inferior-Posterior (IPMI) 336

Inferior-Posterior-Lateral (IPLMI) 1063
Lateral (LMI) 159

Posterior (PMI) 137
Posterior-Lateral (PLMI) 288

Healthy Control (HC) 6803

Root-mean-square-error (RMSE) and correlation coefficient (CC) were chosen to test the accuracy
of derived VCG by the individual methods in relation to the measured VCG. RMSE measures the
similarity of two recordings and it is defined as Equation (10), where V is the original value of the
measured VCG, V̂ is the value of the derived VCG, and N is the number of samples. Instead, CC is a
statistic that measures the correlation between two recordings, which is defined in Equation (11).
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RMSE =

√√√√ 1
N

N

∑
i=1

(Vi − V̂i)2 (10)

CC =
∑N

i=1Vi · V̂i√
∑N

i=1V2
i ∑N

i=1V̂2
i

(11)

To test the feasibility of the proposed MI classifiers, the performance analysis is based on
the accuracy (ACC), sensitivity (SEN), and specificity (SPE) represented in the form of confusion
matrix [51]. These performance metrics are related to the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). The accuracy is the proportion
of correctly classified samples to the total number of samples, and it is defined as Equation (12).
Sensitivity, defined in Equation (13), measures the proportion of positives that are correctly identified.
Instead, specificity measures the proportion of negatives that are correctly identified and defined as
Equation (14).

ACC =
TP + TN

TP + FP + TN + FN
(12)

SEN =
TP

TP + FN
(13)

SPE =
TN

FP + TN
(14)

4. Results

Computer simulations were conducted to evaluate the validity of the proposed method in
differentiating 11 types of MI and healthy subjects. A preliminary experiment was first conducted to
examine the performance dependence of VCG synthesis on the sliding window size L employed in
constructing the LSTM models. In this experiment, ECG recordings from 20 HC subjects and 20 MI
patients were used. Table 2 presents the RMSE and CC between measured and derived Frank XYZ
leads. Based on the results, we empirically chose L = 150 in the sequel.

Table 2. RMSE and CC between measured and derived Frank XYZ leads.

Window Size Performance V̂x V̂y V̂z

50 CC 0.9939 0.9789 0.9890
RMSE 13.2215 16.9526 14.2964

100 CC 0.9956 0.9843 0.9933
RMSE 11.6335 14.6710 10.8368

150 CC 0.9963 0.9862 0.9940
RMSE 11.0374 14.0393 10.0226

200 CC 0.9962 0.9855 0.9939
RMSE 11.2348 14.3675 10.2153

We next compare the reconstruction performance of using MLP [32] and LSTM for learning
the derived VCG models. All the experiments were based on the evaluation of RMSE and CC and
experimental results were obtained by five-fold cross-validation. ECG recordings from 52 HC subjects
are denoted as dataset DS1, and ECG recordings from 143 MI patients are denoted as dataset DS2.
For comparison purposes, the MLP consists of one input layer with 150 neurons, one output layer with
three neurons, two hidden layers and 150 neurons per hidden layer. The results of VCG synthesis by
five-fold cross-validation are presented in Table 3. The results clearly demonstrate that the LSTM is
preferred to MLP for use in constructing the VCG synthesizer because the LSTM can exploit both intra-
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and inter-lead correlations of ECG signals. Further analysis indicates that the average CC of three
Frank leads using LSTM were 0.9943 and 0.9807 for dataset DS1 and DS2, respectively, suggesting
that the MI patient data was less accurately reconstructed than HC subjects. Visual inspection of
the reconstructed signals showed that the derived VCG signals were not significantly different from
the measured signals. A typical example for measured and derived Frank XYZ leads is depicted in
Figure 7.

Table 3. Five-fold cross validation and average CC and RMSE between measured and derived Frank
leads for the MLP and LSTM models.

Folds Performance Model
DS1 DS2

V̂x V̂y V̂z V̂x V̂y V̂z

Fold 1
CC MLP 0.9947 0.9732 0.9830 0.9815 0.9396 0.9716

LSTM 0.9977 0.9881 0.9941 0.9909 0.9680 0.9885

RMSE MLP 17.2434 21.4437 21.4656 24.4987 28.9382 28.5079
LSTM 11.4825 14.3947 10.2566 16.9540 20.7532 16.9667

Fold 2
CC MLP 0.9949 0.9745 0.9835 0.9784 0.9388 0.9718

LSTM 0.9981 0.9898 0.9963 0.9895 0.9686 0.9879

RMSE MLP 17.3081 20.4252 21.2486 24.3083 29.0842 28.3771
LSTM 11.1590 12.6073 9.7404 15.9387 20.9914 17.4463

Fold 3
CC MLP 0.9946 0.9719 0.9835 0.9773 0.9398 0.9720

LSTM 0.9979 0.9878 0.9959 0.9864 0.9659 0.9875

RMSE MLP 17.6641 20.9450 21.6205 24.2560 29.7097 28.2240
LSTM 11.1632 13.1473 10.0268 16.9523 21.6060 16.9857

Fold 4
CC MLP 0.9952 0.9746 0.9843 0.9798 0.9390 0.9716

LSTM 0.9986 0.9901 0.9966 0.9880 0.9695 0.9883

RMSE MLP 16.6822 20.1005 20.9287 24.3547 29.1888 28.4182
LSTM 10.0381 12.0188 9.3277 16.0953 20.4111 16.7269

Fold 5
CC MLP 0.9950 0.9758 0.9800 0.9784 0.9349 0.9692

LSTM 0.9985 0.9922 0.9929 0.9847 0.9618 0.9844

RMSE MLP 16.9020 20.3295 21.7694 25.3288 30.9232 29.7329
LSTM 10.0791 11.5885 9.6506 17.9217 22.7715 18.0954

Mean
CC MLP 0.9949 0.9740 0.9829 0.9791 0.9384 0.9712

LSTM 0.9982 0.9896 0.9952 0.9879 0.9668 0.9873

RMSE MLP 17.1600 20.6488 21.4066 24.5493 29.5688 28.6520
LSTM 10.7844 12.7513 9.8004 16.7724 21.3066 17.2442
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Figure 7. Comparison between measured (blue) and derived (red) Franks leads for healthy and
MI subjects.

Next, we assess the performance of MLP classifiers for the classification of normal and 11 MI
classes. One problem with the PTB database is the high imbalance between the number of heartbeats
belonging to each ECG class. Training an MLP classifier with unbalanced data usually leads to a certain
bias towards the majority class. Recognizing this, we applied the Synthetic Minority Over-sampling
Technique (SMOTE) [52] before starting the training process. Moreover, we used 5-fold cross-validation
technique to train and test the MLP classifiers. We began testing the MLP classifiers for the situation
where MI classes were identified solely by means of single-lead feature data. The classification
performance for each ECG class is summarized in Table 4. Simulation results indicated that using lead
I yielded an overall accuracy of 50.72%, suggesting that it cannot provide sufficient cues for reliable
classification. To elaborate further, we show in Table 5 the confusion matrix of all the 12 classes for
lead I ECG beats. It was found that the notably low classification accuracy can be attributed to the
high confusions made across anterior MI group (AMI, ALMI, ASMI, ASLMI) and inferior MI group
(IMI, ILMI, IPMI, IPLMI). For instance, 14.71% of the ECG beats notated in ASMI were classified
as representing IMI and 8.84% of the IMI beats were classified as being ASMI. Furthermore, results
indicate that derived Frank leads V̂y and V̂z are preferred to lead I ECG for use in constructing the MI
classifier. Notably, the use of lead V̂z yielded an overall accuracy of 82.09%, compared with 50.72%
for lead I and 81.45% for V̂y. The confusion matrices obtained using derived Frank lead V̂y and V̂z are
shown in Tables 6 and 7, respectively. Further analysis indicates that anterior and inferior MI groups
are dominant in the MI groups that benefited the most from exploitation of derived VCG leads. In case
of inferior MI group, the average sensitivity has increased from 56.9% in lead I to 87.1% in lead V̂y.
Similarly in case of anterior MI group, average sensitivity obtained for lead I and V̂z is 60.25% and
88.9%, respectively. We speculate that this might be attributed to the difference in closeness between
Frank leads and 12 ECG leads. Support for such a speculation can be found in [39], where the authors
showed that Frank lead Vy is most likely associated with inferior leads (II, III, aVF), and Frank lead Vz

is closest to subset of anteroseptal leads (V1, V2, V3). We can also see from Figure 1 that leads V1, V2

and V3 are located near the negative Z-axis in the sagittal plane. Similarly, it can be found that leads II,
III and aVF are oriented along the Y-axis.
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Table 4. Classification results of MLP classifier with single-lead signal.

Classes
I V̂x V̂y V̂z

ACC(%) SEN(%) SPE(%) ACC(%) SEN(%) SPE(%) ACC(%) SEN(%) SPE(%) ACC(%) SEN(%) SPE(%)

AMI 90.55 51.89 95.20 91.74 58.39 95.75 95.73 79.71 97.66 95.76 79.57 97.70

ALMI 91.33 51.10 95.66 93.01 57.54 96.83 96.68 87.10 97.72 97.58 88.60 98.54

ASMI 85.28 37.99 94.13 88.35 56.73 94.27 93.60 75.62 96.96 95.41 87.29 96.93

ASLMI 99.40 100.00 99.40 99.75 100.00 99.75 99.89 98.51 99.90 99.99 100.00 99.99

IMI 80.87 38.26 89.93 81.94 33.44 92.24 93.49 81.02 96.14 92.08 73.95 95.93

ILMI 86.19 54.82 90.49 87.81 61.47 91.42 95.82 84.16 97.41 94.69 83.33 96.25

IPMI 99.09 92.26 99.18 99.36 89.88 99.48 99.78 94.94 99.84 99.70 93.15 99.78

IPLMI 93.95 42.24 96.15 93.17 35.18 95.63 98.76 88.33 99.20 97.67 81.84 98.34

LMI 98.12 98.11 98.12 99.00 99.37 99.00 99.69 100.00 99.68 99.83 98.11 99.84

PMI 99.24 100.00 99.23 98.49 100.00 98.48 99.51 100.00 99.51 99.89 100.00 99.89

PLMI 96.92 90.63 97.00 97.25 87.85 97.36 99.65 98.96 99.65 99.76 96.88 99.79

HC 80.49 58.78 88.15 85.20 69.98 90.57 90.30 78.99 94.29 91.83 80.21 95.93

Table 5. Confusion matrix for MI classification using measured lead I ECG.

Notated
Predicted

Total ACC(%) SEN(%) SPE(%)
AMI ALMI ASMI ASLMI IMI ILMI IPMI IPLMI LMI PMI PLMI Norm

AMI 1453 255 150 0 335 228 21 97 44 2 39 176 2800 90.55 51.89 95.2

ALMI 154 1295 219 54 228 141 37 57 2 128 129 90 2534 91.33 51.1 95.66

ASMI 273 217 1563 25 605 555 41 101 129 10 125 470 4114 85.28 37.99 94.13

ASLMI 0 0 0 134 0 0 0 0 0 0 0 0 134 99.4 100 99.4

IMI 219 279 404 65 1748 372 72 144 51 35 177 1003 4569 80.87 38.26 89.93

ILMI 173 82 113 0 281 1723 26 204 122 3 5 411 3143 86.19 54.82 90.49

IPMI 5 8 3 0 9 0 310 0 0 0 0 1 336 99.09 92.26 99.18

IPLMI 31 68 77 1 84 155 2 449 53 1 19 123 1063 93.95 42.24 96.15

LMI 2 0 0 0 0 1 0 0 156 0 0 0 159 98.12 98.11 98.12

PMI 0 0 0 0 0 0 0 0 0 137 0 0 137 99.24 100 99.23

PLMI 0 1 1 0 7 3 0 5 0 0 261 10 288 96.92 90.63 97

HC 260 111 322 11 618 726 12 356 87 20 281 3999 6803 80.49 58.78 88.15

Table 6. Confusion matrix for MI classification using derived Frank Y lead.

Notated
Predicted

Total ACC(%) SEN(%) SPE(%)
AMI ALMI ASMI ASLMI IMI ILMI IPMI IPLMI LMI PMI PLMI Norm

AMI 2232 44 113 0 137 55 4 32 5 32 4 142 2800 95.73 79.71 97.66

ALMI 35 2207 49 15 87 25 3 9 0 34 1 69 2534 96.68 87.1 97.72

ASMI 161 78 3111 9 176 103 12 25 0 0 36 403 4114 93.6 75.62 96.96

ASLMI 0 1 0 132 0 0 0 0 0 0 1 0 134 99.89 98.51 99.9

IMI 95 116 157 2 3702 136 6 72 12 2 38 231 4569 93.49 81.02 96.14

ILMI 8 15 50 1 130 2645 4 21 26 0 3 240 3143 95.82 84.16 97.41

IPMI 3 0 4 0 5 1 319 0 0 0 0 4 336 99.78 94.94 99.84

IPLMI 26 7 5 0 43 27 2 939 2 1 0 11 1063 98.76 88.33 99.2

LMI 0 0 0 0 0 0 0 0 159 0 0 0 159 99.69 100 99.68

PMI 0 0 0 0 0 0 0 0 0 137 0 0 137 99.51 100 99.51

PLMI 0 1 0 0 0 2 0 0 0 0 285 0 288 99.65 98.96 99.65

HC 217 276 289 0 252 244 10 40 37 58 6 5374 6803 90.3 78.99 94.29

Next, we examine whether combining multiple derived Frank leads would improve the
classification performance. Table 8 shows the MLP classifier results for healthy and 11 types of
MI ECG beats obtained using various lead configurations. Our proposed method yielded the best
performance with an overall accuracy of 99.15%, sensitivity of 99.16% and specificity of 99.92% in
MI classification, by using 52 features obtained from the derived Frank XYZ leads. The results also
indicate that the ability of derived VCG to correctly identify the MI classes is almost identical to that of
measured VCG. Table 9 shows the confusion matrix of all classes obtained using MLP classifier on the
derived Frank XYZ leads. A comparison between Tables 5 and 9 indicates that the improvement can
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be seen in the following areas. First, the derived VCG can reduce a significant portion of confusions
across anterior and inferior MI groups. For instance, only 0.15% of ECG beats notated in ASMI were
misclassified as representing IMI, the corresponding value for lead I being 14.71%. Second, the derived
VCG significantly increased the sensitivity of healthy subjects to 99.68%, compared with 58.78% for
lead I, 78.99% for V̂y, and 80.21% for V̂z. The results clearly demonstrate that MI classification by
computational means is significantly improved when clinically significant features relating to the
derived VCG are taken into account.

Table 7. Confusion matrix for MI classification using derived Frank Z lead.

Notated
Predicted

Total ACC(%) SEN(%) SPE(%)
AMI ALMI ASMI ASLMI IMI ILMI IPMI IPLMI LMI PMI PLMI Norm

AMI 2228 74 272 1 76 24 8 14 5 6 9 83 2800 95.76 79.57 97.7

ALMI 45 2245 96 0 38 11 18 7 1 2 1 70 2534 97.58 88.6 98.54

ASMI 103 76 3591 2 105 87 4 13 0 0 0 133 4114 95.41 87.29 96.93

ASLMI 0 0 0 134 0 0 0 0 0 0 0 0 134 99.99 100 99.99

IMI 147 94 186 0 3379 254 18 80 14 3 28 366 4569 92.08 73.95 95.93

ILMI 18 17 35 0 202 2619 2 109 11 2 10 118 3143 94.69 83.33 96.25

IPMI 7 3 1 0 5 5 313 1 0 0 0 1 336 99.7 93.15 99.78

IPLMI 3 2 3 0 137 31 3 870 0 0 0 14 1063 97.67 81.84 98.34

LMI 0 0 0 0 2 0 0 1 156 0 0 0 159 99.83 98.11 99.84

PMI 0 0 0 0 0 0 0 0 0 137 0 0 137 99.89 100 99.89

PLMI 0 0 0 0 0 0 0 6 3 0 279 0 288 99.76 96.88 99.79

HC 212 77 82 0 311 448 3 184 8 15 6 5457 6803 91.83 80.21 95.93

Table 8. Classification results of MLP classifier with various lead configurations.

Leads ACC(%) SEN(%) SPE(%)

I 50.72 68.01 95.22
V̂x 57.54 70.82 95.90
V̂y 81.45 88.95 98.17
V̂z 82.09 88.58 98.24

V̂x + V̂y 93.36 95.52 99.34
V̂y + V̂z 96.99 97.74 99.70
V̂x + V̂z 83.68 89.80 98.42

V̂x + V̂y + V̂z 99.15 99.16 99.92
Vx + Vy + Vz 99.14 99.39 99.92

Table 9. Confusion matrix for MI classification using derived Frank XYZ leads.

Notated
Predicted

Total ACC(%) SEN(%) SPE(%)
AMI ALMI ASMI ASLMI IMI ILMI IPMI IPLMI LMI PMI PLMI Norm

AMI 2762 5 9 0 7 4 0 1 0 0 3 9 2800 99.72 98.64 99.85

ALMI 10 2504 6 0 2 2 2 0 1 0 0 7 2534 99.78 98.82 99.88

ASMI 9 12 4078 1 6 2 3 3 0 0 0 0 4114 99.73 99.12 99.85

ASLMI 0 0 0 134 0 0 0 0 0 0 0 0 134 100 100 100

IMI 5 3 4 0 4528 11 1 7 0 0 4 6 4569 99.7 99.1 99.83

ILMI 3 3 8 0 3 3119 1 1 1 0 1 3 3143 99.8 99.24 99.88

IPMI 3 0 0 0 3 0 329 0 0 0 0 1 336 99.94 97.92 99.97

IPLMI 2 3 3 0 6 8 0 1039 0 1 0 1 1063 99.85 97.74 99.94

LMI 0 0 0 0 0 0 0 0 159 0 0 0 159 99.99 100 99.99

PMI 0 0 0 0 0 0 0 0 0 137 0 0 137 99.99 100 99.99

PLMI 0 0 0 0 0 0 0 1 0 0 287 0 288 99.97 99.65 99.97

HC 2 2 4 0 10 1 1 1 0 1 0 6781 6803 99.81 99.68 99.86

5. Discussion

In recent years, numerous approaches were proposed to identify various types of MI from ECG
records. The numbers of ECG leads and MI classes are important factors correlated with diagnosis
efficiency, and should be noted when comparing their relative performances. Table 10 summarizes the
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studies employing different techniques in MI classification with the same PTB database. Arif et al. [10]
used 12 lead ECG signal and time domain features such as T-wave amplitude, Q-wave and ST-level
elevation, reporting overall accuracy of 98.8% on ten different MI classes with a KNN classifier.
Alternatively, Noorian et al. [11] used ANN classifier and wavelet coefficients as features extracted
from the derived VCG. Acharya et al. [12] have evaluated ten MI classes with 12 types of nonlinear
features based on wavelet transform. They obtained an accuracy of 98.74%, sensitivity of 99.55%,
and specificity of 99.16% by only using lead V3 ECG signal. Lui et al. [13] combined the power of CNN
and RNN, and achieved 92.4% sensitivity and 97.7% specificity for classification of MI as well as other
cardiovascular diseases. Baloglu et al. [14] proposed an end-to-end approach based on deep CNN and
reported an overall accuracy of 99.78% by using 12 lead ECG signal for classification into 11 types of
ECG beats. In [15], a multi-lead attention mechanism integrated with CNN and bidirectional gated
recurrent unit was applied for MI classification based on six classes of 12-lead ECG records, namely
HC, AMI, ALMI, ASMI, IMI, and ILMI. Towards addressing the challenges in identifying MIs using
wearable devices, our work, as well as some earlier studies [12,13], was focused on single-lead rather
than 12-lead exploration. Results reported in this paper are generally better than those of MI classifiers
in the literature, with its performance only slightly lower than that of [14]. However, our proposed
method applies single-lead derived VCG for classification into 12 types of ECG beats, in which ASLMI
with larger necrotic area is ignored in [14]. Overall, the proposed method obtained an accuracy of
99.15%, sensitivity of 99.16% and specificity of 99.92%. With this performance, our proposed model has
the potential to provide an early and accurate diagnosis of MI in wearable ECG monitoring devices.

Table 10. Comparison of this study with other studies using the PTB diagnostic database.

Ref Leads No. of Classes ACC(%) SEN(%) SPE(%)

Arif et al. (2012) [10] 12 leads 11 98.80% 98.67% 98.71%
Noorian et al. (2014) [11] 12 leads 10 95.35% 99.09% 94.23%
Acharya et al. (2016) [12] V3 11 98.74% 99.55% 99.16%
Lui nad Chow (2018) [13] I 4 95.25% 92.40% 97.70%
Baloglu et al. (2019) [14] 12 leads 11 99.78% 99.84% 99.98%

Fu et al. (2020) [15] 12 leads 6 99.11% 99.02% 99.10%
Proposed method I 12 99.15% 99.16% 99.92%

6. Conclusions

This paper proposed a new method for automatic MI classification using single-lead derived VCG.
We first emphasized the importance of exploiting both intra-lead and inter-lead correlation for learning
the derived VCG models. This task was accomplished by using a patient-specific transformation based
on LSTM network with sliding window approach. Performance is further enhanced by using B-spline
curve fitting to extract clinically significant features from the three derived Frank leads. After feature
extraction, a classifier based on MLP network is used for classification into 12 types of ECG beats.
Combined performance from 52 healthy subjects and 143 MI patients demonstrate the validity of the
proposed MI classification system with an accuracy of 99.15%, sensitivity of 99.16% and specificity
of 99.92%.
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