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Functional magnetic resonance imaging (fMRI) is one of the best techniques for precise

localization of abnormal brain activity non-invasively. Machine-learning approaches have

been widely used in neuroimaging studies; however, few studies have investigated

the single-voxel modeling of fMRI data under cognitive tasks. We proposed a hybrid

one-dimensional (1D) convolutional neural network (1D-CNN) based on the temporal

dynamics of single-voxel fMRI time-series and successfully differentiated two continuous

task states, namely, self-initiated (SI) and visually guided (VG) motor tasks. First, 25

activation peaks were identified from the contrast maps of SI and VG tasks in a

blocked design. Then, the fMRI time-series of each peak voxel was transformed into

a temporal-frequency domain by using continuous wavelet transform across a broader

frequency range (0.003–0.313Hz, with a step of 0.01Hz). The transformed time-series

was inputted into a 1D-CNN model for the binary classification of SI and VG continuous

tasks. Compared with the univariate analysis, e.g., amplitude of low-frequency fluctuation

(ALFF) at each frequency band, including, wavelet-ALFF, the 1D-CNN model highly

outperformed wavelet-ALFF, with more efficient decoding models [46% of 800 models

showing area under the curve (AUC) > 0.61] and higher decoding accuracies (94% of

the efficient models), especially on the high-frequency bands (>0.1Hz). Moreover, our

results also demonstrated the advantages of wavelet decompositions over the original

fMRI series by showing higher decoding performance on all peak voxels. Overall, this

study suggests a great potential of single-voxel analysis using 1D-CNN and wavelet

transformation of fMRI series with continuous, naturalistic, steady-state task design or

resting-state design. It opens new avenues to precise localization of abnormal brain

activity and fMRI-guided precision brain stimulation therapy.
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INTRODUCTION

Importance of Location Diagnosis by
Functional Magnetic Resonance Imaging
Blood-oxygen-level-dependent (BOLD) fMRI has been widely
used to investigate brain activity under cognitive tasks or resting
state, which offers great opportunities to develop an objective
assessment for the functional abnormalities of neurological
disorders (Uddin et al., 2017; Lunkova et al., 2021). From
a clinical perspective, brain imaging diagnosis includes at
least three purposes, namely, qualitative diagnosis (i.e., the
nature or what specific disease is, e.g., Parkinson’s disease),
location diagnosis (i.e., where precisely the abnormality is), and
quantitative diagnosis (i.e., the extent of the abnormality). As
one of the main applicable scenarios, fMRI technologies in
combination with various analytic tools have been used in the
field of location diagnosis, for instance, to localize the abnormal
brain activity using functional task localizers (Kohls et al., 2014;
Li et al., 2015, 2020) or to detect the difference of intrinsic or
spontaneous brain activity at the voxel level using amplitude of
low-frequency fluctuation (ALFF) (Pan et al., 2017; Gong et al.,
2020).

fMRI Analysis at Single Voxel Level for
Location Diagnosis
For the typical task fMRI design, task stimuli were repeatedly
presented to the participants in a manner of a blocked design
or event-related design. To detect the activation pattern under
a specific task condition, the general linear model (GLM) is used
for modeling the block- or event-evoked activity of each single
voxel. For resting-state fMRI (RS-fMRI), there are two categories
of analytic methods, namely, one for functional integration,
which measures the interaction or functional connectivity
between brain regions, and the other for functional segregation,
which measures the local activity, e.g., ALFF (Zang et al., 2007) of
the time-series of each single voxel. Both the GLM and the ALFF
analyze the fMRI data in a whole-brain voxel-wise manner, and
hence, the results could be used for the subsequent coordinate-
or voxel-based meta-analysis. For example, coordinate-based
meta-analyses have found decreased task activation in the
hippocampus (Li et al., 2015) and decreased RS-fMRIALFF in the
posterior cingulate cortex (Pan et al., 2017) in patients with mild
cognitive impairment (MCI). Therefore, the “whole-brain voxel-
wise” fMRI analytic methods could help precisely localizing the
abnormal brain activity non-invasively.

Limitations for Existing fMRI Design and
Analysis
Both the repeated presented block and event-related fMRI
designs are based on strong assumptions of GLM, e.g., additive
and time invariant (Dale and Buckner, 1997). Moreover, many
cognitive tasks do not meet the two strong hypotheses, e.g.,
naturalistic viewing or listening and continuously designed
sustained attention task. Many researchers are using naturalistic
experimental design (Hu et al., 2017; Mandelkow et al., 2017; Ren
et al., 2018; Wen et al., 2018) or steady-state design (Chai et al.,
2019) for the fMRI study. The primary difference between the

newly developed naturalistic or steady-state fMRI designs and
conventional block or even-related design is actually the data
analysis. The analytic methods for naturalistic or steady-state
fMRI design are very similar with those for RS-fMRI design,
i.e., taking the whole time-series as a “continuous state” and
then comparing between different states or different groups
(e.g., patients vs. healthy controls). In this article, we would
use “continuous-state” design to represent both naturalistic and
steady-state design. As aforementioned, ALFF is one of the most
popular methods for single-voxel analysis in RS-fMRI studies.
Moreover, a few studies have applied ALFF to the continuous-
state design (Dong et al., 2012; Zhang et al., 2021).

Machine Learning at Single Voxel Level for
fMRI
Currently, machine learning on multiple voxels, e.g., multivoxel
pattern analysis (MVPA) (Haxby et al., 2001; Norman et al.,
2006), or even on the voxels of the whole brain (Zhang et al.,
2020a) has been widely used in fMRI studies. Most of these
studies have reported more than 90% accuracy for either task
fMRI decoding (Wang X. et al., 2020) or RS-fMRI classification
of brain disorders (Hojjati et al., 2017; Zhang et al., 2017). Some
articles reported the contribution of each voxel to the total
diagnostic (Wang et al., 2007; Coutanche et al., 2011; Zhou et al.,
2018). Moreover, yet this voxel-level contribution is only valid for
a specific combination of multivoxels or even the whole region
of interest, which is very different from the discriminative or
diagnostic performance of a single voxel. In addition, MVPA
utilizes the spatial coherence or spatial activation patterns to
improve the prediction accuracy but ignores the temporal
dynamics of each single voxel. In contrast, machine learning
for single time-series has been used in the electrophysiological
studies for classification of different sleep stages (Mousavi et al.,
2019; Zhang et al., 2020b) and locating the most abnormal
channel of epilepsy (Lu et al., 2018). However, to the best of
our knowledge, no study has performed machine learning on
the fMRI time-series of a single voxel. With the aid of machine
learning, the performance can be highly improved, for instance,
much better than using the conventional univariate analysis
like performing t-test on activation values and hence, would be
helpful for location diagnosis, i.e., a better precise localization of
the abnormal activity.

The Motivation of This Study
This study used convolutional neural network (CNN) at the
single-voxel level to differentiate two “continuous-state” task
design (sometimes named naturalistic task design) fMRI sessions.
First, the time-series of a single voxel was extracted from the
center of brain regions that showed robust activations in the
population, which could be taken as “ground truth.” Then,
instead of applying convolutional operations directly on these
time-series, we used wavelet transformations to project brain
activity into multiple frequency bands, which provides a time-
frequency decomposition of brain activity across a continuous
range of scales. Furthermore, we trained a one-dimensional (1D)-
CNN classifier on the transformed time-series at each scale
and evaluated their predictability among different brain states.
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FIGURE 1 | Task functional magnetic resonance imaging (fMRI) designs. (A) fMRI-blocked design for finger movement task. Each functional run includes three

visual-guided (VG) task blocks, and three self-initiated (SI) task blocks, plus six rest blocks. In VG block, a visual cue of “finger” image was shown on the screen for

every 2 s, indicating the time for the participant to press the button. In SI block, a clock sign was shown on the screen during the entire block. (B) fMRI

continuous-state design. Participants performed each of the two tasks (i.e., SI and VG) for the entire functional run, each lasting for 8min. The order of tasks is

balanced between participants.

Compared with the simple t-test of ALFF and 1D-CNN on
original fMRI signals, the proposed method demonstrated higher
detection rates and higher classification accuracies on all listed
regions and generalized well across multiple subjects. Our results
also indicated that not only the conventional frequency band
of 0.01–0.08Hz but also the higher frequency bands (>0.1Hz)
captured discriminative features of different brain states.

MATERIALS AND METHODS

Participants
A total of 42 healthy participants (age: 24 ± 5.01 years, range
19–48; 22 female; all right-handed) were recruited in the study.
They had no history of head trauma, substance abuse, or
neuropsychiatric disorder. The study was approved by the Ethics
Committee of the Center for Cognition and Brain Disorders at
Hangzhou Normal University, and written informed consent was
signed by all subjects before the experiment.

Image Acquisition
The MRI data were acquired on a GE 3T scanner (MR-750, GE
Systems, Milwaukee, WI) at the Center for Cognition and Brain
Disorders of Hangzhou Normal University. The fMRI scanning
sessions included an 8min block-design task fMRI session and
two 8min continuous-state design task fMRI sessions with these
parameters: slice number = 43, repetition time (TR)= 2,000ms,
TE = 30ms, matrix = 64 × 64, voxel size = 3.44 × 3.44 ×

3.2mm, flip angle (FA) = 90◦, field of view (FOV) = 220 ×

220 mm.

Finger Tapping Task: Blocked Design
The 8min blocked design finger tapping task contained visual-
guided (VG) blocks (40 s × 3), self-initiated blocks (40 s × 3),

and rest blocks (40 s × 6) (Wang J. et al., 2020). The VG task
presented a visual cue of “finger” image for every 2 s followed by
a fixation cross. The participant need to tap his/her finger once
the finger image was presented. The SI task blocks presented a
figure of clock during the entire task block. The participants need
to perform finger tapping with a self-paced 2 s (Figure 1A).

Finger Tapping Task: Continuous State
Design
The continuous-state design is a continuous performing task. It
is also named naturalistic design (Hu et al., 2017; Ren et al., 2018)
or steady-state design (Chai et al., 2019) in light of the context.
The finger-tapping task is the same as the blocked design, except
that each VG and SI state lasted for 8min in a separate run. Two
orders of states are balanced between participants (Figure 1B).

Preprocessing of fMRI Data
All functional MRI images were analyzed by using the
toolbox named Data Processing Assistant for Resting-State fMRI
(DPARSF) (Chao-Gan and Yu-Feng, 2010), which is based on
Statistical Parametric Mapping (SPM) (http://www.fil.ion.ucl.ac.
uk/spm). Specifically, we discarded the first several volumes
(i.e., three volumes for the blocked design and five volumes
for the continuous-state design, accounting for 6 and 10 s,
respectively) in each functional run, due to signal stabilization.
The preprocessing included the following: (1) slice timing;
(2) realignment; (3) regressing out nuisance signals including
24 head motion parameters and signals of white matter and
cerebrospinal fluid; (4) spatial normalization to the standard
Montreal Neurological Institute (MNI) template (resampled into
3 × 3 × 3mm); and (5) spatial smoothing with an isotropic
Gaussian kernel of 6mm full-width-at-half-maximum (FWHM)
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FIGURE 2 | Pipeline of hybrid 1D convolutional neural network (1D-CNN) prediction model. We first extracted the blood-oxygen-level-dependent (BOLD) signal from a

specified target voxel (e.g., Occiptial_Mid_L: left middle occipital gyrus) for each subject under each condition (i.e., SI or VG). We then applied continuous wavelet

transforms (CWTs) to the time-series to generate time-frequency decomposition across continuous scales. The transformed time-series of each frequency band were

then imported to the 1D-CNN model to predict the continuous state.

in block-design paradigmwhile with an isotropic Gaussian kernel
of 4mm in continuous-state design (smaller FWHM reduced the
impacts from the neighbor voxels). None of the subjects was
excluded due to excessive head motion based on the criteria
of >2mm displacement or an angular rotation of >2◦ in
any direction.

Task fMRI Activation
We used SPM12 for task activation analysis at both the subject
(with high-pass filtering > 1/128Hz) and group levels (using
statistical analysis). Specifically, at the individual level, we
applied the GLM to generate the activation maps under SI/VG
conditions after regressing out head motion parameters (i.e.,
three parameters for translation and three for rotation). The
contrast maps of SI minus VG condition (SI–VG) were then
created for each subject and used to detect the significant
differences in brain activations via one sample t-tests across all
subjects [Gaussian random field (GRF) correction with voxel p<
0.001, cluster p< 0.05].

Wavelet Transform of Continuous-State
fMRI for Analysis
The SI and VG motor tasks have been widely used in task
fMRI motor control studies, and their activation difference
is well-validated in the literature (Hoffstaedter et al., 2013).
Thus, we extracted the preprocessed fMRI time-series of the
continuous state design in light of the peak voxels that have
showed significant different activations in the two conditions in

the blocked design. Instead of directly classifying brain states
based on original fMRI time-series, we applied the continuous
wavelets transforms (CWTs) to the time-series to obtain a time-
frequency decomposition across a continuous range of scales.
Wavelets have become an important tool in the fMRI analysis
(Bullmore et al., 2004) not only for connectivity analysis of
healthy populations (Guo et al., 2012) but also for detecting
biomarkers of neurological diseases (Wang et al., 2013).

The CWT coefficient is defined as the convolution of
the blood-oxygen-level-dependent (BOLD) signal x(t) with the
scaled and translated version of themother waveletψ(t) as shown
in equation (1):

CWT(a, b) = |a|−1/2
∫

x(t)ψ(
t − b

a
)dt (1)

where a denotes the wavelet scale, b denotes the time
shift position, and ψ(t) represents the mother wavelet, for
instance, Wavelet Daubechies 2 (db2) (Daubechies, 1990;
Übeyli, 2009). Previous studies have shown that the db2
has higher superiority than other bases for BOLD signal
(Zhang et al., 2016; Luo et al., 2020).

As shown in Figure 2, for each predefined target voxel, the
BOLD time-series was first extracted from preprocessed fMRI
datasets and then transformed into the time-frequency domain
by using db2 via CWT function in MATLAB2018. As a result, we
obtained 32 copies of wavelet coefficients at different frequency
bands, within the range of 0.003–0.313Hz with an interval of
0.01Hz, in total of 84 × 32 × 230 values, where 84 is the
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sample size (i.e., 42 subjects and two states for each subject),
32 is the number of frequency bands, and 230 is the time
points (coefficients). These wavelet coefficients were then treated
as features to classify brain states (i.e., VG and SI), with a
separate 1D-CNN model for each frequency bands (see the
“1D convolutional neural networks (1D-CNN) on fMRI signals”
section). As a baseline approach, we also calculated the amplitude
of low fluctuation based on the wavelet coefficients, including
wavelet-ALFF (Luo et al., 2020), and evaluated their predictability
of VG and SI states.

1D Convolutional Neural Networks on fMRI
Signals
After converting BOLD signals to scalogram images using CWT,
i.e., maps of wavelet coefficients at different frequency bands,
based on the task states, the data were split into 75 and 25%
for training and testing, respectively. Each frequency band in
scalogramwas then imported into the 1D-CNNmodel consisting
of three convolutional blocks (i.e., 32, 64, and 128 filters) and
followed by a flatten layer and a fully connected layer (128 units).
Each convolutional block consists of one convolutional layer
(kernel size = 3), one non-linearity layer (LeakyReLU: alpha =

0.3), and one pooling layer. Due to the small sample size for
model training, considerable strategies were applied to overcome
model overfitting, including batch normalization, dropout at
dense layer, and sparsity regularization. We used Adam as the
optimizer with the initial learning rate as 0.00005. Additional l1
regularization of 0.00001 on weights was used to control model
overfitting and the noise effect of fMRI signals. The dropout rate
of 0.5 was additionally applied to the dense layer.

We chose the “binary_crossentropy” as the loss function.
Other hyperparameters are set as follows: batch size =

2; optimize function: Adam; initial learning rate: 0.001;
kernel_initializer: “he_uniform” and bias_initializer: “zeros” for
the Convolutioan1D layer; kernel_initializaer: “lecun_normal”
for the dense layer. We used the training set to train model
parameters and saved the best model with the highest prediction
score on the test set after 200 training epochs. The whole
process was repeated for 10 times, considering the effects of
different random initializers of model parameters. The average
classification score over 10 repetitions was reported as the final
decoding performance. For comparison, the same train-test split
of scalogram images was used to calculate the wavelet-ALFF.

Performance Evaluation
The decoding performance of SI and VG states was evaluated by
using area under the curve (AUC), which provides an aggregate
measure of performance across all possible classification
thresholds. The AUC represents the probability that the model
ranks a random positive (i.e., SI state) example more highly than
a random negative (i.e., VG state) example. In this study, we
used the difference in wavelet-ALFF values as the baseline and
compared it with the classification performance of 1D-CNN.
In addition, for each frequency band and each peak voxel, we
applied paired t-tests on the wavelet-ALFF scores and found an
association between the statistical tests (i.e., T-score in paired t-
test) and classification accuracies (i.e., AUC). Specifically, a linear

regression model was fitted between the absolute |T| values and
the AUCs of state classification (model fitness: R2 = 0.83). As
a result, each AUC score can be transferred into a T-score via
the regression model, for instance, |T| value of 4.08 (p < 0.0001)
was corresponding to an AUC of 0.61 (as shown in Figure 3).
Thus, all decoding models with AUC > 0.61 were considered
as efficient predictions of brain states in both wavelet-ALFF and
1D-CNN approaches.

RESULTS

Difference Between SI and VG Tasks
The task activation analysis in the blocked design showed higher
activation during SI task in the bilateral primary sensorimotor
cortices, supplementary motor cortex, dorsal anterior cingulate
cortex, and anterior insular, while higher activation during VG
task in the precuneus and visual cortex (corrected for multiple
comparison using GRF with voxel p < 0.001, cluster p <

0.05; Figure 4). A full list of brain regions along with the peak
coordinates can be found in Table 1.

Classification Performance of 1D-CNN SI
and VG of Continuous States
We trained a series of 1D-CNN models to decode continuous
states for each frequency band and each peak voxel. Each model
was trained on the same train-test split for ten times by taking
into account the impact of random initializations and reported
the average decoding accuracy as the final decoding performance.

To evaluate the benefits of using the wavelet scalogram of
BOLD signals, we tested different temporal features in 1D-CNNs,
including wavelet-transformed time-series at each frequency
band, as well as the original fMRI time-series, in total of 33 × 25
= 825 decoding models. We found that the 1D-CNN models on
wavelet coefficients highly outperformed the original fMRI time-
series (Figure 5A). The average rank of decoding performance
using the original time-series was 20.4 out of 33 models among
all 25 peak voxels, even lower than the mean accuracy of CWT
across all frequency bands (16 out of 33 models).

When fixing the features as the scalogram maps, we found
that the 1D-CNN models highly outperformed the wavelet-
ALFF among all frequency bands and peak voxels (Figure 5).
First, the two approaches revealed some common regions in the
visual cortex that showed high predictive power on continuous
task states, for instance, areas in the occipital lobe (13th peak:
Occipital_Mid_L and 1st peak: Cuneus_L). More importantly,
the 1D-CNN models uncovered a variety of new regions in the
frontal (12th peak: Frontal_Sup_R) and temporal lobes (20th
peak: Temporal_Sup_L), as well as motor areas (22nd peak:
Supp_Motor_Area_R), which showed efficient predictions of
brain states only in the 1D-CNNmodels but not in wavelet-ALFF.

Second, the quantitative comparison of the two approaches
revealed that the 1D-CNN models showed higher prediction
accuracies than wavelet-ALFF (Figure 6). Notably, to control
false-positive rates, in this analysis, we only considered the
decoding models that efficiently predict task states, i.e., with AUC
> 0.61 (corresponding to |T|> 4.08 and p< 0.0001 in the paired
t-test results on wavelet-ALFF, as shown in Figure 3). There were
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FIGURE 3 | Linear correlation of between the area under the curve (AUC) of wavelet amplitude of low frequency fluctuation (wavelet-ALFF) and the |T| value of the

paired t-test between two continuous task states (i.e., SI vs. VG).

FIGURE 4 | Differences in brain activations between SI and VG tasks in the

blocked design [Gaussian random field (GRF) corrected with voxel p < 0.001

and cluster p < 0.05]. Warm colors (red) indicate higher brain activation or

activity in the SI condition than VG; cool colors (blue) indicate higher brain

activation or activity in the VG condition than SI. The Z-coordinates were from

−30 to +65 with a step of 5mm. Left in the figure is the left in the brain.

800 pairs of wavelet-ALFF and 1D-CNN models in total (25
peak voxels × 32 frequency bands). As shown in Figure 6, 46%

(369 out of 800 models) of 1D-CNN models showed efficient
predictions of task states (AUC > 0.61, maximum value = 0.9).
In contrast, only 12% (99 out of 800 models) of wavelet-ALFF
models showed efficient predictions (AUC > 0.61, maximum
value = 0.67). The overlapping area only consists of 86 models,
i.e., AUCs > 0.61 for both 1D-CNN and wavelet-ALFF models.
Among which, more than 90% cases (77 out of 86 models)
indicated a higher prediction in 1D-CNN than wavelet-ALFF.
On the other hand, there were, in total, 382 models that showed
efficient predictions in either 1D-CNN or wavelet-ALFF, 94%
of which showed higher AUCs in 1D-CNN and 6% was higher
in wavelet-ALFF.

Moreover, to show more frequency-specific characteristics,
we plotted the decoding performance of the 1D-CNN models
and wavelet-ALFF across 32 frequency bands (Figure 7). The
results indicated that the efficient predictions (AUC > 0.61)
of 1D-CNN were mostly located in the high frequency bands
(>0.1Hz). In contrast, the prediction of wavelet-ALFF was more
uniformly distributed across frequency bands, with a trend of
better predictions in the lower frequency bands (<0.1 Hz).

DISCUSSION

In this study, we aimed to decode continuous task states by using
the temporal dynamics of a single voxel from fMRI recordings.
Taking the activation maps from the blocked design task as
reference, 25 peak voxels were identified, and their fMRI time-
series were transformed into the temporal-frequency domain
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TABLE 1 | Coordinates of brain activation of self-initiated (SI) vs. visual-guided (GV) motor tasks in the blocked design.

ID Brain regions Number of voxels T-value MNI coordinates

X Y Z

SI < VG

1 Cuneus_L 223 −7.55 3 78 24

2 Lingual_R 126 7.04 18 51 3

3 Calcarine_L 244 6.89 12 66 9

4 Cuneus_R 188 6.87 6 78 27

5 Calcarine_R 127 6.62 18 54 6

6 Lingual_L 117 6.33 9 63 6

7 Precuneus_R 123 5.82 6 66 24

8 Cingulum_Post_L 72 5.65 0 45 30

9 Precuneus_L 96 5.61 6 54 30

SI > VG

10 Temporal_Sup_R 72 5.82 60 27 12

11 Parietal_Inf_R 78 5.95 57 36 48

12 Frontal_Sup_R 65 6.15 18 12 63

13 Occipital_Mid_L 85 6.19 9 105 3

14 Postcentral_L 111 6.19 57 0 18

15 Frontal_Mid_R 237 6.21 30 45 24

16 SupraMarginal_R 151 6.33 48 36 39

17 Precentral_L 128 6.75 18 21 69

18 Insula_R 130 6.87 30 18 6

19 Cingulum_Mid_R 126 7.33 9 15 45

20 Temporal_Sup_L 115 7.57 51 39 18

21 Precentral_R 92 7.68 57 9 18

22 Supp_Motor_Area_R 240 7.96 3 3 66

23 Rolandic_Oper_R 93 8.14 54 6 15

24 Frontal_Inf_Oper_R 166 8.49 51 9 12

25 Supp_Motor_Area_L 307 8.79 3 0 66

The names of brain regions are from the automated anatomical labeling (AAL) template (Tzourio-Mazoyer et al., 2002). L, left; R, right; Post, posterior; Sup, superior; Inf, inferior; Mid,

middle; Supp, supplementary; Oper, operculum. Brain region, coordinates, volume, and peak t value were reported by SPM12 (http://www.fil.ion.ucl.ac.uk/spm).

using wavelet. We applied a hybrid 1D-CNN on the transformed
time-series at each frequency band, as well as the original fMRI
time-series, to decode SI and VG continuous task states. Our
results showed that the hybrid 1D-CNN model successfully
decoded continuous task states by only using on fMRI time-
series from a single voxel, with the highest AUC reaching almost
90% on the middle occipital lobe. The proposed model highly
outperformed the conventional univariate analysis, e.g., wavelet-
ALFF, not only showing more efficient predictions across all
selected peak voxels and frequency bands but also achieving
higher decoding performance in the same settings. Moreover, our
model achieved better decoding by using the wavelet transformed
time-series than original fMRI time-series on all peak voxels.

This study focused on machine learning on fMRI time-series
at a single voxel. In previous fMRI studies, the majority of
machine learning approaches aimed to differentiate two groups
of people (e.g., patients and healthy controls) or two conditions
(e.g., two task condition or two resting-state conditions) by using
imaging data from multiple voxels or even the whole brain.
This type of analysis is something like “qualitative diagnosis”

in clinical radiology, i.e., what kind of disease it is. Another
even more important clinical aspect is location diagnosis, i.e.,
where precisely the abnormality is. The location diagnosis
not only helps the qualitative diagnosis but also provides the
guidance to the precise brain stimulation therapy, e.g., deep brain
stimulation, focused ultrasound stimulation, and transcranial
magnetic stimulation. fMRI brain imaging holds advantages of
non-invasiveness, fairly high spatial and temporal resolution,
and easy access; therefore, it is a promising tool for precise
localization of abnormal brain activity. To the best of our
knowledge, this is the first study of machine learning on the
single-voxel analysis of task fMRI data. We applied 1D-CNN
on the wavelet-transformed time-series at a specific frequency
band to predict the continuous task states of the human brain
and found much better performance than the univariate analysis,
e.g., wavelet-ALFF, not only in the visual cortex including the
middle occipital lobe and cuneus but also in the SMA, prefrontal
and temporal regions that have been well-validated in self-
initiated movements (Zimnik et al., 2019). We believed that
machine learning on single-voxel analysis could be applied to
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FIGURE 5 | The AUC of 25 peak voxels. The names of each peak voxel were listed in Table 1. (A) Decoding performance of 1D-CNN models on the transformed

time-series across 32 frequency bands as well as on the original functional magnetic resonance imaging (fMRI) time-series. (B) Decoding performance of

(Continued)
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FIGURE 5 | wavelet-ALFF across 32 frequency bands. The read dashed lines indicate the threshold of AUC > 0.61 (corresponding to paired |T| > 4.08 and p <

0.0001). The red crosses in A indicate the AUCs of original fMRI time-series, with a mean rank of 20.4 across the 25 voxels, i.e., below the average performance of

1D-CNN. Both the 1D-CNN and wavelet-ALFF models showed the highest decoding performance in the 13th peak (Occipital_Mid_L in Table 1) and the second best

performance in the 1st peak (Cuneus_L in Table 1). (C) Receiver operating characteristic (ROC) of 1D-CNN on two exemplar peak voxels, i.e., the 13th peak

(Occipital_Mid_L, in the left panel) and the 1st peak (Cuneus_L, in the right panel). Red lines in the plots indicate the ROC of 1D-CNN on wavelet-transformed

time-series at a specific frequency. Note that different frequencies were chosen for the two peak voxels according to their best performance, namely, 0.233 and

0.083Hz, respectively. Blue lines and orange lines indicate the ROC of wavelet-ALFF and original fMRI time-series, respectively.

FIGURE 6 | The relationship of decoding performance in the 1D-CNN and wavelet-ALFF models. We used area under the curve (AUC) to evaluate the decoding of

continuous task states for both methods and only the models with AUC > 0.61, corresponding to |T| > 4.08 (p < 0.0001) in the paired t-test on wavelet-ALFF

decoding models. There were 800 pairs of decoding models in total across 32 frequency bands and 25 peak voxels. 1D-CNN models showed more efficient

predictions of task states than wavelet-ALFF (369 vs. 99 models, respectively) as well as higher decoding accuracies (94% of efficient models).

brain disorders and hence to help precise localization of the
abnormal brain activity.

In addition to the comparison with univariate analysis, i.e.,
wavelet-ALFF, we also compared the performance of 1D-CNN
on the original fMRI time-series with the wavelet-transformed
time-series of 32 frequency bands. We found that the mean
rank of 1D-CNN decoding performance on the original fMRI
time-series was 20.4 across the 25 peak voxels, below the
average performance on the wavelet transformed time-series
(mean range is 16). Moreover, 1D-CNN on the transformed
time-series outperformed the original time-series on all selected
peak voxels. CNN has been widely applied in the time-series
analysis, ranging from forecasting to classification of brain

activity (Acharya et al., 2018; Kam et al., 2019; Mousavi et al.,
2019). In most cases, the researchers relied on the neural
networks and backpropagation of errors to learn efficient features
from the time-series. These models have also showed acceptable
performance on the task of interest, 0.5–0.75 in our case.
However, in this study, we demonstrated that the performance
of deep neural networks can be further improved if our domain
knowledge is also applied. A series of fMRI studies revealed that
the brain activity at different frequency bands showed various
contributions to neural interactions during task execution (Sasai
et al., 2021). For example, low-frequency (<0.1Hz) fluctuation
is highly correlated among sensorimotor cortices (Biswal et al.,
1995), very-low-frequency band < 0.01Hz (Slow-6) activity in
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FIGURE 7 | Distribution of decoding performance across 32 frequency bands for both 1D-CNN (A) and wavelet-ALFF (B). Each dot in the figure represents the AUC

results of 1D-CNN (A) or wavelet-ALFF (B) for each peak voxel at each frequency band, in total of 25 (peak voxels) × 32 (frequency bands) = 800 dots. The read

dashed lines indicate the efficient predictions with a threshold of AUC > 0.61 (corresponding to |T| > 4.08 and p < 0.0001). The 1D-CNN showed better predictions

on high frequency bands (>0.1Hz), while wavelet-ALFF showed more uniform distribution with a preference on low frequency bands (<0.1Hz).

bilateral basal ganglia is related to the performance of motor
feedback (Zhang et al., 2015), and relative high-frequency band
(>0.15Hz) detects task-specific functional connectivity patterns
in the prefrontal cortex during the visual task and the heart

task (Sasai et al., 2021). In this study, we used wavelet transform
to extract the frequency-specific characteristics in the fMRI
time-series and achieved much better decoding performance
of task states than the original time-series, especially in the
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high-frequency bands (>0.1Hz). One possible explanation is that
fMRI activity at a single voxel is usually contaminated by noise
from various physiological processes. The wavelet transformation
decomposed the fMRI signals into the time-frequency domain at
continuous scales, which not only partially improved the ratio of
signal-to-noise ratio (SNR) of the transformed signals but also
captured more task-related dynamics by extracting time-series
at a specific frequency band and therefore, boosted the decoding
performance of neural networks.

It is worth mentioning that a continuous-state paradigm was
used in this task fMRI study. Conventional task fMRI activation
studies usually use blocked design or event-design, which
requires repeated blocks or random events. The corresponding
data analytic approach requires strong assumptions of GLM, e.g.,
additive and time invariant. In the past years, an increasing body
of fMRI studies has started to explore cognitive processes under
naturalistic experimental design (Hu et al., 2017; Mandelkow
et al., 2017; Ren et al., 2018; Wen et al., 2018) or steady-state
design (Chai et al., 2019) in light of the context. We used
blocked design for task fMRI activation analysis. Then, we used
continuous-state design of task fMRI for the 1D-CNN analysis.
We used the term of “continuous state” because the task is not
that “naturalistic” or “steady.” Anyway, all “naturalistic” design,
“steady-state” design, and “continuous-state” design are very
similar with “resting-state” design: (1) They are a relatively long
“continuous state” (a few minutes on longer) as compared with
the alternative blocks or events; (2) they share similar analytic
methods that are widely used in RS-fMRI studies including
functional connectivity or network analysis or ALFF or ReHo;
and (3) they are very different from the signal contrast evoked
by task blocks or events in the conventional task fMRI design.
This study used 1D-CNN for the classification of two task states
at each single voxel, hence, help the precise localization of brain
abnormalities in clinic applications. This method could be also
used in naturalistic, steady-state, and RS-fMRI design.

A few limitations should be addressed. First, there were only
42 participants in this study, each going through two continuous
task states. The generalizability of this method needs to be
tested in a larger sample size of participants. Second, due to the
limitation of computation capacity, only 25 peak voxels were
selected. Future studies could perform a voxel-wise 1D-CNN in
the whole brain. Third, this study was based on continuous task
state fMRI data. However, RS-fMRI data are more useful for
clinical studies. Whether this idea could be applied to RS-fMRI
data is still unknown. Fourth, the 1D-CNN performance in this

study is not high. More comprehensive classification methods
should be developed for single-voxel analysis of fMRI time-series
and hence help precise localization of abnormal brain activity.

CONCLUSION

The 1D-CNN classification on the wavelet-transformed time-
series successfully differentiated the two continuous states of
fMRI tasks, SI vs. VG tasks, and highly outperformed the
conventional univariate wavelet-ALFF, as well as the 1D-CNN on
original fMRI time-series. With a combination of 1D-CNN and
wavelet transformation, our results demonstrate the feasibility
of the single-voxel analysis of fMRI data for decoding cognitive
states. This study shows great potentials for precise localization
of abnormal brain activity and fMRI-guided precision brain
stimulation therapy.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethics Committee of the Center for Cognition and
Brain Disorders (CCBD) at Hangzhou Normal University. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This study was supported by NSFC (82071537 and
81520108016), Key Realm R&D Program of Guangdong
Province (2019B030335001), Key Medical Discipline of
Hangzhou, and the Cultivation Project of the Province-leveled
Preponderant Characteristic Discipline of Hangzhou Normal
University (18JYXK046 and 20JYXK004). YZ was partially
supported by the Major Scientific Project of Zhejiang Lab (Nos.
2020ND8AD01 and 2021ND0PI01).

REFERENCES

Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., and Adeli, H. (2018).
Deep convolutional neural network for the automated detection and
diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278.
doi: 10.1016/j.compbiomed.2017.09.017

Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S. (1995).
F1000Prime recommendation of: functional connectivity in the motor

cortex of resting human brain using echo-planar MRI. Magn Reson Med.
doi: 10.1002/mrm.1910340409

Bullmore, E., Fadili, J., Maxim, V., Sendur, L., Whitcher, B., Suckling, J.,
et al. (2004). Wavelets and functional magnetic resonance imaging of
the human brain. Neuroimage 23, 234–249. doi: 10.1016/j.neuroimage.2004.
07.012

Chai, Y., Handwerker, D. A., Marrett, S., Gonzalez-Castillo, J., Merriam,
E. P., Hall, A., et al. (2019). Visual temporal frequency preference

Frontiers in Computational Neuroscience | www.frontiersin.org 11 April 2022 | Volume 16 | Article 822237

https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1016/j.neuroimage.2004.07.012
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Wu et al. Decoding Single-Voxel fMRI Data

shows a distinct cortical architecture using fMRI. Neuroimage 197, 13–23.
doi: 10.1016/j.neuroimage.2019.04.048

Chao-Gan, Y., and Yu-Feng, Z. (2010). DPARSF: A MATLAB toolbox for
“pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 1–7.
doi: 10.3389/fnsys.2010.00013

Coutanche, M. N., Thompson-Schill, S. L., and Schultz, R. T. (2011).
Multi-voxel pattern analysis of fMRI data predicts clinical symptom
severity. Neuroimage 57, 113–123. doi: 10.1016/j.neuroimage.2011.
04.016

Dale, A. M., and Buckner, R. L. (1997). Selective averaging of rapidly presented
individual trials using fMRI. Hum. Brain Mapp. 5, 329–340. doi: 10.1002/
(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5

Daubechies, I. (1990). The wavelet transform, time-frequency localization and
signal analysis. IEEE Transact. Inf. Theory 36, 961–1005. doi: 10.1109/18.57199

Dong, Z. Y., Liu, D. Q., Wang, J., Qing, Z., Zang, Z. X., Yan, C. G., et al.
(2012). Low-frequency fluctuation in continuous real-time feedback of finger
force: a new paradigm for sustained attention. Neurosci. Bull. 28, 456–467.
doi: 10.1007/s12264-012-1254-2

Gong, J., Wang, J., Qiu, S., Chen, P., Luo, Z., Wang, J., et al. (2020). Common
and distinct patterns of intrinsic brain activity alterations in major depression
and bipolar disorder: voxel-based meta-analysis. Transl. Psychiatry 10. 353–366
doi: 10.1038/s41398-020-01036-5

Guo, C. C., Kurth, F., Zhou, J., Mayer, E. A., Eickhoff, S. B., Kramer,
J. H., et al. (2012). One-year test-retest reliability of intrinsic
connectivity network fMRI in older adults. Neuroimage 61, 1471–1483.
doi: 10.1016/j.neuroimage.2012.03.027

Haxby, J. V, Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L.,
and Pietrini, P. (2001). Haxby2001Science. Science 293, 2425–2430.
doi: 10.1126/science.1063736

Hoffstaedter, F., Grefkes, C., Zilles, K., and Eickhoff, S. B. (2013). The
“what” and “when” of self-initiated movements. Cerebr. Cortex 23, 520–530.
doi: 10.1093/cercor/bhr391

Hojjati, S. H., Ebrahimzadeh, A., Khazaee, A., and Babajani-Feremi, A.
(2017). Predicting conversion from MCI to AD using resting-state fMRI,
graph theoretical approach and SVM. J. Neurosci. Methods 282, 69–80.
doi: 10.1016/j.jneumeth.2017.03.006

Hu, X., Guo, L., Han, J., and Liu, T. (2017). Decoding power-spectral profiles from
FMRI brain activities during naturalistic auditory experience. Brain Imaging

Behav. 11, 253–263. doi: 10.1007/s11682-016-9515-8
Kam, T.-E., Wen, X., Jin, B., Jiao, Z., Hsu, L.-M., Zhou, Z., et al. (2019).

“A deep learning framework for noise component detection from resting
state functional MRI,” in Medical Image Computing and Computer Assisted

Intervention – MICCAI 2019, eds D. Shen, T. Liu, T. M. Peters, L. H. Staib,
C. Essert, S. Zhou, P.-T. Yap, and A. Khan (Shenzhen: Springer International
Publishing), 754–762.

Kohls, G., Thönessen, H., Bartley, G. K., Grossheinrich, N., Fink, G.
R., Herpertz-Dahlmann, B., et al. (2014). Differentiating neural reward
responsiveness in autism versus ADHD. Dev. Cogn. Neurosci. 10, 104–116.
doi: 10.1016/j.dcn.2014.08.003

Li, H., Chen, Z., Gong, Q., and Jia, Z. (2020). Voxel-wise meta-analysis
of task-related brain activation abnormalities in major depressive
disorder with suicide behavior. Brain Imaging Behav. 14, 1298–1308.
doi: 10.1007/s11682-019-00045-3

Li, H. J., Hou, X. H., Liu, H. H., Yue, C. L., He, Y., and Zuo, X. N. (2015).
Toward systems neuroscience in mild cognitive impairment and Alzheimer’s
disease: A meta-analysis of 75 fMRI studies. Hum. Brain Mapp. 36, 1217–1232.
doi: 10.1002/hbm.22689

Lu, Y., Ma, Y., Chen, C., andWang, Y. (2018). Classification of single-channel EEG
signals for epileptic seizures detection based on hybrid features. Technol Health
Care 26, S337–S346. doi: 10.3233/THC-174679

Lunkova, E., Guberman, G. I., Ptito, A., and Saluja, R. S. (2021). Noninvasive
magnetic resonance imaging techniques inmild traumatic brain injury research
and diagnosis. Hum. Brain Mapp. 42, 5477–5494. doi: 10.1002/hbm.25630

Luo, F.-F., Wang, J.-B., Yuan, L.-X., Zhou, Z.-W., Xu, H., Ma, S.-H.,
et al. (2020). Higher sensitivity and reproducibility of wavelet-based
amplitude of resting-state fMRI. Front. Neurosci. 14, 224. doi: 10.3389/fnins.
2020.00224

Mandelkow, H., de Zwart, J. A., and Duyn, J. H. (2017). Effects of spatial fMRI
resolution on the classification of naturalistic movies. Neuroimage 162, 45–55.
doi: 10.1016/j.neuroimage.2017.08.053

Mousavi, Z., Yousefi Rezaii, T., Sheykhivand, S., Farzamnia, A., and Razavi,
S. N. (2019). Deep convolutional neural network for classification of sleep
stages from single-channel EEG signals. J. Neurosci. Methods 324, 108312.
doi: 10.1016/j.jneumeth.2019.108312

Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V. (2006). Beyond
mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10,
424–430. doi: 10.1016/j.tics.2006.07.005

Pan, P., Zhu, L., Yu, T., Shi, H., Zhang, B., Qin, R., et al. (2017).
Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive
impairment: a meta-analysis of resting-state fMRI studies. Ageing Res. Rev. 35,
12–21. doi: 10.1016/j.arr.2016.12.001

Ren, Y., Nguyen, V. T., Sonkusare, S., Lv, J., Pang, T., Guo, L., et al. (2018).
Effective connectivity of the anterior hippocampus predicts recollection
confidence during natural memory retrieval. Nat. Commun. 9, 4875–4886
doi: 10.1038/s41467-018-07325-4

Sasai, S., Koike, T., Sugawara, S. K., Hamano, Y. H., Sumiya, M., Okazaki,
S., et al. (2021). Frequency-specific task modulation of human brain
functional networks: a fast fMRI study. Neuroimage 224, 117375.
doi: 10.1016/j.neuroimage.2020.117375

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.0978

Übeyli, E. D. (2009). Combined neural network model employing wavelet
coefficients for EEG signals classification. Dig. Signal Proc. Rev. J. 19, 297–308.
doi: 10.1016/j.dsp.2008.07.004

Uddin, L. Q., Dajani, D. R., Voorhies, W., Bednarz, H., and Kana, R. K.
(2017). Progress and roadblocks in the search for brain-based biomarkers of
autism and attention-deficit/hyperactivity disorder. Transl. Psychiatry 7, e1218.
doi: 10.1038/tp.2017.164

Wang, J., Deng, X. P., Wu, Y. Y., Li, X. L., Feng, Z. J., Wang, H. X., et al.
(2020). High-frequency rTMS of the motor cortex modulates cerebellar
and widespread activity as revealed by SVM. Front. Neurosci. 14, 1–12.
doi: 10.3389/fnins.2020.00186

Wang, J., Zuo, X., Dai, Z., Xia, M., Zhao, Z., Zhao, X., et al. (2013). Disrupted
functional brain connectome in individuals at risk for Alzheimer’s disease. Biol.
Psychiatry 73, 472–481. doi: 10.1016/j.biopsych.2012.03.026

Wang, X., Liang, X., Jiang, Z., Nguchu, B. A., Zhou, Y., Wang, Y., et al. (2020).
Decoding and mapping task states of the human brain via deep learning.Hum.

Brain Mapp. 41, 1505–1519. doi: 10.1002/hbm.24891
Wang, Z., Childress, A. R., Wang, J., and Detre, J. A. (2007). Support vector

machine learning-based fMRI data group analysis. Neuroimage 36, 1139–1151.
doi: 10.1016/j.neuroimage.2007.03.072

Wen, H., Shi, J., Zhang, Y., Lu, K. H., Cao, J., and Liu, Z. (2018). Neural encoding
and decoding with deep learning for dynamic natural vision. Cerebr. Cortex 28,
4136–4160. doi: 10.1093/cercor/bhx268

Zang, Y. F., Yong, H., Chao-Zhe, Z., Qing-Jiu, C., Man-Qiu, S., Meng,
L., et al. (2007). Altered baseline brain activity in children with
ADHD revealed by resting-state functional MRI. Brain Dev. 29, 83–91.
doi: 10.1016/j.braindev.2006.07.002

Zhang, H., Gao, Z. Z., and Zang, Y. F. (2015). An fMRI study of local
synchronization in different subfrequency bands during the continuous
feedback of finger force. Biomed. Res. Int. 8. doi: 10.1155/2015/273126

Zhang, J., Yao, R., Ge, W., and Gao, J. (2020b). Orthogonal convolutional
neural networks for automatic sleep stage classification based on
single-channel EEG. Comput. Methods Programs Biomed. 183, 105089.
doi: 10.1016/j.cmpb.2019.105089

Zhang, J., Zhang, G., Li, X., Wang, P., Wang, B., and Liu, B. (2020a). Decoding
sound categories based on whole-brain functional connectivity patterns. Brain
Imag. Behav. 14, 100–109. doi: 10.1007/s11682-018-9976-z

Zhang, X., Liu, J., Yang, Y., Zhao, S., Guo, L., Han, J., et al. (2021). Test–
retest reliability of dynamic functional connectivity in naturalistic paradigm
functional magnetic resonance imaging. Hum. Brain Mapp. 2021, 1463–1476.
doi: 10.1002/hbm.25736

Frontiers in Computational Neuroscience | www.frontiersin.org 12 April 2022 | Volume 16 | Article 822237

https://doi.org/10.1016/j.neuroimage.2019.04.048
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1016/j.neuroimage.2011.04.016
https://doi.org/10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5
https://doi.org/10.1109/18.57199
https://doi.org/10.1007/s12264-012-1254-2
https://doi.org/10.1038/s41398-020-01036-5
https://doi.org/10.1016/j.neuroimage.2012.03.027
https://doi.org/10.1126/science.1063736
https://doi.org/10.1093/cercor/bhr391
https://doi.org/10.1016/j.jneumeth.2017.03.006
https://doi.org/10.1007/s11682-016-9515-8
https://doi.org/10.1016/j.dcn.2014.08.003
https://doi.org/10.1007/s11682-019-00045-3
https://doi.org/10.1002/hbm.22689
https://doi.org/10.3233/THC-174679
https://doi.org/10.1002/hbm.25630
https://doi.org/10.3389/fnins.2020.00224
https://doi.org/10.1016/j.neuroimage.2017.08.053
https://doi.org/10.1016/j.jneumeth.2019.108312
https://doi.org/10.1016/j.tics.2006.07.005
https://doi.org/10.1016/j.arr.2016.12.001
https://doi.org/10.1038/s41467-018-07325-4
https://doi.org/10.1016/j.neuroimage.2020.117375
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.dsp.2008.07.004
https://doi.org/10.1038/tp.2017.164
https://doi.org/10.3389/fnins.2020.00186
https://doi.org/10.1016/j.biopsych.2012.03.026
https://doi.org/10.1002/hbm.24891
https://doi.org/10.1016/j.neuroimage.2007.03.072
https://doi.org/10.1093/cercor/bhx268
https://doi.org/10.1016/j.braindev.2006.07.002
https://doi.org/10.1155/2015/273126
https://doi.org/10.1016/j.cmpb.2019.105089
https://doi.org/10.1007/s11682-018-9976-z
https://doi.org/10.1002/hbm.25736
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Wu et al. Decoding Single-Voxel fMRI Data

Zhang, Y., Zhang, H., Chen, X., Lee, S. W., and Shen, D. (2017). Hybrid
high-order functional connectivity networks using resting-state functional
MRI for mild cognitive impairment diagnosis. Sci. Rep. 7, 1–16.
doi: 10.1038/s41598-017-06509-0

Zhang, Z., Telesford, Q. K., Giusti, C., Lim, K. O., and Bassett, D. S.
(2016). Choosing wavelet methods, filters, and lengths for functional brain
network construction. PLoS ONE 11, 1–24. doi: 10.1371/journal.pone.
0157243

Zhou, Z., Wang, J. B., Zang, Y. F., and Pan, G. (2018). PAIR comparison
between two within-group conditions of resting-state fMRI improves
classification accuracy. Front. Neurosci. 11, 1–13. doi: 10.3389/fnins.
2017.00740

Zimnik, A. J., Lara, A. H., and Churchland, M. M. (2019). Perturbation of
macaque supplementary motor area produces context- independent changes
in the probability of movement initiation Department of Neuroscience,
Columbia University Medical Center, New York, New York, USA. Grossman
Center for the Statisti. J. Neurosci. 39, 3217–3233. doi: 10.1523/JNEUROSCI.
2335-18.2019

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Wu, Hu, Wang, Zang and Zhang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 April 2022 | Volume 16 | Article 822237

https://doi.org/10.1038/s41598-017-06509-0
https://doi.org/10.1371/journal.pone.0157243
https://doi.org/10.3389/fnins.2017.00740
https://doi.org/10.1523/JNEUROSCI.2335-18.2019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Toward Precise Localization of Abnormal Brain Activity: 1D CNN on Single Voxel fMRI Time-Series
	Introduction
	Importance of Location Diagnosis by Functional Magnetic Resonance Imaging
	fMRI Analysis at Single Voxel Level for Location Diagnosis
	Limitations for Existing fMRI Design and Analysis
	Machine Learning at Single Voxel Level for fMRI
	The Motivation of This Study

	Materials and Methods
	Participants
	Image Acquisition
	Finger Tapping Task: Blocked Design
	Finger Tapping Task: Continuous State Design
	Preprocessing of fMRI Data
	Task fMRI Activation
	Wavelet Transform of Continuous-State fMRI for Analysis
	1D Convolutional Neural Networks on fMRI Signals
	Performance Evaluation

	Results
	Difference Between SI and VG Tasks
	Classification Performance of 1D-CNN SI and VG of Continuous States

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


