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ABSTRACT

Motivation: Accurate prediction of protein stability is important for
understanding the molecular underpinnings of diseases and for the
design of new proteins. We introduce a novel approach for the
prediction of changes in protein stability that arise from a single-
site amino acid substitution; the approach uses available data on
mutations occurring in the same position and in other positions.
Our algorithm, named Pro-Maya (Protein Mutant stAbilitY Analyzer),
combines a collaborative filtering baseline model, Random Forests
regression and a diverse set of features. Pro-Maya predicts the
stability free energy difference of mutant versus wild type, denoted
as ��G.
Results: We evaluated our algorithm extensively using cross-
validation on two previously utilized datasets of single amino acid
mutations and a (third) validation set. The results indicate that using
known ��G values of mutations at the query position improves the
accuracy of ��G predictions for other mutations in that position. The
accuracy of our predictions in such cases significantly surpasses that
of similar methods, achieving, e.g. a Pearson’s correlation coefficient
of 0.79 and a root mean square error of 0.96 on the validation
set. Because Pro-Maya uses a diverse set of features, including
predictions using two other methods, it also performs slightly better
than other methods in the absence of additional experimental data
on the query positions.
Availability: Pro-Maya is freely available via web server at
http://bental.tau.ac.il/ProMaya.
Contact: nirb@tauex.tau.ac.il; wolf@cs.tau.ac.il
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Understanding the mechanisms by which mutations affect protein
stability is important for characterizing disease mechanisms and for
protein design (Bromberg and Rost, 2009). Hence, the energetics
of mutants has been studied extensively through experimental and
theoretical approaches.

∗To whom correspondence should be addressed.

The methods for predicting the change in a protein’s stability
(��G) that results from a single amino acid mutation can be
roughly classified according to the types of effective potentials
they rely on: physical effective potentials (PEP), statistical effective
potentials (SEP) and empirical effective potentials (EEP). Notably,
none of these potentials explicitly take into consideration relevant
known mutations at the query position. PEP-based methods use
atomic-level representations to capture the underlying physical
phenomena affecting protein stability, e.g. van der Waals interactions
and dihedral (torsion) angle (Prevost et al., 1991; Seeliger and de
Groot, 2010). These techniques are computationally demanding and
not applicable to large datasets (Kollman et al., 2000). SEP-based
methods are based on the inverse Boltzmann law, which states
that probability densities and energies are closely related quantities.
Hence, these methods use datasets of proteins of known structures to
calculate conditional probabilities that certain residues or atoms will
appear in different contexts. Most SEP-based methods use pairwise
potentials (Bahar and Jernigan, 1997; Samudrala and Moult,
1998; Sippl, 1995), though some studies have employed higher
order potentials; for example Vaisman et al. (1998) used a four-
body potential. SEP-based methods are computationally efficient,
more robust than PEP-based methods to low-resolution protein
structure prediction and are suitable to include known and unknown
physical effects (Lazaridis and Karplus, 2000). Methods in the third
category (EEP-based) use experimental energy data to calibrate the
weights of the energy function terms. The types of energy terms
used can vary and might be SEP-, PEP-, physicochemically- or
evolution-based methods (Bloom and Glassman, 2009; Gilis and
Rooman, 1997; Masso and Vaisman, 2010; Shen et al., 2008).
For example, PoPMuSiC-2.0 utilizes a neural network algorithm
with SEP features that couple between the identity of the amino
acid, secondary structure, accessibility and the spatial distance
between amino acids (Dehouck et al., 2009). Conversely, FoldX’s
(Guerois et al., 2002) energy function consists of PEP energy terms
calibrated using a grid search method on experimental data. The
recently developed Prethermut tool (Tian et al., 2010) incorporates
the energy terms of FoldX and MODELLER (Sali and Blundell,
1993) into a Random Forests machine regression, and has reached
impressive results. The use of a machine learning algorithm enables
non-energy-like terms to be incorporated into the scoring function
(Capriotti et al., 2005; Cheng et al., 2006; Montanucci et al.,
2008). For example, both I-Mutant2.0 (Capriotti et al., 2005) and
MUpro (Cheng et al., 2006) encode the identities of the wild-
type (WT) and mutant amino acids in addition to the quantity
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(in I-Mutant2.0) or frequency (in MUpro) of the residue type found
inside a sphere centered at the mutated residue. Both methods also
offer sequence-based predictions in cases where the protein structure
is not available. For instance, Capriotti et al. added a description of
the amino acid frequency within a symmetrical sequence window
centered at the mutated residue and reached a prediction accuracy
that was only slightly lower than that achieved using a structurally
based approach (Capriotti et al., 2005).

To assess the performance of prediction methods and to calibrate
weights in EEP-based methods, several datasets of experimental
energy values have been compiled. The main source is the ProTherm
dataset (Kumar et al., 2006). Capriotti et al. compiled a dataset of
1615 single-site mutations that has been used for cross-validation
procedures in several studies (Capriotti et al., 2005; Cheng et al.,
2006; Masso and Vaisman, 2010). However, as previously indicated
by Cheng et al., this dataset is highly redundant and may lead to
unreliable predictions. Recently, two large non-redundant datasets
have been compiled by Potapov et al. (2009; Potapov-DB) and
Dehouck et al. (2009; PoPMuSiC-DB), containing 2155 and 2648
mutations, respectively. The datasets comprise ��G measurements
from thermal and denaturant denaturation experiments. To avoid
redundancy, each dataset considers only one ��G value per mutant.
In cases where numerous values have been obtained for a single
mutant, Potapov et al. set the mutant’s ��G as the mean of the
measures, whereas Dehouck et al. determine this value using a
weighted average, giving higher weights to measurements taken
in physiological conditions (pH close to 7, temperature close to
25˚C and without additives). Thus, although the two datasets share
1405 common mutations, the ��G values assigned to some of these
differ.

Preliminary examination of the PoPMuSiC-DB indicated that
��G values of mutations occurring at the same protein position
tend to cluster (data not shown), i.e. ��G values of mutations
in a given position are closer to each other, on average, than to
��G values in other positions. This suggests making explicit use
of known ��G values to predict the effects of new mutations.
To this end, we developed an approach based on adaptation of
the baseline model of the BellKor collaborative filtering algorithm
(CF) (Koren, 2008). To improve its accuracy, we combined the
baseline model algorithm with a content-based model. The content-
based model takes into account features of the mutation and its
surrounding comprising various sequence, structure, SEP- and EEP-
based features. We benchmarked our algorithm extensively by
carrying out cross-validation on the PoPMuSiC-DB and Potapov-
DB datasets and by running it on an additional validation set.
Statistical analysis of the results indicates that Pro-Maya surpasses
all the compared methods both when additional ��G values for the
query position are available and when they are not.

2 METHODS
Our algorithm treats differently mutations at positions for which a ��G
value for a different mutant is known (denoted MRPM, multi-replacement
position mutation) and at positions with no additional known recorded
mutations at the query position (denoted SRPM, single-replacement position
mutation). Given a query mutation of SRPM we follow the traditional
machine learning scheme. Specifically, the query mutations is fed to a pre-
calculated Random Forests regression model (Breiman, 2001) to predict the
query’s ��G, denoted as ��GRF (described in Section 2.1). For MRPMs,
as detailed in Figure 1, the predicted ��GRF is utilized as an input to an

Fig. 1. Prediction scheme for a query mutation with known ��G values for
additional mutations at the same position. (A) The input for this prediction
scheme includes query (Q) and known (M) mutations at the query position.
The ��G. (B–E) Calculate the predicted ��G of Q using the Random
Forests algorithm. (F) Add the ��G values of M to the appropriate elements
in the energy matrix r, according to the MU identity and position of M.
(G) Given the training set (matrix r), and the features (including the ��G
predicted by Random Forests (��GRF)). start the stochastic gradient descent
and calculate the ��G of Q (H).

additional prediction step using the integrated baseline- and content-based
model, denoted as the collaborative filtering and content-based (CFCB)
algorithm. The ��GRF for the MRPMs is calculated using a Random Forests
model retrained on a dataset comprising the training dataset and the user
reported ��G records of mutations at the query position. The input to the
CFBC algorithm also includes a matrix representation of the known ��G
(described in Section 2.2) and a set of the features. Note, that the ��GRF in
our algorithm is utilized both for the prediction of SRPM mutations and as
an input to the CFCB algorithm. The Pro-Maya algorithm predicts the �G
change of the mutant versus the wildtype protein (i.e. Mutant-WT). Thus,
indicating both the magnitude of the stability change and its sign, i.e. whether
the mutant is more or less stable than the WT.

2.1 Calculation of ��GRF

The ��GRF is calculated using the Random Forests R implementation (Liaw
and Wiener, 2002). The number of trees to grow was set to 650 since the
addition of more trees did not change the performance. The number of
random features to be searched at each tree node was the square root of
the number of features, i.e. 6.

The Random Forests regression utilizes a total of 11 descriptors (F1–F11)
with 30 dimensions, which can be roughly divided into sequence- and
structure-based features as follows:

2.1.1 Sequence-based features The multiple sequence alignment (MSA)
holds important information regarding the physicochemical preference of
the position in the protein. From the MSA, we calculated the position
specific scoring matrix (indicating the frequency of the amino acids
in each MSA column) and used a physicochemical scale matrix to
calculate the weighted average and SD of a physicochemical property.
Given a mutation, we measured the degree to which its physicochemical
properties deviated from the mean physicochemical preference at the query
position. Each query mutation was evaluated according to the following
physicochemical properties (F1–F3): hydrophobicity scale (Kessel and Ben-
Tal, 2002), molecular weight and isoelectric point (Supplementary Table S1).
In addition, we added into the model the number of sequences in the
alignment (F4).

Based on a related study (Wainreb et al., 2010), we added an additional
descriptor measuring the sequence identity of the query protein to the closest
homolog bearing the mutant amino acid (denoted SIDCH) (F5). For example,
mutation I48A in the Hordeum vulgare chymotrypsin (UniProtKB/Swiss-
Prot ID: ICI2_HORVU) (The_UniProt_Consortium, 2010) was shown by
Jackson et al. (1993) to cause a major destabilization of the protein. Fifteen
homologous proteins with sequence identities of 31–47% to ICI2_HORVU
feature the amino acid alanine in the corresponding position. Here we set
the SIDCH of I48A to 47%. We also included an array of 20 features
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(for 20 residue types) to encode the identity of the WT and mutant amino
acids (F6). The features of the WT and mutant amino acids were set to 1 or
−1, respectively, and the rest of the features were set to 0.

2.1.2 Structure-based features Average solvent accessibility: the side
chain accessible surface area [calculated by NACCESS (Hubbard et al.,
1991)] was averaged over all the protein structures of the query protein
(F7). In proteins for which an X-ray crystal structure existed, all structures
determined through nuclear magnetic resonance (NMR) were disregarded.

Protein flexibility: to reflect the mobility of the protein’s backbone at the
mutated positions, we used the B-factors of the crystal structure (F8).

PEP-based features: we made use of ��G values predicted by the
Prethermut tool (Tian et al., 2010) (F9). Prethermut uses a Random Forests
machine learning algorithm and combines the energy terms of FoldX and
MODELLER (Sali and Blundell, 1993). The energy terms are translated into
units of SD from the average of the energy terms calculated over all possible
mutations of the whole protein. To calculate the Prethermut prediction value,
we conducted a Random Forests regression over the original energy terms
(calculated using the Prethermut scripts). As suggested by Tian et al., the
number of trees to grow was set to 650 and the number of random features
to be searched at each tree node was the square root of the number of
features, i.e. 8.

SEP-based features: the amino acid-specific torsion angle potential was
calculated according to Parthiban et al. (2006) (F10). In addition, we utilized
the PoPMuSiC-2.0 predicted ��G value, calculated using the energy
terms in Dehouck et al. (2009) and the Gaussian regression (Rasmussen
and Williams, 2006) implementation of Weka (Frank et al., 2004) (F11).
The Gaussian regression cross-validation results of PoPMuSiC-2.0 were
comparable with the published results. The predicted PoPMuSiC-2.0 ��G
values for mutations that were absent from the Potapov-DB were calculated
using the PoPMuSiC-2.0 web server.

2.2 CFCB algorithm
CFCB recommender systems are used by many websites to generate
personalized recommendations. For example, when a customer purchases
an item on a retail website, such algorithms try to predict which other items
the user would enjoy, on the basis of his/her past behavior and similarity
to the behavior of other users. CF algorithms use only user-item data to
make predictions. Conversely, content-based algorithms rely on the features
of users and items for prediction.

In recent years, the main driving force behind the development of
CF algorithms has been Netflix’s million dollar prize for improving the
performance of the site’s recommendation system. Here, we chose to utilize
a part of the CF solution of the winning group (named BellKor) (Koren,
2008). In order to improve the model’s performance, we extended it using a
content-based-model to take into account biological information regarding
the mutations.

In our CF scenario, there is a list of possible mutation outcomes (MU)
(i.e. all possible amino acids), a list of mutation positions (defined by the
protein and the residue number) and the experimental ��G values for some
of the mutations at these positions. The data can be stored in a sparse matrix r
of size n×m, where n denotes the number of MUs and m denotes the number
of positions. Each cell rui of the matrix r indicates the ��G of a mutation
to amino acid u at position i (see, for example Supplementary Fig. S1A).

For clarity, special indexing letters u and i are reserved for distinguishing
MUs and positions, respectively.

2.2.1 The prediction models The BellKor CF algorithm (Koren, 2008)
tries to model the relations between the known data points in matrix r. The
model’s parameters are learned during the training procedure. The optimal
model is later utilized to predict ��G values of unknown mutations in
positions with known ��G values for other mutations.

The BellKor model integrates three types of approaches to CF: a baseline
model, a neighborhood model and the latent factor model. Our CFCB

algorithm integrates the BellKor baseline estimator model with a content-
based model. We also implemented the neighborhood and latent factor
models, but according to our analysis their incorporation into the model
does not improve the prediction accuracy significantly, although it might in
certain cases (Supplementary Material). A schematic representation of all
models can be seen in Supplementary Figure S1.

2.2.2 The baseline estimator model Different MUs and positions have
different ��G tendencies. For example, the ��G of a mutation at a buried
position in a protein is usually larger than that of the same mutation at
an exposed position. Similarly, we would expect that in most cases the
consequences of mutation to proline would be more severe than a mutation to
alanine. Hence, each position and MU is ascribed unique baseline estimators,
denoted bi and bu, respectively. Thus, for every rui we define a baseline
estimator bui=μ+bi+bu, with μ denoting the overall average of all ��G
in r. The variables bi and bu are learned during the training stage of the
algorithm (described in Section 2.2.2).

2.2.3 The content-based model The baseline model does not use any
explicit description of the mutation. In order to describe the biological aspects
of the mutation, we use a linear regression solution (with no intercept)
[Equation (1)] with a subset of the features (described in Section 2.2): solvent
accessibility, torsional statistical force field, Prethermut MODELLER-based
features, the SIFT predicted compatibility of the mutated amino acid to
the query position (Ng and Henikoff, 2003) and ��G predictions by
PoPMuSiC-2.0, Prethermut. In addition, we also use as a feature the ��GRF.

In Equation (1), Xui is the set of d features (Xui,1, Xui,2, ... ,Xui,d ),
describing the mutation whose ��G indices in matrix r are u and i. F denotes
a set of d descriptor coefficients. As is often done in linear regression, each
descriptor is normalized across all positions and MUs so that its average
is zero and the SD is 1. F is learned during the training stage described in
Section 2.2.2 using the stochastic gradient descent.

rCon
ui =XuiF (1)

2.2.4 The integrated model The integrated model [Equation (2)] combines
the baseline- and content-based models. yui denotes the predicted ��G.

yui=bui+
d∑

g=0

Xui,gFg (2)

2.2.5 The CFCB training and prediction procedures As in any machine
learning algorithm, the aim of the training procedure is to obtain parameters
that fit the model to the observed data best. Unconventionally, the CFCB
model is retrained for every server query in order to identify the parameters
of the newly added user-reported mutations, e.g. the baseline estimator of
the newly added position. The model with the optimized set of parameters
presumably describes best the relations between the known ��Gs in matrix
r and is used to predict the unknown MRPM queries.

The training procedure is performed using a stochastic gradient descent
algorithm that attempts to minimize the associated regularized squared error
function [Equation (3)] and determines the following parameters: bu,bi

and F. Thus, starting with random values for the parameters, it randomly
loops over all the known ��G values in r (which is composed of all
known mutations across all proteins in the training dataset) and modify the
parameters by moving in the opposite direction of the gradient [Equation (4)].
The descent iterations continue until the difference between the root mean
square error between the predicted ��Gs and the known ��G [(predicted
��Gs− observed ��Gs)2] of the current iteration and the previous iteration
is smaller than ε. During the training, we used the following meta parameters:
(learning rate) γ=0.02, (regularization factor) λ=0.025 and ε=0.00001.

min
bu,bi,F

∑

u∈MU,

i∈Positions

(
rui−yui

)2−λ

⎛
⎝b2

u+b2
i +

d∑
g=0

F2
g

⎞
⎠ (3)
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• eui←rui−yui

• bu←bu+γ ·(eui−λ·bu)
• bi←bi+γ ·(eui−λ·bi)
• F←F+γ ·(eui ·Xui−λ·F)

(4)

2.3 The datasets and performance measurements
To train and assess our algorithm, we utilized two publicly available
datasets: the PoPMuSiC-DB with 2648 mutations in 137 proteins and the
Potapov-DB with 2155 mutations in 79 proteins. Both datasets include
��G values of non-redundant single-site mutations (apart from a single
mutation in Potapov-DB that was disregarded). Several Protein Data Bank
(PDB) structures (NMR and Cα only structures) were replaced by others
(Supplementary Table S2). Both datasets have been previously used as
benchmarks: Potapov-DB for Prethermut (Tian et al., 2010) and PoPMuSiC-
DB for PoPMuSiC-2.0 (Dehouck et al., 2009).

To fairly compare our method with Prethermut and PoPMuSiC–2.0,
we followed their cross-validation protocols and used a 5- and 10-fold
cross-validation on the PoPMuSiC-DB and Potapov-DB sets, respectively.
The randomly selected folds were maintained throughout the prediction
scheme, i.e. the calculation of the Prethermut, PoPMuSiC-2.0, ��GRF

and CFCB prediction values. To calculate the average and SD for the
performance measures, we used a bootstrap procedure with 1000 iterations.
For each iteration, we randomly selected 60% of the cross-validation ��G
predictions.

To further evaluate and compare our performance to that of other
prediction methods, we also utilized the validation set compiled by Dehouck
et al. (2009). This validation set includes 350 mutations from 67 different
proteins that were not included in any of the training databases of current
methods (specified in Supplementary Table S3). Here, the predicted ��G
values of Prethermut and PoPMuSiC-2.0, used as features in Pro-Maya’s
prediction scheme, were calculated using a 5-fold cross-validation on
PoPMuSiC-DB after removing the validation set.

To assess how the number of mutations with known ��G values in the
query position affect the prediction accuracy, we compared the performance
of two leave-one-out (LOO) cross-validation variations named LOO-all and
LOO-neglected. In each iteration of both procedures, one query mutation was
kept as a test and the rest of the mutations were used for training. However,
during the LOO-neglect, randomly selected mutation occurring at the query
position was removed from the training set.

To empirically estimate how well Pro-Maya can be generalized to unseen
mutations, it is important that the training and testing sets are as dissimilar
as possible. Therefore, we performed an additional LOO variation, we name
LOO-unseen. During each iteration of the LOO-unseen, a single mutation
was kept for testing and the rest of the mutations in the query position were
used for training. Next, all the rest of the mutations that occur at proteins
with a low sequence identity to the query protein (sequence identity <30%)
were added to the training set.

At each iteration of LOO-all, LOO-neglected and LOO-unseen the ��G
prediction models of Prethermut and PoPMuSiC-2.0 had to be retrained
with the modified training set. Since for the Potapov-DB we do not have the
PoPMuSiC-2.0 statistical force field components (needed for the retraining),
all the LOO procedures were conducted solely on the PoPMuSiC-DB for
which we have the required PoPMuSiC-2.0 statistical force field components.

To evaluate performance, we used two standard measures: the Pearson’s
correlation coefficient (PCC) and root mean square error (RMSE) between
the measured and predicted ��G values (Supplementary Equations S7
and S8).

2.4 Data collection
Both the sequences and PDB file names required were extracted from the
corresponding SWISS-PROT entries (Jain et al., 2009). The MSAs and the
PDB files were downloaded from the ConSurf-DB (Goldenberg et al., 2009)
and PDB (Berman et al., 2000) databases, respectively.

3 RESULTS

3.1 Cross-validation results
According to the PCC and RMSE, Pro-Maya exhibits better
performance than FoldX, Prethermut and PoPMuSiC-2.0 for
both the Potapov-DB and the PoPMuSiC-DB sets (Table 1;
Supplementary Figures S2 and S3). Pro-Maya reached a PCC of
0.77 for both sets (column ��GRF∪CFCB) and RMSE values
of 1.09 and 0.94 for the Potapov-DB and PoPMuSiC-DB sets,
respectively. These results are also superior to those obtained by
CC/PBSA (Benedix et al., 2009), EGAD (Pokala and Handel,
2005), FoldX (Guerois et al., 2002), Hunter (Tian et al., 2009), I-
Mutant2.0 (Capriotti et al., 2005), Rosetta (Rohl et al., 2004) and the
combined method used by Potapov et al. (2009) on the Potapov-DB
(Supplementary Table S4).

To gain a more comprehensive understanding, we also examined
the results on the MRPMs and SRPMs subsets of each of the two
datasets. The results for the MRPM sets exhibit how well Pro-Maya
utilizes the ��G data of known mutation(s) in a specific position to
predict ��G values of other mutations at the same site. As can
be seen in Table 1, although all methods perform better on the
MRPMs, our CFCB algorithm utilizes the training data best and
reaches correlation values of 0.83 for the Potapov-DB set and 0.82
for the PoPMuSiC-DB set.

The results for the SRPM subset indicate the performance for
mutations at positions that are absent from the training set. For this
mutation subset, our prediction scheme does not involve the CFCB
algorithm and relies solely on the Random Forests regression and
on the quality of the features. Here, our prediction scheme performs
slightly better than Prethermut and PoPMuSiC-2.0 on both datasets.
However, all methods show major decline in the performance. Note
that although the ranges of Prethermut’s and our results coincide
according to the average and SD, for all subsets created during
the bootstrapping process our PCC showed an average (minor)
improvement of 0.02±0.1 over the PCC of Prethermut, the best
of the other methods.

Interestingly, each method achieved a lower RMSE for the
PoPMuSiC-DB set than for the Potapov-DB set. This trend is also
seen in the cross-validation results of the 1405 mutations shared
by the two datasets (data not shown). Possible explanations are
suggested in the Section 4 below.

Pro-Maya’s performance was also evaluated on a validation set of
mutations excluded from the PoPMuSiC-DB. This validation set has
been previously used by Dehouck et al. to benchmark PoPMuSiC-
2.0, Dmutant (Zhou and Zhou, 2002), Auto-MUTE (Masso and
Vaisman, 2010), FoldX (Guerois et al., 2002), CUPSAT (Parthiban
et al., 2006), Eris (Yin et al., 2007) and I-Mutant-2.0 (Capriotti
et al., 2005). Both the PCC and RMSE values indicate that Pro-
Maya performs better than these aforementioned methods (Table 2;
Supplementary Table S5) for the entire validation set and for its
SRPM and MRPM subsets. As can be seen in Table 2, Pro-Maya’s
PCC on the entire validation set reaches a value of 0.79, constituting
an improvement of 0.07 and of 0.1 over the PCCs obtained by
Prethermut and by PoPMuSiC-2.0, respectively.

To estimate how well Pro-Maya performs on query mutations
at proteins that are not homologous to any of the proteins in the
training set, we compared the performance of the LOO-unseen
with the performance of the LOO-all (Supplementary Table S4).
Interestingly, although the performance of the ��GRF of the
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Table 1. Cross-validation results

Mutation
number

Dataset Performance
measure

Pro-Maya Prethermut PoPMuSiC-2.0 FoldX

��GRF CFCB ��GRF U CFCB

All the dataset 2155 Potapov-DB PCC 0.74±0.01 0.77±0.01 0.72±0.01 0.62±0.01 0.55±0.02
RMSE (kcal/mol) 1.13 1.09 1.20 1.35 1.64

2648 PoPMuSiC-DB PCC 0.74±0.01 0.77±0.01 0.71±0.01 0.62±0.01 0.52±0.02
RMSE (kcal/mol) 0.99 0.94 1.05 1.15 1.71

SRPM 752 Potapov-DB PCC 0.59±0.03 0.57±0.03 0.48±0.04 0.50±0.03
RMSE (kcal/mol) 1.28 1.30 1.39 1.57

913 PoPMuSiC-DB PCC 0.64±0.02 0.61±0.02 0.55±0.02 0.44±0.03
RMSE (kcal/mol) 1.11 1.14 1.21 1.74

MRPM 1403 Potapov-DB PCC 0.80±0.01 0.83±0.01 0.77±0.01 0.69±0.01 0.58±0.02
RMSE (kcal/mol) 1.07 0.98 1.14 1.32 1.67

1735 PoPMuSiC-DB PCC 0.79±0.01 0.82±0.01 0.75±0.01 0.66±0.01 0.55±0.02
RMSE (kcal/mol) 0.92 0.85 0.99 1.12 1.69

The PCC and RMSE of current methods and Pro-Maya’s CFCB and Random Forests (��GRF) prediction schemes on the PoPMuSiC-DB and Potapov-DB datasets and its subsets.
The two subsets are mutations at positions absent from the training set (SRPM), and mutations at positions found in the training set (MRPM). The ��GRF∪ CFCB column reports
the total performance for the ��GRF and CFCB results on the SRPM and MRPM subsets, respectively. The average and SD of the performance measures were obtained by a
bootstrap procedure run for 1000 iterations performed on the cross-validation predictions. As can be seen, Pro-Maya outperforms the other methods. Moreover, the results for the
MRPM set indicate that the incorporation of experimental data regarding mutations at the query position improved the prediction accuracy.

Table 2. Performance over the validation set

Mutation Performance Pro-Maya Prethermut PoPMuSiC-2.0
number measure

All the
dataset

350 PCC 0.79 0.72 0.69

RMSE
(kcal/mol)

0.96 1.12 1.16

SRPM 196 PCC 0.69 0.65 0.65
RMSE

(kcal/mol)
1.09 1.15 1.15

MRPM 154 PCC 0.89 0.79 0.75
RMSE

(kcal/mol)
0.77 1.09 1.18

The PCC and RMSE of Pro-Maya’s [Pro-Maya’s final performance is the total
performance for the Random Forests and collaborative filtering results on the SRPM and
MRPM subsets, respectively (��GRF ∪CFCB)], Prethermut’s and PoPMuSiC-2.0’s
prediction schemes on the whole validations set, and the MRPM and SRPM subsets.
As can be seen, Pro-Maya performs better on the entire validation set and subsets.

LOO-unseen declined both on the MRPM and SRPM subsets
(PCC of 0.76±0.01 and 0.60±0.02, respectively), the CFCB
algorithm was able to compensate and maintain a similar PCC in
both LOO procedures, achieving a PCC of 0.83±0.01.

The results of the 5- and 10-fold and LOO-unseen cross-validation
can be viewed online at the FAQ section of the Pro-Maya website.
The FAQ section also contains a detailed description of Pro-Maya’s
training set e.g. number of proteins, number of mutated positions per
proteins, functionality [SCOP classification (Andreeva et al., 2008)]
and physical properties of the proteins.

An analysis of Pro-Maya’s LOO-unseen versus the SCOP
classification (Supplementary Table S6) of the proteins shows that

Pro-Maya performs similarly on the All α, All β, α+β and α/β

SCOP classes with a PCC ranging from 0.59 to 0.64 for the
SRPM and 0.8–0.83 for the MRPM. The PoPMuSiC-DB includes
low number of mutations from the Coiled-coil, Multi-domain and
Small proteins SCOP classes. Thus, we cannot estimate Pro-Maya
performance on these classes, although there is no reason to believe
that the performance over them will differ significantly from the rest.

3.2 How do the number and type of mutations with
known ��G values in the query position affect the
prediction accuracy?

Figure 2 shows that Pro-Maya’s prediction accuracy increases
significantly with the addition of a single or two known mutations
at the query position, and that the accuracy does not improve further
with the addition of more than two records.

Intuitively, we might expect that the prediction accuracy of the
CFCB algorithm should be correlated with the level of similarity
between the physicochemical properties of the query and recorded
mutations. To examine this hypothesis, for each of the mutations
predicted by the CFCB algorithm in the PoPMuSiC-DB, we
measured the shortest physicochemical distance [using the Miyata
matrix (Miyata et al., 1979)] from the query mutation amino acid
to any of the recorded mutations. For example, given a query
mutation to isoleucine at residue 29 in the apomyoglobin protein
(PDB id: 1bvc chain A), we measured the shortest Miyata distance
from isoleucine to any of the mutations, e.g. alanine, valine and
methionine. Here, we set the shortest Miyata distance to 0.29, which
is the Miyata distance between isoleucine and methionine. The
correlation between the Miyata distances of all query mutations with
the squared error [(predicted ��G - observed ��G)2] reached only
a low PCC of 0.14. This unexpected low correlation suggests that the
performance of the CFCB algorithm is not affected by the identity
of the mutations with known ��G values at the query position.
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Fig. 2. The PCC of Pro-Maya on the PoPMuSiC-DB versus the number
of known mutations at the query position using the LOO-all and LOO-
neglect. The number of mutations in each group is shown in parentheses. For
example, the second data point of the black curve indicates the performance
of Pro-Maya on 327 query mutations ate positions which have two additional
mutations with a known ��G in the training set. The first data point of the
grey curve was calculated using the ��GRF. The difference between the grey
and black curves indicates the PCC improvement achieved by the addition
of a single known mutation in the query position. The results suggest that
the improvement in accuracy is facilitated by the incorporation of as few as
1–2 known ��G values in the query position.

4 DISCUSSION
We tested Pro-Maya extensively using cross-validation on two
datasets and an additional validation dataset, and found that
it outperformed current methods for the prediction of mutation
stability. Our results demonstrate that the availability of as few as
one or two records in the query position improve the prediction
accuracy of ��G values of additional mutations in that position.
This improvement is independent of the amino acid identity of
these records and of the sequence identity of the query protein to
the training set. Thus, a systematic alanine-scanning mutagenesis of
all the amino acids in a protein could greatly increase Pro-Maya’s
prediction accuracy for any mutation in the protein.

The performance of our Random Forests prediction scheme on
the SRPM subset is slightly better than that of the other methods
we investigated. We attribute the improvement to the use of an
inhomogeneous feature set comprising PEP-, SEP- and evolution-
based features, including predictions by the Prethermut (Tian et al.,
2010) and PoPMuSiC-2.0 (Dehouck et al., 2009) tools. Previous
prediction methods, in contrast, have been based on features of a
single type (e.g. only PEP).

Pro-Maya’s RMSEs for mutations in the PoPMuSiC-DB set
are consistently lower than those for the Potapov-DB set. This is
presumably because of the different procedures used for compilation
of each dataset. PoPMuSiC-DB’s compilation procedure used a
weighted average of the identical mutations occurring in different
conditions to calculate the ��G values that are most likely to occur
at physiological conditions. Whereas, the Potapov-DB compilation
procedure gives equal weight to the various conditions at which
��G values are measured. Our prediction scheme does not take
into account the conditions at which the ��G was measured.
Thus, it assumes that all measurements were taken under the same
conditions. Therefore, the PoPMuSiC-DB mutation set, which is
characterized by more homogenous experimental conditions, is
presumably more suitable for our prediction scheme, as indicated
by the low RMSE value. To achieve more accurate predictions, we
trained the Pro-Maya web server using the PoPMuSiC-DB set. Thus,

the server is best suited for predicting mutations at physiological
conditions.

Pro-Maya’s improved accuracy is facilitated by the use of a
baseline estimator that utilizes known ��G records to determine
a position-specific baseline ��G (bi) model. The underlying
assumption of Pro-Maya is that the ��G of a mutation is strongly
dependent on properties that are inherent to the amino acid position
in the protein (e.g. solvent accessibility, amino acid identity,
interaction with the environment and secondary structure). Thus,
on average all mutations at the same position are expected to
have similar ��G values. Therefore, the position baseline ��G
which presumably reflects the inherent properties of the position
can roughly model the query mutation. To fully model a mutation,
Pro-Maya also uses a content based-model and a MU-specific ��G
baseline-based model. These models describe the mutation outcome
attributes (e.g. physicochemical properties) and predict the ��G
shift from the position baseline. Nevertheless, it is expected that
mutations with an irregular ��G that differs much from the position
��G baseline would be harder to predict.

By design, Pro-Maya is not very suitable as a classifier of whether
a mutation would stabilize or destabilize the protein; a classifier
should be trained to this end.

CF algorithms have been developed mainly for online electronic
commerce applications and are particularly useful for exploiting
large datasets very rapidly. To the best of our knowledge, their
use in biology is quite scarce (Erhan et al., 2006). The success
of the CFCB algorithm in this study and the capability of the
neighborhood- and latent factor-based models to identify biological
properties (discussed in the Supplementary Material) suggest that
the CF approach could be applied to additional problems in biology.
Examples include the identification of deleterious mutations in
single nucleotide polymorphism data, the detection of true protein–
protein interactions in noisy yeast two-hybrid and massspectrometry
data, as well as the prediction of ligand and drug molecules that could
bind target proteins. Our CFCB algorithm and its integration with
the neighborhood- and latent factor-based models can be readily
adapted to these problems.

ACKNOWLEDGEMENTS
We would like to thank Daphna Meroz for helpful discussions and
Amit Ashkenazi for her assistance in the web server construction.

Funding: This study was supported by a grant from the German-
Israeli Project Cooperation (DIP). Y.D. is Postdoctoral Researcher
at the Belgian F.R.S.-FNRS. H.A. is a fellow of the Edmond J. Safra
Program in Bioinformatics at Tel-Aviv University.

Conflict of Interest: none declared.

REFERENCES
Andreeva,A. et al. (2008) Data growth and its impact on the SCOP database: new

developments. Nucleic Acids Res., 36, D419–D425.
Bahar,I. and Jernigan,R.L. (1997) Inter-residue potentials in globular proteins and the

dominance of highly specific hydrophilic interactions at close separation. J. Mol.
Biol., 266, 195–214.

Benedix,A. et al. (2009) Predicting free energy changes using structural ensembles.
Nat. Methods, 6, 3–4.

Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235–242.

3291



[17:15 4/11/2011 Bioinformatics-btr576.tex] Page: 3292 3286–3292

G.Wainreb et al.

Bloom,J.D. and Glassman,M.J. (2009) Inferring stabilizing mutations from protein
phylogenies: application to influenza hemagglutinin. PLoS Comput. Biol., 5,
e1000349.

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.
Bromberg,Y. and Rost,B. (2009) Correlating protein function and stability through the

analysis of single amino acid substitutions. BMC Bioinformatics, 10 (Suppl. 8), S8.
Capriotti,E. et al. (2005) I-Mutant2.0: predicting stability changes upon mutation from

the protein sequence or structure. Nucleic Acids Res., 33, W306–W310.
Cheng,J. et al. (2006) Prediction of protein stability changes for single-site mutations

using support vector machines. Proteins, 62, 1125–1132.
Dehouck,Y. et al. (2009) Fast and accurate predictions of protein stability changes

upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
Bioinformatics, 25, 2537–2543.

Erhan,D. et al. (2006) Collaborative filtering on a family of biological targets. J. Chem.
Informat. Model., 46, 626–635.

Frank,E. et al. (2004) Data mining in bioinformatics using Weka. Bioinformatics, 20,
2479–2481.

Gilis,D. and Rooman,M. (1997) Predicting protein stability changes upon mutation
using database-derived potentials: solvent accessibility determines the importance
of local versus non-local interactions along the sequence. J. Mol. Biol., 272,
276–290.

Goldenberg,O. et al. (2009) The ConSurf-DB: pre-calculated evolutionary conservation
profiles of protein structures. Nucleic Acids Res., 37, D323–D327.

Guerois,R. et al. (2002) Predicting changes in the stability of proteins and protein
complexes: a study of more than 1000 mutations. J. Mol. Biol., 320, 369–387.

Hubbard,S.J. et al. (1991) Molecular recognition. Conformational analysis of limited
proteolytic sites and serine proteinase protein inhibitors. J. Mol. Biol., 220, 507–530.

Jackson,S.E. et al. (1993) Effect of cavity-creating mutations in the hydrophobic core
of chymotrypsin inhibitor 2. Biochemistry, 32, 11259–11269.

Jain,E. et al. (2009) Infrastructure for the life sciences: design and implementation of
the UniProt website. BMC Bioinformatics, 10, 136.

Kessel,A. and Ben-Tal,N. (2002) Free energy determinants of peptide association with
lipid bilayers. In Simon,S.A. and McIntosh,T.J. (eds) Peptide Lipid Interactions.
Academic Press, Orlando, pp. xxi, p. 583.

Kollman,P.A. et al. (2000) Calculating structures and free energies of complex
molecules: combining molecular mechanics and continuum models. Acc. Chem.
Res., 33, 889–897.

Koren,Y. (2008) Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceeding of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD’08). pp. 426–434.

Kumar,M.D. et al. (2006) ProTherm and ProNIT: thermodynamic databases for proteins
and protein-nucleic acid interactions. Nucleic Acids Res., 34, D204–D206.

Lazaridis,T. and Karplus,M. (2000) Effective energy functions for protein structure
prediction. Curr. Opin. Struct. Biol., 10, 139–145.

Liaw,A. and Wiener,M. (2002) Classification and Regression by randomForest. R News,
2, 18–22.

Masso,M. and Vaisman, I.I. (2010) AUTO-MUTE: web-based tools for predicting
stability changes in proteins due to single amino acid replacements. Protein Eng.
Des. Sel., 23, 683–687.

Miyata,T. et al. (1979) Two types of amino acid substitutions in protein evolution.
J. Mol. Evol., 12, 219–236.

Montanucci,L. et al. (2008) Predicting protein thermostability changes from sequence
upon multiple mutations. Bioinformatics, 24, i190–i195.

Ng,P.C. and Henikoff,S. (2003) SIFT: predicting amino acid changes that affect protein
function. Nucleic Acids Res., 31, 3812–3814.

Parthiban,V. et al. (2006) CUPSAT: prediction of protein stability upon point mutations.
Nucleic Acids Res., 34, W239–W242.

Pokala,N. and Handel,T.M. (2005) Energy functions for protein design: adjustment
with protein-protein complex affinities, models for the unfolded state, and negative
design of solubility and specificity. J. Mol. Biol., 347, 203–227.

Potapov,V. et al. (2009)Assessing computational methods for predicting protein stability
upon mutation: good on average but not in the details. Protein Eng. Des. Sel., 22,
553–560.

Prevost,M. et al. (1991) Contribution of the hydrophobic effect to protein stability:
analysis based on simulations of the Ile-96—Ala mutation in barnase. Proc. Natl
Acad. Sci. USA, 88, 10880–10884.

Rasmussen,C.E. and Williams,C.K.I. (2006) Gaussian Processes for Machine Learning.
Adaptive computation and machine learning. MIT Press, Cambridge, MA.

Rohl,C.A. et al. (2004) Protein structure prediction using Rosetta. Methods Enzymol.,
383, 66–93.

Sali,A. and Blundell,T.L. (1993) Comparative protein modelling by satisfaction of
spatial restraints. J. Mol. Biol., 234, 779–815.

Samudrala,R. and Moult,J. (1998) An all-atom distance-dependent conditional
probability discriminatory function for protein structure prediction. J. Mol. Biol.,
275, 895–916.

Seeliger,D. and de Groot,B.L. (2010) Protein thermostability calculations using
alchemical free energy simulations. Biophys. J., 98, 2309–2316.

Shen,B. et al. (2008) Physicochemical feature-based classification of amino acid
mutations. Protein Eng. Des. Sel., 21, 37–44.

Sippl,M.J. (1995) Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol.,
5, 229–235.

The_UniProt_Consortium (2010) The Universal Protein Resource (UniProt) in 2010.
Nucleic Acids Res., 38, D142–D148.

Tian,J. et al. (2010) Predicting changes in protein thermostability brought about by
single- or multi-site mutations. BMC Bioinformatics, 11, 370.

Tian,J. et al. (2009) Prediction of amyloid fibril-forming segments based on a support
vector machine. BMC Bioinformatics, 10 (Suppl. 1), S45.

Vaisman,I.I. et al. (1998) Compositional preferences in quadruplets of nearest neighbor
residues in protein structures: statistical geometry analysis. In Proceedings of the
IEEE Symposia on Intelligence and Systems. pp. 163–168.

Wainreb,G. et al. (2010) MuD: an interactive web server for the prediction of non-
neutral substitutions using protein structural data. Nucleic Acids Res., 38 (Suppl. 2),
W523–W528.

Yin,S. et al. (2007) Modeling backbone flexibility improves protein stability estimation.
Structure, 15, 1567–1576.

Zhou,H. and Zhou,Y. (2002) Distance-scaled, finite ideal-gas reference state improves
structure-derived potentials of mean force for structure selection and stability
prediction. Protein Sci., 11, 2714–2726.

3292


