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Abstract

Motivation: In light of the massive growth of the scientific literature, text mining is increasingly used to extract bio-
logical pathways. Though multiple tools explore individual connections between genes, diseases and drugs, few ex-
tensively synthesize pathways for specific diseases and drugs.

Results: Through community detection of a literature network, we extracted 3444 functional gene groups that repre-
sented biological pathways for specific diseases and drugs. The network linked Medical Subject Headings (MeSH)
terms of genes, diseases and drugs that co-occurred in publications. The resulting communities detected highly
associated genes, diseases and drugs. These significantly matched current knowledge of biological pathways and
predicted future ones in time-stamped experiments. Likewise, disease- and drug-specific communities also recapitu-
lated known pathways for those given diseases and drugs. Moreover, diseases sharing communities had high
comorbidity with each other and drugs sharing communities had many common side effects, consistent with related
mechanisms. Indeed, the communities robustly recovered mutual targets for drugs [area under Receiver Operating
Characteristic curve (AUROC)¼0.75] and shared pathogenic genes for diseases (AUROC¼0.82). These data show
that literature communities inform not only just known biological processes but also suggest novel disease- and
drug-specific mechanisms that may guide disease gene discovery and drug repurposing.

Availability and implementation: Application tools are available at http://meteor.lichtargelab.org.

Contact: lichtarge@bcm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Even though pathway information is routinely used to explore hid-
den biological processes in large omics data, current pathway infor-
mation is incomplete. Not only knowledgebases do not cover
interactions of all human protein-encoding genome (Fabregat et al.,
2018), they also focus on mainly general pathways, with few of
them related to specific diseases and drugs. Manual curation to com-
plete pathway information is the gold standard but hard-pressed to
keep up with a biomedical literature of more than 29 million papers,
with 900 000 added each year (Citations Added to MEDLINEVR by
Fiscal Year: https://www.nlm.nih.gov/bsd/stats/cit_added.html).
Professional curators could review only a minuscule portion of the
literature body: about 42 000 articles in 6 years (Davis et al., 2013,
2019). The difficulty of curating pathway information from the lit-
erature slows knowledge discovery.

Text mining can automate extracting information from the lit-
erature, supporting pathway curation (Krallinger et al., 2005).
Multiple tools explore biological associations between genes,

diseases and drugs from text. First, relevant biological entities
have to be identified, through pre-defined rules and dictionaries
(Narayanaswamy et al., 2003) or by learned text data features of
machine learning (ML) (Habibi et al., 2017). These approaches
often yield high precision but low recall due to limited training
data. These tools are also not generalized enough to apply to
other corpora and are computationally intensive. Medical Subject
Headings (MeSH) offers a solution. MeSH terms reliably capture
key entities of all articles in MEDLINE because they are manually
curated by biocurators to index these articles. MeSH terms include
over 28 000 MeSH main heading descriptors and 240 000
Supplementary Concept Records (SCRs) (Fact Sheet Medical
Subject Headings: https://www.nlm.nih.gov/pubs/factsheets/mesh.
html), which are updated daily to annotate new chemicals and
rare diseases that are not covered by MeSH descriptors yet. MeSH
terms can also be mapped to IDs in other databases, supporting
integration of literature-mined information to knowledgebases and
experimental networks.
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Biological associations for recognized bio-entities can be
extracted from text through co-occurrence and natural language
processing (NLP). Co-occurrence approaches assume that co-
mentioned bio-entities in text are biologically related (Alako et al.,
2005). The confidence for biological relatedness is based on the
number of articles with co-mentions. NLP methods rely on prior
knowledge or apply ML to learn how biological events are men-
tioned in text (Li et al., 2017). NLP approaches are often more ac-
curate than co-occurrence methods and can reveal nature of the
extracted associations. However, NLP methods are restricted to
pre-defined/learned relationships and computationally intensive.
Co-occurrence methods are more robust to detect novel biological
associations and can be easily scaled up. Co-occurrence associations
also cover various biological aspects, such as disease candidate genes
(Hristovski et al., 2005), PPI (Tsuruoka et al., 2008) and chemical–
gene associations (Rebholz-Schuhmann et al., 2007). Therefore,
co-occurrence associations can efficiently supplement pathway
information.

To construct pathways, individual text-mined associations can
be manually integrated, which is a tedious task due to a great num-
ber of associations. Efforts to automate this process have been done,
most notably through BioNLP 2013 Pathway Curation task
(Pyysalo et al., 2015), which aimed to aggregate relevant entities
and their genetic/molecular interactions together to curate path-
ways. Participating methods applied ML and achieved competitive
performance, yet they were restricted by training data and had trou-
ble scaling up. This urges a new approach to efficiently assemble
relevant bio-entities and their associations in order to synthesize
pathways.

Graph theory can model the vast number of co-occurrence asso-
ciations of bio-entities, facilitating pathway synthesis. Co-
occurrence links can be constructed into networks, in which nodes
are biological entities and edges are their co-occurrence relations.
MeSH co-occurrence networks robustly recapitulate pathway infor-
mation in knowledgebases and discover new associative patterns
(Wilson et al., 2018). These networks also exhibit small world prop-
erties with dense local clusters: entities within clusters are highly
interconnected while links among clusters are sparser (Kastrin et al.,
2014). When entities have similar neighbors in the networks, they
are more likely to link together or be involved in similar processes.
In experimental PPI networks, small-world properties help pinpoint
most relevant associations for certain biological processes and path-
ways (Chen et al., 2015; Voevodski et al., 2009). Therefore, we
hypothesized that clusters in MeSH co-occurrence networks may
also represent functional biological pathways.

Network clusters or communities can be constructed through
community detection algorithms using topological properties of the
networks. Since crosstalk between biological pathways is observed,
we are particularly interested in methods that detect overlapping
and hierarchically nested communities, reflecting the intricated
nature of biology. Previously, Clauset–Newman–Moore (Clauset
et al., 2004), Louvain (Blondel et al., 2008), BIGCLAM (Yang and
Leskovec, 2013), and Recursive Louvain (RL) (Wilson et al., 2017)
methods detected meaningful clusters that represented functional
pathways and disease processes in STRING 9.1 experimental PPI
network (Franceschini et al., 2012). These tools performed well and
fast on the massive network. They searched for densely overlapping
and hierarchically nested communities as well as non-overlapped
clusters to resemble actual biological pathways. RL, which iterative-
ly breaks down further Louvain-detected communities into smaller
groups, detected the similar number of communities with the most
similar size distribution to those of annotated pathways than the
aforementioned clustering tools. Genes in RL communities were sig-
nificantly overlapped with control reference pathways, biased to
pathogenic genes and co-expressed in breast cancer (Wilson et al.,
2017). These data show that RL detected biologically functional
gene groups in the PPI network.

Because community structure of the PPI network revealed func-
tional pathways, we proposed generating communities in a co-
occurrence network of both MeSH main heading descriptors and
SCRs in order to efficiently synthesize pathways from literature-

mined associations. Specifically, we now hypothesized that the
detected communities, which were groups of highly associated
genes, diseases and drugs/chemicals in the network, captured bio-
logical pathways and mechanisms of diseases and drugs. Our data
validated the biological relevance of these literature communities,
which were enriched for curated biological pathways. We further
demonstrated that the communities captured curated pathogenic
gene sets for diseases and chemical-perturbed gene expression pro-
files. Clinical relationships between disease–disease and between
chemical–chemical in same communities were also validated.
Finally, we showed that community structures in the MeSH network
helped propose novel disease and drug mechanisms. Overall, the
detected literature communities complement pathway curation from
text by automating pathway synthesis, and support disease gene dis-
covery and drug repurposing through novel predictions of disease-
and drug-specific mechanisms.

2 Materials and methods

2.1 Detecting literature communities
We extracted functional gene sets for specific diseases and chemicals
by applying community detection RL algorithm (Wilson et al.,
2017) to Mesh Term Objective Reasoning (MeTeOR) network
(Wilson et al., 2018) (Fig. 1A). MeTeOR was selected because it ro-
bustly captures biological knowledge by comprehensively aggregat-
ing co-occurrences of both MeSH main heading descriptors and
SCRs, from 22 million MEDLINE publications up to year 2017
(Wilson et al., 2018). MeTeOR also extracts more high-quality asso-
ciations from the literature than other text-mining methods (Wilson
et al., 2018), i.e. STRING Literature (Szklarczyk et al., 2015),
STITCH Literature (Szklarczyk et al., 2016), EVEX (Van
Landeghem et al., 2013) and BeFree (Bravo et al., 2015). The net-
work consists of 1.07�105 nodes of genes (12%), chemicals (83%)
and diseases (5%). Human genes are mapped to EntrezID using
NCBI’s annotations and chemicals to PubchemCID, facilitating our
validation against curated databases (mapping details are described
in Wilson et al., 2018). The network data were downloaded from
http://meteor.lichtargelab.org. RL is the selected community detec-
tion algorithm due to its usability in detecting biologically meaning-
ful clusters in a PPI network (Wilson et al., 2017). After running
Louvain algorithm, RL makes a subgraph of communities with
more than 10 nodes and reruns Louvain detection. The process is
done iteratively until all communities are broken down to commun-
ities with at most 10 nodes or a node is detected in more than 3 com-
munities. Finally, communities that were highly overlapped, i.e.
Jaccard similarity score >0.9, were collapsed, reducing clustering
redundancy.

Jaccard Similarity; J Ci;Cj

� �
¼ jCi \ Cjj
jCi [ Cjj

(1)

where a set of communities Ci,j 2 C.
RL detected communities that contained genes, diseases and

chemicals and were proposed to represent functional pathways.
We excluded communities with fewer than three genes since they
would not represent any reasonable pathways. In addition to com-
munities constructed based on the whole literature that we have
up to year 2017, we also retrieved communities based on past lit-
erature, i.e. up to year 2005 and up to year 2013, for retrospect-
ive studies.

2.2 Evaluating the communities against curated

pathways
We evaluated whether the literature communities captured know-
ledge from curated pathway databases (Fig. 1B). Selected databases
include Molecular Signature Database (MSigDB) (Liberzon et al.,
2011, 2015), Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000), WikiPathways (Kelder et al., 2012),
Reactome (Fabregat et al., 2018), Gene Ontology Annotation
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(GOA) for aspects of Cellular Component, Biological Process and
Molecular Function (Huntley et al., 2015; The Gene Ontology
Consortium, 2017). These databases have different year versions
from year 2005 to year 2017. All gene sets of MSigDB were used
and downloaded from http://software.broadinstitute.org/gsea/
msigdb. The other references were downloaded from http://amp.
pharm.mssm.edu/Enrichr/ (Kuleshov et al., 2016). We performed
hypergeometric tests for each pair of a literature community and a
curated gene set from a database. The hypergeometric P-value is cal-
culated by the following equation:

Hypergeometric Test;P X � jCi \ Rijð Þ

¼ 1�
XjCi\Rij�1

j¼0

jRij
j

� �
M� jRij
jCij � j

� �

M
jCij

� � (2)

where M is the number of genes in both the reference and MeTeOR
network; Ci is the genes in a given community i; Ri is the genes in a
given pathway in a referenced control.

We hypothesized that enrichment P-values of our communities
for curated pathways were more significant than those of random
sets, measured by Kolmogorov–Smirnov (KS) test. Random gene
sets were constructed with similar sizes with the detected
communities.

In addition, we compared the performance of MeTeOR com-
munities with communities that were constructed from other
text-mining networks. Specifically, we aggregated predictions
of gene–gene (GG), gene–disease (GD) and gene–chemical (GC)
associations from other literature-mining methods into a combined
network. The other selected literature-mining methods are
STRING Literature v10.5 (Szklarczyk et al., 2015), STITCH
Literature v5.0 (Szklarczyk et al., 2016), EVEX (Van Landeghem
et al., 2013) and DisGeNET’s BeFree v5.0 (Bravo et al., 2015)
(network statistics summarized in Supplementary Table S1). To
make the comparison fair, we also built communities from associ-
ations of GG, GD and GC from MeTeOR predictions. We
hypothesized that the communities built from MeTeOR gene-
specific edges only are more enriched for pathway information
than communities built from other methods.

We also performed time-stamped experiments to validate our
predictive power for future curated pathways. We conducted enrich-
ment analyses of communities of past literature, i.e. up to year 2005
or 2013, against pathway databases dated in later years. False dis-
covery rate (FDR) was applied and a community significantly cap-
tured a pathway when q-value �0.1. We evaluated whether a novel
community, which did not capture any curated pathway at the year
it was constructed, could later capture newly added pathways or be
confirmed.

2.3 Assessing disease knowledge of the communities
2.3.1 Evaluating how well the communities captured curated disease

pathways

We hypothesized that genes in communities that contained disease
entities explained etiology of those specific diseases (Fig. 1C.i). We
gathered curated disease pathways from Online Mendelian Inheritance
in Man (OMIM: https://www.omim.org) (Hamosh, 2004), ClinVar
(http://www.ncbi.nlm.nih.gov/clinvar/) (Landrum et al., 2014) and
CTD (http://ctdbase.org) (Davis et al., 2019). We also took union of
pathways of all sources for each disease to form a ‘Total’ set. Disease
pathways with fewer than three genes were excluded. For communities
that contained any diseases with pathway data, we performed hyper-
geometric tests for disease pathways against the communities. We
measured area under Receiver Operating Characteristic curve
(AUROC) and area under Precision-Recall curve (AUPRC) to evaluate
how well a disease-specific community captured genetic causes of that
specific disease. The ranking was the inverse of enrichment P-values
for each pair of a disease pathway and a community. The truth table
indicated whether that disease was in that community.

2.3.2 Evaluating clinical and genetic disease–disease relationships in

the communities

We observed cases of multiple diseases in same communities, moti-
vating us to understand their clinical relationships, i.e. shared path-
ology and comorbidity (Fig. 1C.ii). We obtained hierarchies of
disease pathology classes from Disease Ontology (http://disease-
ontology.org) (Schriml et al., 2012). We explored whether diseases
in same communities fell under similar classes. We also retrieved
odds ratio for diseases to occur in same patients from a study (Blair
et al., 2013), which examined 8 clinical cohorts with more than 123
million unique patients. We explored whether diseases co-appearing
in more communities have higher comorbidity. In both relationship
types, we compared distributions of these values in disease pairs
with 0, 1 and 2 (or more) communities. We performed KS and
Fischer’s Exact tests to evaluate whether these distributions were sig-
nificantly different from each other.

2.4 Assessing drug information of the communities
2.4.1 Evaluating how well the communities captured drug-specific

gene expression

We assessed whether drug-related communities explained drug-
perturbed gene expression profiles (Fig. 1D.i). We obtained LINCS
L1000 Connectivity Map—mRNA expression profiles for cell lines
following small molecule perturbation (Subramanian et al., 2017)
from https://amp.pharm.mssm.edu/Enrichr. For each drug in LINCS
that were mapped to the communities, we performed hypergeomet-
ric tests for the communities and drug-perturbed expressed gene

Fig. 1. Overview of discovering biologically meaningful groups of genes, diseases and chemicals. (A) Communities of genes, diseases and chemicals were detected in the

MeTeOR network. Through enrichment analyses, we evaluated whether the communities could capture biological pathways (B), disease pathogenic genes (C.i) and drug-

perturbed gene expression (D.i). Clinical associations between disease pairs (C.ii) and drug pairs (D.ii) in same communities were also explored
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sets. We used FDR q-value �0.1 as a cutoff for a significant pair of
a community and gene expression set. We also performed similar en-
richment analyses using 100 random gene sets with similar genes
and drugs in the communities. We compared the number of drugs
whose expression profiles were explained by the communities com-
pared with random sets.

2.4.2 Evaluating drug–drug relationships in communities

We investigated whether drugs in same communities shared side
effects (Fig. 1D.ii). SIDER database v4.1 (http://sideeffects.embl.de)
(Kuhn et al., 2016) curates side effects for drugs. We hypothesized
that the more communities a pair of drugs share, the more similar
side effects that they have. We compared the distribution of number
of shared side effects of drug pairs in same communities with that of
drug pairs in different communities through KS test.

2.5 Predicting multi-relations for genes, diseases and

drugs
In the communities, some of their genes, diseases and chemicals had
no MeTeOR associations. We hypothesized that these entities were
biologically connected, even though no paper had documented their
associations through MeSH terms. We were particularly interested
in predicting the following three-entity relations: mutual pathogenic
genes for disease pairs, common diseases for gene pairs, shared gene
targets for drug pairs and common drugs for gene pairs. In making
predictions, we considered number of supporting papers for pre-
dicted associations (W), and number of shared communities of the
three entities (Ncom), adjusting with sizes of shared communities
(Sz). Figure 2 summarizes how we made the multi-relation predic-
tions. For example, a prediction of mutual pathogenic gene (Entity
1) for a pair of diseases (Entities 2A and 2B) entailed W and Com-Sz,
which is a combination of Ncom and Sz. If there is no edge linking
Entity 1 to either Entity 2A or Entity 2B, W is 0 as it would be im-
possible to use only the number of supporting papers to predict the
‘mutual’ pathogenic gene Entity 1 because there was no paper link-
ing that gene to either of the diseases.

W ¼ WA þWB

max WA þWBð Þ if WA 6¼ 0; WB 6¼ 0; else W ¼ 0 (3)

Sz ¼ 1PNcom

i¼1 Si

(4)

Com� Sz ¼ Ncom þ Sz

max Ncom þ Szð Þ (5)

where WA is the edge weight between Entity 1 and Entity 2A (i.e.
the number of articles in which Entity 1 and Entity 2A co-occur);
WB is the edge weight between Entities 1 and 2B; and Si is the

number of entities in a community index i in a set of Ncom shared
communities.

Each multi-relation prediction was ranked by three measures:
just W, just Com-Sz and their sum. Validation was made against
curated gene-disease associations in databases OMIM, CTD and
DisGeNET v5.0 (Pi~nero et al., 2017) and against gene-chemical
associations in databases CTD and STITCH v5.0 (http://stitch.embl.
de) (Szklarczyk et al., 2016). The AUROC was implemented to
evaluate the performances of different measures. Note that since we
were interested in pathway-relevant communities, we limited our
communities to have equal and fewer than 100 genes in this
analysis.

3 Results

3.1 Overview of literature communities
When using the whole MeTeOR network information, the RL algo-
rithm detected 3444 communities comprising a mix of gene, disease
and chemical entities (Table 1; Fig. 3). All were defined to contain at
least three genes in order to capture biological pathway context. A
total of 958 communities consisted of all 3 entity types, potentially
reflecting intricate relationships among the contained genes, dis-
eases, and drugs. Of the rest, 201 communities contained just genes
and diseases while 1330 communities had only genes and chemicals.
This likely reflects that the number of chemical entities dominated
the MeTeOR network. These communities should allow us to ex-
plore disease and drug processes.

3.2 Communities captured current and predicted future

biological pathways
To investigate whether the literature communities were biologically
meaningful, a positive control first evaluated whether the commun-
ities captured knowledge from already curated pathways or func-
tional gene sets. This was measured by the significance of any
overlap between MSigDB pathways and the literature communities
(Fig. 1B) compared with that with random genes. Figure 4A shows
that the literature communities were systematically enriched for
curated pathways (KS test: P<0.0001). Specifically, nearly all of
the overlap P-values of the communities were <0.01 unlike those of
random genes centered above that threshold. Furthermore,
MeTeOR communities, either with gene-specific edges only or all
edges, captured MSigDB pathway information more than commun-
ities using other text-mining methods (Supplementary Fig. S1).
These enrichment patterns were not special to MSigDB but held true

Fig. 2. Predicting multi-relations for genes, diseases and chemicals. For example, a

prediction of a mutual pathogenic gene (Entity 1) for a disease pair (Entities 2A and

2B) entailed W and Com-Sz [calculated by Equations (3)–(5)]. The calculations took

into account of edge weights among entities (WA and WB), number of the commun-

ities that these entities co-occur (Ncom) and sizes of those communities (Sz)

Fig. 3. Distribution of the number of entities per communities

Table 1. Summary for the detected communities in the MeTeOR

network

Entity type No. entities No. communities

Gene 11 127 3444

Disease 4773 1159

Chemical 67 385 2288
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against all the other databases we tested: Reactome, KEGG,
WikiPathways, GO Biological Process, GO Cellular Component,
GO Molecular Function (Supplementary Figs S1 and S2).
Furthermore, the communities robustly captured the majority of
gene sets in these databases, from 63.5 to 95.6% (Supplementary
Table S2). These data go beyond prior tests (Wilson et al., 2018) to
show that MeTeOR literature communities are enriched for high-
quality meaningful, curated pathway associations.

Based on the capture of known pathways, we hypothesized that
MeTeOR communities could suggest new pathways as well. This
was tested through time-stamped experiments. We constructed
MeTeOR communities based on the literature up to a past date and
then assessed their overlap against pathways added to the database
after that date. This is possible because pathway databases, such as
MSigDB, have sequential dated versions (from year 2005 and be-
yond), allowing us to keep track of newly added pathways. We
showed that at a given time point, i.e. 2005, many ‘novel’ commun-
ities which were not enriched with any pathway then, eventually
developed a significant overlap with the newly added pathways
(Fig. 4B). For example, in 2012, MSigDB annotated the RNase
MRP complex, 70% of which was already annotated as a MeTeOR
community in 2005 (Fig. 4C). The information added to MSigDB
fluctuates over time (Fig. 4B), with little in 2016–2017 so that few
of the novel communities could be further validated. Over 12 years
from 2005 to 2017, however, more than half of the communities
were confirmed. These data show that literature communities can
discover new pathways, and communities that are still not validated
remain potential candidates for unknown biological processes and
drug/disease pathways. In Sections 3.3 and 3.4, we specifically
explored these novel communities for diseases and drugs,
respectively.

There are two additional layers of complexity to this retrospect-
ive analysis. First, communities from 2005 could become enriched
for pathways or stay novel depending on the reference used
(Supplementary Fig. S3A). This is because each reference may hold a
different type and source of data. We chose to focus on MSigDB be-
cause it is a high-quality dataset often used for pathway analysis,
but our conclusions hold across many different sources
(Supplementary Fig. S3). Second, the year 2005 is not unique in
offering insights into pathways, and we demonstrated that commun-
ities created on 2013 data also predicted groups of genes about to be
annotated (Supplementary Fig. S3B). Additionally, there were more
communities obtained based on literature up to 2013 than 2005,

suggesting that with more literature information, more groupings of
biological entities can be generated that are of potential value.
Interestingly, for similar reference versions, there were more com-
munities in year 2013 validated than those constructed in year
2005, indicating that updating the literature information allowed
more accurate recapitulation of biological pathways.

In conclusion, the communities built from modularity of the
MeSH co-occurrence network summarized current pathway know-
ledge and predicted future pathway information worthy of experi-
mental assessment.

3.3 Communities captured disease-specific pathways
Multiple communities contained diseases in addition to genes. We
hypothesized that these communities suggested meaningful relation-
ships among diseases and genes, such as disease pathogenic genes
and disease comorbidity. We first investigated whether genes in
same communities of diseases were causative for these diseases. We
gathered curated disease pathways from OMIM, ClinVar and CTD,
and used them to validate the gene sets for each disease-contained
community. We proposed that when a community contained a spe-
cific disease, that community was highly enriched in pathogenic
genes for the disease (Fig. 1C.i). Indeed, when predicting diseases
that each community contained, we achieved an overall AUROC of
0.64 and up to 0.80 for OMIM (Table 2). AUPRC was worst for
CTD even though AUROC for CTD was comparable with that for
ClinVar, suggesting that predictions for CTD were less precise.
Predictive performances for OMIM and ClinVar were better than
that for CTD because CTD is more general in scope while OMIM
and ClinVar are more clinically focused. This is best demonstrated
at the level of annotation, where clinicians and physicians annotate
OMIM and ClinVar while non-clinical specialists went through the
literature to curate CTD to include a much greater number of gen-
eral disease–gene associations (Supplementary Table S3). The major-
ity of disease pathway information of the total or combined set was
from CTD (Supplementary Table S3), leading to similar predictive
performances between total and CTD. These data show that gener-
ally communities captured gene sets for diseases but represented
clinically significant genes especially well.

We further unraveled clinical associations between disease–dis-
ease pairs within communities. Our hypothesis was that diseases in
the same communities shared similar pathology (Fig. 1C.ii). We first
looked at Disease Ontology, in which 2397 diseases were mapped to
the MeTeOR communities. We investigated whether diseases
detected in the same communities fell under similar disease classifi-
cations. We found that most diseases that shared communities were
in the same classes, suggesting that they shared similar pathologies
(Fischer’s Exact test: P<0.0001, odds ratio¼6.3) (Supplementary
Table S4). This finding highlights that communities depicted patho-
physiological relationships for the diseases.

Another disease–disease relationship type that we explored in
communities was comorbidity (Fig. 1C.ii). Previous studies show
that there is a strong correlation between disease comorbidity and
their genetic and molecular risk interactions (Blair et al., 2013; Lee
et al., 2008). Likewise, we saw that the more communities a pair of
diseases were detected together, the higher odds ratio that they co-
occur in same patients (Fig. 5; Supplementary Table S5). This result
further suggests that diseases in the same communities share patho-
physiology. Combining with the previous finding that disease-
specific communities recapitulated well curated information of dis-
ease driver genes, the data demonstrate that the common underlying

Fig. 4. The communities captured knowledge from the curated pathways of

MSigDB. (A) The community P-values for enrichment of MSigDB pathways were

skewed to significance compared with random. (B) Novel communities in year 2005

predicted pathways added to MSigDB after year 2005. (C) RNase MRP complex

gene set, which was curated in 2012, was majorly annotated in a community in year

2005 (Jaccard similarity¼0.70)

Table 2. Area under ROC curve (AUROC) and area under precision-

recall (AUPRC) for community predictions of disease pathways

Reference AUROC AUPRC

OMIM 0.80 0.71

ClinVar 0.68 0.44

CTD 0.64 0.20

Total 0.64 0.20
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mechanisms for diseases in same communities can be explained by
genes in same communities.

3.4 Communities captured drug-specific pathways
We explored whether genes in the communities reflected drug path-
ways (Fig. 1D). Specifically, we examined whether genes in drug-
specific communities recapitulated drug-perturbed gene expression.
We performed hypergeometric enrichment analyses for drug-
containing communities and experimental gene expression profiles
for specific drugs from LINCS database (Fig. 1D.i). We also com-
pared the enrichment results with those when randomizing genes in
the drug-specific communities. We observed that the number of
drugs whose expression profiles were significantly captured by the
communities was much higher than that by random sets (z-score ¼
15; Fig. 6A). This result demonstrates that genes in drug-specific
communities were enriched for genes up/down-regulated by the cor-
responding drugs.

Communities that contained a drug usually contained many
drugs, motivating us to explore their clinical associations. We exam-
ined whether drugs in same communities shared side effects
(Fig. 1D.ii). SIDER annotates side effects for 792 drugs mapped to
the MeTeOR communities. Figure 6B illustrates that drugs
co-occurring in more communities shared similar side effects, sug-
gesting that they acted through similar mechanisms. We noted that
multiple drug pairs shared up to 20 common side effects (e.g. itchy
skin and headache), but drug pairs that co-occurred in 2 or more
communities shared more side effects, up to 409. Two drugs that
shared the highest number of side effects were Aripiprazole and
Escitalopram, both treating depression (Nelson et al., 2008). The
community that they co-occurred in was enriched for genes relating
to neuroactive ligand–receptor interactions, explaining 409 side
effects that they shared. Our findings demonstrate that drugs in the
same communities often interacted or acted on genes in the same
communities, inducing similar side effects.

3.5 The literature communities proposed plausible

disease and drug mechanisms
Since the communities captured clinical and biological associations
between genes, diseases and chemicals, we proposed that they could
generate plausible disease and drug mechanisms. We were particu-
larly interested in detecting the following multi-relations: mutual
pathogenic genes for disease pairs, common diseases for gene pairs,
shared gene targets for drug pairs and common drugs for gene pairs.
Identifying mutual genes for disease pairs could explain the common
underlying mechanisms for diseases with similar pathology and/or
high comorbidity. Detecting common diseases for gene pairs shed
light on disease pathways. Predicting shared gene targets for drug
pairs and common drugs for gene pairs facilitates drug repurposing.
The predictions could suggest new drugs for the same gene targets
or repurposed drugs for other genes and diseases.

We started with detection of shared pathogenic genes for a pair
of diseases (Fig. 2). Naively, we prioritized genes annotated on mul-
tiple papers together to indicate that these genes were linked to both
diseases. For our literature network, the number of supporting

papers for associations (W) is the sum of edge weights between
genes and diseases. When compared against a combined gold stand-
ard of curated gene-disease associations, communities predicted
shared genes for diseases well (AUROC ¼ 0.79) (Table 3), suggest-
ing that genes that are highly co-mentioned with diseases in publica-
tions may explain shared mechanisms of these diseases. Next, we
explored whether the number of shared communities that a gene
and a pair of diseases co-occur (Com-Sz) recovered underlying
mechanisms for disease pairs. Com-Sz achieved a high AUROC of
0.75 (Table 3), indicating that community structure defined mean-
ingful clusters of genes and diseases that explain common genetics
of diseases.

The edge weight (W) is more intuitive than the community meas-
ure (Com-Sz) because W prioritizes already known associations.
However, Com-Sz unravels unannotated associations in the litera-
ture network that were grouped together due to connections with
other entities in same communities. This goes back to our major hy-
pothesis in which entities that share neighbors may be as well bio-
logically related. Combining both edge weight and community
structure can fully utilize their benefits. Indeed, summation of both
measures improved detection of shared pathogenic genes for disease
pairs (AUROC ¼ 0.82) (Table 3).

We observed similar patterns when predicting common diseases
for gene pairs, shared gene targets for drug pairs and common drugs
for gene pairs (Table 3). In detection of shared diseases for gene
pairs, W outperformed Com-Sz. In the case of identifying shared
gene targets for drug pairs and common drugs for gene pairs, Com-
Sz had higher predictive power than W. An explanation for this
observation could be that the network information on relationships
between genes and diseases was denser than relationships between
genes and drugs. In all cases, combining both measures yielded the
best performance, on average of 0.81 for AUROC (Table 3). These
data show that community structure filled in the missing gap of
annotating information and complemented with known knowledge.

We also searched for examples of drug repurposing through the
use of the literature communities in a time-stamped experiment.
Using the literature up to year 2013, we looked for disease–chemical
pairs in communities that had no co-occurrence association. We
proposed that the fact that these disease–chemical pairs co-occurred
in multiple communities indicated that they had some clinical asso-
ciations that would be validated later. Indeed, for disease–chemical

Fig. 5. Diseases co-occurring in same communities had higher comorbidity, suggest-

ing that they shared mechanisms. ****P � 0.0001 (KS test) Fig. 6. The communities captured genetic and clinical information of drugs, and

chemicals. (A) The communities significantly captured perturbed gene expression

profiles for 50 drugs, much more than the number of drugs captured by random sets

(N¼ 100) (gray bars) (z-score ¼ 15). (B) Drugs in same communities shared great

numbers of side effects, suggesting that they shared mechanisms. ****P � 0.0001

(KS test)

Table 3. Area under ROC for multi-relation predictions

Entity 1 type Entity 2 type W Com-Sz W þ Com-Sz

Gene Disease 0.79 0.75 0.82

Disease Gene 0.83 0.79 0.86

Gene Chemical 0.58 0.77 0.80

Chemical Gene 0.63 0.70 0.75

1886 M.Pham et al.



pairs that co-occurred in multiple communities, even though many
of them were not found associated together by MeSH co-occurrence
in year 2013, several drugs were successfully repurposed for the cor-
responding diseases in later years (Table 4). For example, drug DC-
2701 was found in seven communities with Neovascularization and
its known treatments because DC-2701 and the treatments were
highly connected together due to their similar mechanisms of action.
Even though in year 2013, DC-2701 was not studied for the disease
yet, the fact that they co-occurred in many communities suggests
that DC-2701 may treat Neovascularization, which in fact, was con-
firmed in year 2015. These data suggest that the communities mim-
icked human hypothesis generation, efficiently grouped clinically
relevant chemicals and diseases and thus, reliably synthesized plaus-
ible drug repurposing hypotheses.

4 Discussion

Individual associations between bio-entities are extensively
explored, yet it is challenging to integrate them into useful pathway
information. Here, we proposed a new approach that utilized modu-
larity of an MeSH co-occurrence network in order to efficiently
mine new pathway information from the literature. Specifically, we
generated functional groups or communities of genes, diseases and
chemicals that reliably summarized knowledge from biological proc-
esses. Most communities captured significant portions of the curated
pathways or included pathways as their subsets, thus highlighting
core drivers of curated pathways and expanding current curated in-
formation. The communities that were not significantly overlapped
with any curated pathway, on the other hand, proposed yet un-
known functional processes or disease- and drug-specific mecha-
nisms, which were not curated in the tested pathway databases. The
proposed processes can be confirmed in the future (Fig. 4B) or may
have already been experimentally validated but not curated yet.
Overall, the communities provided meaningful biological informa-
tion to supplement current pathway knowledgebases.

Furthermore, the communities provided known and novel
genetic and clinical information for diseases and drugs. The com-
munities detected diseases and drugs with similar clinical mani-
festations (e.g. disease comorbidity) and captured disease- and
drug-specific mechanisms of actions through the genes in the
same communities. The communities also robustly recovered
multi-relations among genes, diseases and drugs (e.g. mutual
drug targets), many of which were not already curated. Finally,
the communities proposed promising hypotheses for disease gene
discovery and drug repurposing with many successful cases as
shown in a retrospective study (Table 4).

Overall, the literature communities automate integrating related
associations to synthesize functional pathways and provide genetic
and clinical contexts for genes, diseases and drugs of interest.
Furthermore, the communities can imitate human hypothesis gener-
ation and reliably propose ideas for disease gene discovery and drug
repurposing that are worthy of experimental assessment. Instead of
scientists going through individual associations to formulate hypoth-
eses, the communities efficiently aggregate relevant biological

interactions to propose plausible mechanisms. Even if entities of
novel associations are distant from each other in the network, the
fact that they share multiple neighbors, as detected by the commun-
ities, strongly suggests that they are biologically relevant, and that
their associations are valid. For predictions of novel associations,
the communities also inform their functional and clinical nature in
the context of other genes, diseases and drugs co-occurring in same
communities and easily point out specific publications that were
used to construct communities and thus, are relevant to novel
associations.

There are aspects that we would like to improve with the com-
munities. Currently, knowledge of the communities is limited to
MeSH terms. MeSH terms were selected because they are reliably
curated by biocurators and their IDs can be mapped easily to other
databases, supporting knowledge integration. Yet, they do not cover
all keywords, leading to insufficient information in the communities.
We attempted to complete gene information of the communities by
supplementing the MeTeOR network with more than 8000 add-
itional human genes extracted by PubTator (Wei et al., 2019), a
named entity recognition method for PubMed-indexed citations.
The communities after supplementing with PubTator-mined genes
were significantly less enriched with curated pathway information
than the original MeTeOR communities. This suggests that the
genes extracted by PubTator were not necessary key entities of
articles, adding spurious information (Supplementary Fig. S4). Only
when we restricted to use PubTator-mined genes that appeared
more than 50 citation mentions in order to reduce the redundant in-
formation, the newly constructed communities improved their path-
way information enrichments and was even comparable to the
original communities for some pathway references (Supplementary
Fig. S4). For a future study, we plan to combine other curated net-
work data in order to improve completeness and quality of the com-
munity information.

In addition, even though the communities propose meaningful
associations, they lack directionality, e.g. the communities could not
differentiate whether chemicals treat or cause diseases (Table 4).
Currently, the nature of novel associations can be inferred from the
literature information of relevant associations in same communities.
To automate this process, we plan to integrate the literature network
with directional biological networks to deduce directionality of pro-
posed associations. We can also apply NLP to specific publications
relevant to the novel associations to validate and improve our
annotations.

To support utilization of the communities, we provide data and
tools on http://meteor.lichtargelab.org. Users can explore the
detected literature communities for discovery of novel mechanisms
of diseases and drugs. The website can also extract significantly
overlapped communities for any given groups of genes, diseases and/
or chemicals of interest. For example, the website can detect com-
munities that are significantly enriched for users’ genes of interest
and simultaneously highlight diseases and chemicals that co-occur in
these communities and thus, are functionally related with the genes.
This function is particularly helpful for users to identify novel dis-
eases and drugs linked to genes of interest and to investigate un-
known biological processes for omics data.

Table 4. Novel disease–chemical associations suggested by the top number of shared communities in 2013 (seven communities) were vali-

dated by publications in later year

Disease Chemical Drug function PMID (year)

Neovascularization, pathologic DCC-2701 Therapeutic 26285778 (2015)

Vitreous detachment perfluorooctane Used in surgery 24800216 (2014)

Exfoliation syndrome AR-12286 Therapeutic 27552517 (2016)

Exfoliation syndrome K-115 Therapeutic 28349329 (2017)

Gastrointestinal neoplasms dotatate gallium ga-68 Diagnostic 29159606 (2018)

Anhedonia fluvoxamine Therapeutic 27987210 (2017)

Adenomyosis gestrinone Palliative 25510683 (2014)

Heavy metal poisoning sodium arsenite Causative 26091798 (2015)
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