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Abstract Sleep apnea–hypopnea syndrome (SAHS) is a

serious sleep disorder, and snoring is one of its earliest and

most consistent symptoms. We propose a new methodol-

ogy for identifying two distinct types of snores: the so-

called non-regular and regular snores. Respiratory sound

signals from 34 subjects with different ranges of Apnea-

Hypopnea Index (AHI = 3.7–109.9 h-1) were acquired. A

total number of 74,439 snores were examined. The time

interval between regular snores in short segments of the all

night recordings was analyzed. Severe SAHS subjects

show a shorter time interval between regular snores

(p = 0.0036, AHI cp: 30 h-1) and less dispersion on the

time interval features during all sleep. Conversely, lower

intra-segment variability (p = 0.006, AHI cp: 30 h-1) is

seen for less severe SAHS subjects. Features derived from

the analysis of time interval between regular snores

achieved classification accuracies of 88.2 % (with 90 %

sensitivity, 75 % specificity) and 94.1 % (with 94.4 %

sensitivity, 93.8 % specificity) for AHI cut-points of

severity of 5 and 30 h-1, respectively. The features proved

to be reliable predictors of the subjects’ SAHS severity.

Our proposed method, the analysis of time interval between

snores, provides promising results and puts forward a

valuable aid for the early screening of subjects suspected of

having SAHS.
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1 Introduction

Sleep apnea–hypopnea syndrome (SAHS) is a serious sleep

disorder with high community prevalence that may cause

deterioration in quality of life, traffic accidents, arterial

hypertension and cardiovascular and cerebrovascular dis-

eases [22]. Furthermore, it has been demonstrated that

undiagnosed patients double the expenditure of health care

resources compared with diagnosed and treated patients.

The gold standard for diagnosing SAHS is an overnight

polysomnographic study performed at the hospital, a

laborious, expensive and time-consuming procedure in

which multiple biosignals are recorded [6]. Recently, sev-

eral authors have suggested simplified methods to aid the

screening of SAHS based on a reduced number of signals

[6, 10]—or even a single one—such as ECG [1, 19], pulse

oximetry [37], breath sounds [20, 37], snore sounds [9, 30]

or nasal airway pressure [14].

Snoring is known to be an important clinical hallmark of

SAHS [3, 28]. As such, it may be a useful and an easily
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J. Mesquita � J. Solà-Soler � J. A. Fiz � R. Jané
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accessible signal to screen this disease. Acoustic analysis

of snoring reveals information relating to the site and

degree of obstruction of the upper airway. For this reason,

research studies on automatic detection and classification

of snore sounds have received considerable attention

recently [2, 9, 16, 17, 30, 34, 37]. Several acoustic markers

have proven to be able to discriminate between simple

snorers and SAHS patients. These markers include, but are

not limited to, pitch [18]; formant frequencies [26]; peak

frequencies [8, 25]; soft phonation index and noise-to-

harmonics ratio [12], and even psychoacoustic metrics in

terms of loudness, sharpness, roughness and annoyance [7,

13].

As an alternative to the aforementioned acoustic anal-

ysis of snoring episodes Cavusoglu et al. [5] proposed the

study of snore episode separations (SES) between succes-

sive snoring episodes in the same snoring state. Since they

did not succeed on automatically identifying the snoring

states, they suggested overcoming this issue by considering

only separations less than 10 s. Even though their results

shown the strong potential of SES on distinguishing simple

snorers from SAHS patients, no classification results were

reported for their database of subjects.

It is important to note that snoring does not have a fixed

and constant occurrence, since it is subject to many influ-

ences such as body position, sleep stages, route of

breathing (oral, nasal, or both) and the degree and site of

upper airway narrowing [28]. Not all snoring episodes have

the same characteristics and trigger mechanisms during

sleep, akin to what happens with the breathing pattern,

which changes and shows irregularities during the lighter

sleep stages [4]. In this way, it is crucial to make a dis-

tinction between two different types of snores: the ones that

are successive and produced in consecutive breathing

cycles —regular snores— and the ones that are separated

by non-snoring breathing cycles and/or apneas—non-reg-

ular snores.

In this work, we will show that relevant information on

the severity of SAHS can be estimated by the simple

analysis of the time interval between regular snores,

without the need to resort to any complementary and likely

more complex, acoustic analysis of snores.

2 Methods

2.1 Signal acquisition

Snoring sound signals were acquired during full-night

polysomnography at the sleep disorders laboratory of the

Hospital Universitari Germans Trias i Pujol in Badalona,

Spain. The snoring sound signal was recorded with an

encapsulated unidirectional electric condenser microphone,

placed over the trachea at the level of the cricoid cartilage,

and fastened using an elastic band. A pioneer single-

channel device (Snoryzer Uno; Sibel SA, Barcelona, Spain)

was used to record the respiratory sounds during sleep. The

sound signal was amplified, filtered between 70 and

2,000 Hz using a second order Butterworth analog band-

pass filter and digitized at a sampling frequency of

5,000 Hz with a 12-bit analog to digital converter [9].

Snoring episodes and their time boundaries were identified

by a previously trained and validated automatic detector

and analyzer developed by our research group (DLL Snore

Analyzer v9.52) [16, 17].

2.2 Database

The database of respiratory sound signals consisted of 34

subjects (8 females and 26 males) with age range of

37–72 years and apnea–hypopnea index (AHI) range of

3.7–109.9 h-1. All subjects were free of any upper airway

infection and other diseases throughout the study, and none

had undergone treatment for snoring or were taking any

medication at the time of data collection. The study was

approved by the research ethics committee of the Hospital

Universitari Germans Trias i Pujol and informed consent

was obtained from all patients. The characteristics of the

database, divided into two groups with opposite values of

severity (above and under AHI 30 h-1), are described in

Table 1.

2.3 Adaptive threshold for regular snore identification

Let TI be the time interval between successive snores,

calculated as the time interval between the onset of a snore

and the onset of its previous one (Fig. 1):

TIðiÞ ¼ SonsetðiÞ � Sonsetði� 1Þ i ¼ 1; . . .;NSn ð1Þ

where Sonset(i) is the onset of the detected ith snore S(i) and

NSn is the total number of detected snores.

Table 1 Characteristics of the database

AHI NSn Age BMI Nr Subj

G AHI \ 30

m 11.8 1,752 50 26.32 16 (7F; 9 M)

s 8.3 877 12 2.8

G AHI C 30

m 60.5 2,580 52 30.43 18 (1F; 17 M)

s 22.8 828 8 3.9

G group of subjects, AHI apnea–hypoapnea index (h-1), NSn number

of snores, BMI body mass index (kg/m2), F female, M male, m mean

value, s standard deviation
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Snoring is mostly seen in the inspiratory phase but it can

also be present in the exhalation phase [29]. We are

interested in studying the snoring episodes that are pro-

duced in consecutive breathing cycles. These regular

snores enclose two kinds of snoring pattern:

SP1 single pattern, when the subject snores once per

breathing cycle, while inhaling or while exhaling;

SP2 double pattern, when the subject snores both in

inhalation and exhalation of the same breathing

cycle.

Figure 1 shows five breathing cycles. SP1 is present on

the two first breathing cycles and SP2 is present on the last

three. S7 and S8 correspond, respectively, to inhaling and

exhaling snores of the same breathing cycle. Hence, they

constitute the snoring pattern SP2, where S7 has a longer

time interval (TIL) and S8 has a shorter time interval (TIS).

We used a previously proposed adaptive threshold

THadaptive [23, 24] to identify snoring episodes that are

truly consecutive, i.e., two snores that are neither separated

by an apnea event nor separated by non-snoring breathing

cycles. This threshold is adaptively estimated from the

whole night sequence of time intervals between successive

snores. As a result, it is characteristic of the particular

snoring pattern of each subject. To compute the threshold

only one initial condition is set: the threshold is initialized

with value 10 (h = 10 s) because the first few snores

produced during sleep are not descriptive of the subjects’

snoring pattern during the night and could introduce initial

bias. The 10 s choice is justified by the accepted conven-

tion that the airflow cessation that lasts more than 10 s is

scored as an apnea [3, 5, 31]. As such, the adaptive

threshold is defined as follows:

THadaptiveðiÞ ¼
h; i\10

A; otherwise

(

where

A ¼ H THadaptiveði� 1Þ � TIðiÞ
� �

� BðiÞ
þ 1� H THadaptiveði� 1Þ � TIðiÞ

� �� �
� THadaptiveði� 1Þ

BðiÞ ¼ ð1� dÞ �
Pi�1

k¼1 TIðkÞ
i� 1

þ d �
Pi

k¼1 TIðkÞ
i

ð2Þ

d is the significance assigned to ith TI for computing the

adaptive threshold THadaptive(i) at the ith snore, and H[b]

is the Heaviside step function, whose value is 0 for b\ 0

(TI(i) [ THadaptive(i-1)) and 1 for b C 0 (TI(i) B

THadaptive(i-1)). We created two different thresholds to

identify regular snores and their two snoring patterns:

LoTHadaptive where the significance assigned to the ith TI

is d = 0.1;

HiTHadaptive where the significance assigned to the ith TI

is d = 0.5.

We tested d values until optimization was achieved. For

all subjects, the best performance of both thresholds

(LoTHadaptive and HiTHadaptive) on identifying the two

snoring patterns was achieved with the values 0.1 and 0.5,

respectively.

Regular snores are defined as the ones for which

TI(i) \ HiTHadaptive(i). Consequently, Non-regular snores

are defined as the ones for which TI(i) C HiTHadaptive(i).

This work is focused on the study of regular snores.

Figure 2 shows an example of a short segment of a

snoring sound signal with nine detected snores. The per-

formance of LoTHadaptive and HiTHadaptive on this segment

is shown in Fig. 3, where the asterisk markers under the

Fig. 1 Example of a 26 s excerpt of a snoring sound signal from a subject in our database. The boxes indicate snore episodes. I and E stand for

inhalation and exhalation, respectively. SP1 is the single snoring pattern and SP2 is the double snoring pattern
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solid line (HiTHadaptive) and above the dashed line

(LoTHadaptive) correspond to snores that are selected by the

combination of both thresholds. The dot markers under the

dashed line (LoTHadaptive) are the snores selected by this

lower threshold.

The time intervals between the successive snores T1, T5

and T8 correspond to: snoring pattern SP1, snoring pattern

SP2 and non-regular snore, respectively. S(i) and S(i ? 1)

occur on two consecutive breathing cycles, so S(i ? 1)

corresponds to the pattern SP1. S(i ? 4) and S(i ? 5)

occur, respectively, on the inhalation and exhalation events

of the same breathing cycle and thus compose the pattern

SP2. S(i ? 7) is a post-apneic snore, so it is classified as a

non-regular snore. Normal breathing cycles (non-snoring)

occur between snores S(i ? 7) and S(i ? 8), hence

S(i ? 8) is a non-regular snore.

2.4 Parameters and features

In this study, we analyzed a total of 74,439 snores from the

whole database of 34 subjects. The method consisted in

applying LoTHadaptive and HiTHadaptive to the all night TI(i)

sequences to obtain the RLo_TI(i) and RMid_TI(i)

sequences. These two sequences are defined as follows:

RLo TIðiÞ ¼ TIðiÞ TIðiÞ\LoTHadaptiveðiÞ
�� ð3Þ

RMid TIðiÞ ¼ TIðiÞ LoTHadaptiveðiÞ\TIðiÞ\HiTHadaptiveðiÞ
�� ð4Þ

From the total of 74,439 snores, after applying

HiTHadaptive to all 34 TI(i) sequences, 21,204 snores were

classified as non-regular snores and 53,235 were classified

as regular snores. After applying LoTHadaptive to regular

snores, 26,129 TI were classified as RMid_TI and 27,106

TI were classified as RLo_TI.

We calculated the mean, standard deviation and coeffi-

cient of variation for 15 min segments of the time interval

sequence of regular snores. This allowed us to examine the

time interval between regular snores within each 15 min

segment and also during all night. Our method is similar to

what is done in the field of heart rate variability (HRV),

which measures time domain features of the time interval

between consecutive heartbeats in small segments of a

recording period [33]. In the case of HRV, the task force

indicates that 5 min segments are advisable to investigate

the physiological and clinical potential of HRV. The heart

rate of healthy resting adults is around 60–80 beats per

minute, so one can expect 300–400 beats on a 5 min

recording. On the other hand, the respiratory rate in adults

ranges from 12 to 20 breaths per minute [35]. Furthermore,

unlike the heartbeat, snoring may not be present in each

breathing cycle. As a result, a 5 min segment is very short

and not effective as it will have very few snoring episodes.

Fig. 2 Example of an excerpt of a snoring sound signal from a

subject in our database. The small boxes correspond to snore episodes.

The two wider boxes correspond to two apnea episodes. T1, T3, T5

and T8 are the time intervals between the snores: S(i) and S(i ? 1),

S(i ? 2) and S(i ? 3), S(i ? 4) and S(i ? 5), S(i ? 7) and S(i ? 8),

respectively

20

15

T
I (

s) 10

T

5 T8

T1 T3

0 30 60
0

Time (s)

T5

Fig. 3 Performance of LoTHadaptive and HiTHadaptive on the time

interval between successive snores TI(i) of the short segment signal

shown in Fig. 2
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Bearing this in mind, we decided to apply our study to

15 min segments. This enabled us to track the changes of

the snore parameters per segment and over all night.

For each k 15 min segment of the all night recording, we

calculated three parameters both in the RLo_TI(i) and

RMid_TI(i) sequences: average l(k), standard deviation

r(k) and coefficient of variation cv(k) [ratio of the standard

deviation r(k) to the average l(k)]. Thereafter, we com-

puted the average and standard deviation of l, r and cv

obtained for all k segments (Table 2). Features Al, Ar,

Acv, SDl, SDr and SDcv were calculated for each subject,

for both RLo_TI(i) and RMid_TI(i) sequences.

2.5 Statistical analysis and classification

The 34 subjects were divided in two groups according to

three cut-points (cp) of AHI severity: 5, 15 and 30 h-1.

These three different levels are proposed by physicians and

clinical experts as criteria for SAHS definition [21].

For each feature, the Mann–Whitney U test was used to

assess the independence of the respective populations.

Kolmogorov–Smirnov test was previously performed to

confirm that the two samples had different continuous

distributions [11].

We applied the Bayesian classification algorithm for

supervised learning to evaluate the performance of the

features on classifying the subjects according to the three

abovementioned cut-points of SAHS severity [15]. To

ensure the statistical validity of the classification results,

we used the leave-one-patient-out cross validation process,

where the training set is built by taking at each round all

patients except one. All analysis in this study was executed

using MATLAB� (The MathWorks Inc., version 2010b).

3 Results

3.1 Screening SAHS severity using time interval

between regular snores

As an illustrative example, Fig. 4 shows parameters l, r
and cv of RMid_TI for each k 15 min segment from two

subjects with opposite values of SAHS severity:

(a) AHI = 5.3 h-1 and (b) AHI = 82.9 h-1. Figure 5

displays the results obtained for features Al, Ar, Acv,

SDl, SDr and SDcv of the RMid_TI sequence for all

population. The bar graphs depict the mean and standard

deviation values of the features for every two groups of

subjects with opposite levels of AHI severity. Features Al,

Ar and Acv allow us to investigate the average of the time

interval between regular snores within each k short seg-

ment, whereas features SDl, SDr and SDcv give evidence

of the dispersion during all night sleep.

When examining Fig. 4a, we observe that the less severe

subject (AHI of 5.3 h-1) presents the highest values of l in

each k segment. Figure 5 shows that less severe SAHS

subjects have higher values of RMid_TI within each

15 min segment (Al) than more severe SAHS subjects.

These differences are highly statistically significant for

AHI = 15 h-1 (p = 0.0136) and AHI = 30 h-1 (p =

0.0036) cut-points of severity. The variability of RMid_TI

within each k segment, given by the feature Acv, is always

higher for severe SAHS subjects. This feature permits

distinguishing between subjects with opposite levels of

severity (Fig. 5b, c, p = 0.0167, 0.006 for AHI cp: 15 h-1,

30 h-1; respectively).

Standard deviation of parameters l, r and cv enables to

interpret the dispersion of time interval between consecu-

tive snores along all night sleep. Higher variability in all

three parameters is observed for the least severe subject, as

compared to the same parameters in the most severe sub-

ject (Fig. 4a, b). The severe subject shows almost the same

value for all three parameters in all night short k segments.

Results obtained for the whole database confirm lower

values of SDr and SDcv for more severe SAHS subjects

(Fig. 5), in agreement with the two individual cases shown

in Fig. 4.

The results obtained for parameters and features of

sequence RLo_TI exhibited similar behavior as the one

seen for RMid_TI sequence. For that reason and for the

sake of conciseness, results on RLo_TI sequence are not

illustrated. For the RLo_TI sequence, features Al
(p = 0.0429, 0.0025; AHI cp:15 h-1, 30 h-1) and Acv

(p = 0.0032, 0.0025; AHI cp:15 h-1, 30 h-1) enabled to

distinguish between subjects with opposite levels of

severity with statistical significance. For all 34 subjects and

all AHI cut-points considered, SDl, SDr and SDcv fea-

tures presented higher values for less severe subjects than

for more severe subjects. This fact suggests a greater dis-

persion on the value of time interval between snores during

all night for less severe SAHS subjects.

3.2 Classification of subjects

Table 3 summarizes the classification results obtained with

the Bayesian classifier with leave-one-patient-out cross

Table 2 Features derived from the parameters

AlX Average of parameter lX over all k segments

ArX Average of parameter rX over all k segments

AcvX Average of parameter cvX over all k segments

SDlX Standard deviation of parameter lX over all k segments

SDrX Standard deviation of parameter rX over all k segments

SDcvX Standard deviation of parameter cvX over all k segments

X = RLo_TI(i); RMid_TI(i)
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validation process. All six features: Al, Ar, Acv, SDl,

SDr and SDcv were used in the classification as our pur-

pose is to evaluate their reliability on predicting the sub-

jects’ SAHS severity. Both RMid_TI and RLo_TI

sequences obtained the best results in terms of diagnostic

accuracy for 5 h-1 and 30 h-1 AHI cut-points (RMid_TI:

accuracy = 88.2 % for AHI cp:5 h-1 and 73.5 % for AHI

cp:30 h-1, RLo_TI: accuracy = 91.2 % for AHI cp:5 h-1

and 94.1 % for AHI cp:30 h-1). These high accuracy

classification results are accompanied by a good balance

of sensitivity (S) and specificity (Sp) (RMid_TI: S

(Sp) = 90 % (75 %) for AHI cp:5 h-1, RLo_TI: S

0 50 100 150 200 250 300 350
0

2

4

6

8

Time in minutes

(k
) 

 (
s)

0 50 100 150 200 250 300 350
0

1

2

3

(k
) 

 (
s)

Subject with AHI: 5.3 h-1

0 50 100 150 200 250 300 350
0

2

4

6

8

Time in minutes

(k
) 

(s
)

Subject with AHI: 82.9 h-1

0 50 100 150 200 250 300 350
0

1

2

3

(k
)  

(s
)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

Time in minutes

cv
(k

) 
 (

s)

0 50 100 150 200 250 300 350
0

50

100

150

Time in minutes

N
r S

n
or

es

Time in minutes

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

Time in minutes

cv
(k

)  
(s

)

0 50 100 150 200 250 300 350
0

50

100

150

Time in minutes

N
r 

S
n

o
re

s

(a) (b)

Time in minutes

Fig. 4 Parameters for RMid_TI(i) sequence. Parameters lRMid_TI, rRMid_TI and cvRMid_TI obtained for all k segments for two subjects with AHI

a 5.3 h-1 and b 82.9 h-1

Fig. 5 Bar graphs for features Al, Ar, Acv, SDl, SDr and SDcv of RMid_TI for 34 subjects with three cut-points of severity: 5, 15 and 30 h-1.

Features Ar, Acv and SDcv appear scaled by a factor of 10 only for the sake of a better presentation
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(Sp) = 94.4 % (93.8 %) for AHI cp:30 h-1). Even though

a good accuracy value of 73.5 % was obtained for the

15 h-1 cp of AHI, the specificity value appears to be more

compromised in the case of RLo_TI sequence (45.5 %).

4 Discussion

The foremost ambition on the scope of SAHS is to reduce its

diagnosis to the least set of biosignals as an alternative to

the conventional polysomnography [6, 10]. Bearing that in

mind, the latest studies have mainly focused on the analysis

of ECG signals alone [19], nasal airway pressure combined

with thoracic and abdominal signals [14], nocturnal pulse

oximetry [37], breath sounds [20, 37] and snore sounds [9,

30]. In our study, we used uniquely the snoring sound signal

collected by one microphone attached to a band around the

neck. The development of simple methods such as ours,

based solely on snoring sound signal analysis, should be

continuously encouraged in the field of SAHS diagnosis due

to the simplicity of the tracheal sound measurement and the

significant information about the physiology and pathology

of the airways that it contains [32].

Some research studies have already reported significant

differences between post-apneic snores (snores that are

produced immediately after an apnea) and all remaining

snores [8, 27, 36]. Nevertheless, we consider the separation

in these two groups to be insufficient. For that reason, we

proposed a new methodology for classifying two distinct

types of snores: non-regular and regular snores. Non-

regular snores are the ones separated by an apnea event

and/or by non-snoring breathing cycles. Regular snores are

truly consecutive snores, i.e., snores that are produced in

consecutive breathing cycles, without interruptions.

Cavusoglu et al. [5] and our group’s previous work [31]

had tried to identify these two kinds of snores, but they did

not succeed in finding a proper criterion because they

considered a separation of less than 10 s to be sufficient.

According to their methods, the analysis of regular snores

included successive snores that are interrupted either by

normal breathing cycles or by apneas that last less than

10 s. We overcame this issue by applying an adaptive

threshold to the all night sequence of time interval between

snores of each subject.

By applying a higher (HiTHadaptive) and a lower

(LoTHadaptive) threshold we can appraise the time intervals

on the two snoring patterns that comprise regular snores:

the single pattern (SP1) and the double pattern (SP2).

Examining the two kinds of snores classified by the

application of both thresholds (RMid_TI snores and

RLo_TI snores) was of major importance since it enabled

to study the behavior of each feature for both kinds of

snores. If we had only applied our study to regular snores

altogether, we would have faced confusing and misleading

outcomes that would have been much more difficult to

interpret.

Results obtained for feature Acv on both sequences

suggest that there is more variability in each short 15 min

segment for the more severe SAHS subjects. This can be

understood as intra-segment variability. This finding is in

agreement with previously reported studies [31] where, in

spite of not having focused on regular snores, SAHS

patients showed higher snore to snore variability on

intensity and frequency domain snore features (AHI

cp:10 h-1). We must emphasize that our study has

achieved similar results with no need to perform any

acoustic analysis of snore episodes.

Regarding the evolution of both snoring patterns along

the night, we observe that the dispersion of l and r (SDl
and SDr) is much higher for less severe patients. This fact

suggests that there is more variability during all sleep on

this kind of patients. In addition, when examining the

progress during the night of the time interval (TI) between

successive regular snores, we observe less dispersion in

more severe patients. This makes evidence that those

patients present a steadier and shorter TI during sleep than

less severe patients.

In the method proposed by Ng et al. [25], where peak

frequency components via wavelet bicoherence analysis

were used, the sensitivity and specificity values were

reported to be 85 and 90.7 %, respectively, for differenti-

ating between apneic and non-apneic snorers. Another

fairly recently published work on multi-feature snore

analysis using pitch and total airway response features [18]

reported classification results of 89.3 % sensitivity with

92.3 % specificity and 90 % accuracy. One of our group’s

latest published works [9] obtained performance results of

80 % sensitivity and 90.9 % specificity using a model that

Table 3 Classification results for the Bayes classifier with leave-one-patient-out cross validation

AHI cut-points 5 h-1 15 h-1 30 h-1

S Sp Ac S Sp Ac S Sp Ac

RMid_TI 90 75 88.2 82.6 54.6 73.5 83.3 62.5 73.5

RLo_TI 96.7 50 91.2 87 45.5 73.5 94.4 93.8 94.1

S sensitivity, Sp specificity, Ac accuracy (all in percentage)
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included intensity and frequency domain snore parameters.

In contrast, using only six features derived from the anal-

ysis of time interval between snores, we achieved the best

performances of 94.1 % accuracy (with 94.4 % sensitivity

and 93.8 % specificity) for AHI cp of 30 h-1 and 88.2 %

accuracy (with 90 % sensitivity and 75 % specificity) for

AHI cp of 5 h-1. Furthermore, it should be emphasized

that the complexity of the proposed method is fairly low

since only the analysis of the time interval between snores

is involved whereas the algorithms used in [9, 18, 25]

require complex acoustic analysis of snore parameters.

Even though we used a substantial amount of snores

(74,439 snores) to perform this study, an important next

step will be to apply this new methodology on a wider

database to confirm the results obtained in this paper. Apart

from the sample size, another limitation of this study is the

fact that it is only applicable to snoring subjects. None-

theless, according to the latest publications, the non-snor-

ing SAHS patients comprise a very small percentage of the

overall spectrum of SAHS [22].

In conclusion, we designed a method that allows the

identification of non-regular and regular snores. The results

obtained with the features derived from the time interval

between regular snores suggest that the method can be a

valuable aid for the early screening and severity estimation

of subjects suspected of having SAHS. In addition, it can

be easily integrated in any portable and low-cost bedside

monitor.
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