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The coordinate modulation of the cellular functions of cadherins and integrins plays an essential role in fundamental physiological
and pathological processes, including morphogenesis, tissue differentiation and renewal, wound healing, immune surveillance,
inflammatory response, tumor progression, and metastasis. However, the molecular mechanisms underlying the fine-tuned
functional communication between cadherins and integrins are still elusive. This paper focuses on recent findings towards the
involvement of reactive oxygen species (ROS) in the regulation of cell adhesion and signal transduction functions of integrins and
cadherins, pointing to ROS as emerging strong candidates for modulating the molecular crosstalk between cell-matrix and cell-cell
adhesion receptors.

1. Introduction

The communication between signaling pathways, the so-
called molecular crosstalk, plays a central role in cell biology,
enabling the cell to couple the molecular functions of either
near neighbors or distant cell components, with resulting
synergistic or antagonistic effects and eventually appropriate
biological outcomes.

Among the most important cellular crosstalk events is
the signaling network that couples the molecular functions
of adhesion receptors of the integrin and cadherin families.
Indeed, acting in concert with growth factor receptor
signaling pathways, this regulatory network is fundamentally
important during the entire life of all metazoans, whereas its
dysfunction almost invariably leads to developmental defects
and/or diseases, including genetic diseases and cancer [1].

Integrins and cadherins are the major cell-extracellular
matrix (ECM) and cell-cell adhesion receptors, respectively,
and represent critical determinants of tissue architecture and
function both in developing and adult organisms [2, 3].

Integrins are heterodimeric transmembrane glycopro-
teins composed of noncovalently linked α and β subunits,
which are endowed with both structural and regulatory
functions. They link the ECM to several distinct cytoplasmic

proteins and the actin cytoskeleton at focal adhesions, thus
serving as organizing centers for the assembly of structural
and regulatory protein complexes at discrete cell-matrix
adhesion sites and providing a mechanically sensitive system
for mechanotransduction [4]. Furthermore, often acting in
concert with growth factor receptors, they provide both
outside-in and inside-out transmission of signals across the
plasma membrane that control a number of critical cellu-
lar processes, including adhesion, cytoskeleton remodeling,
migration, proliferation, differentiation, apoptosis, and gene
expression [2, 5]. Specifically, integrin-mediated outside-in
signaling stimulates tyrosine phosphorylation and activation
of several proteins, including major components of focal
adhesions, such as Src and FAK nonreceptor tyrosine kinases
(PTK), and paxillin, as well as receptor tyrosine kinases
(RPTK). In turn, these proteins are antagonized by nonre-
ceptor (PTP) and receptor tyrosine phosphatases (RPTP),
and entwined in a dynamic interplay with small GTPases
and components of specialized plasma membrane and en-
dosome microdomains, including caveolin-1, to form com-
partmentalized signaling platforms that allow for temporal
and spatial coordination of specific downstream signaling
events [6, 7].
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Cadherins are single-pass transmembrane glycoproteins
that support calcium-dependent, homophilic cell-cell adhe-
sion. Together with their cytoplasmic domain interactors,
such as β-catenin and p120ctn, they constitute the core
components of adherens junctions (AJs). These specialized
adhesive structures link the cadherin homophilic adhesion
to the actin cytoskeleton and are required for formation and
maintenance of stable cell-cell adhesion and differentiated
phenotype in all solid tissues [3, 8, 9]. Cadherin endocytosis
and endosome-mediated trafficking has emerged as a major
mechanism for controlling AJ remodeling [10–17]. More-
over, growing evidence demonstrates that cadherins can
modulate the signaling activity of several proteins, including
β-catenin, Ras and Rho family GTPases, PTK, RPTK, PTP,
and RPTP, as well as mechanotransduction pathways that
affect membrane and actin cytoskeleton dynamics [3, 18–
21].

Although there is a large body of evidence supporting
the existence of a fine-tuned crosstalk between members of
these two adhesive receptor families, which influences their
expression, turnover, positioning, and/or functions, and may
enhance or suppress adhesion depending on the cellular
and environmental context [1, 10, 17, 22–41], the molecules
and molecular mechanisms involved in such important
phenomenon are not completely defined. To clarify how
this crosstalk is regulated remains therefore a fundamental
challenge for basic and translational research, including
research on tumor and vascular disease progression.

Multiple molecules and regulatory mechanisms have
been placed at the heart of the molecular crosstalk between
integrins and cadherins, including small GTPases of the Ras
and the Rho families [10, 17, 42–45], nonreceptor kinases
such as Src, FAK, Fer, and PI3K [27, 34, 46, 47], cell
surface receptor-mediated pathways [48–50], and adhesion-
dependent actomyosin traction forces [26, 34, 51].

Previously, we reported the pivotal role of the small
GTPase Rap1 in regulating the crosstalk between cadherins
and integrins, suggesting a model where Rap1 acts as a
turnabout for endosome signaling and membrane trafficking
pathways to orchestrate the delivery of cadherins and
integrins to specific cell-cell and cell-matrix landmarks at the
plasma membrane, respectively [10, 17].

Intriguingly, recent growing evidence suggests that reac-
tive oxygen species (ROS) play an important role in both
integrins, small GTPases, and cadherins functions, raising
the possibility that ROS may contribute to the modulation
of the molecular crosstalk between integrins and cadherins.

In this paper, we discuss the most recent advances on the
role of ROS in outside-in and inside-out signal transduction
events implicating integrins and cadherins, providing build-
ing bloks for the hypothesis that ROS constitute important
players in the molecular crosstalk between these cell adhesion
receptors.

2. ROS Metabolism and Signaling

ROS are a highly reactive group of oxygen-containing
molecules, including free radicals and peroxides, such as

superoxide anion (O2
•−) and hydrogen peroxide (H2O2),

which are generated constitutively, as common by-products
of oxidative metabolism, or in response to the activation of
several oxidative enzyme complexes [52–55].

The superoxide anion (O2
•−) is the key determinant

of the overall effects of ROS. Indeed, even though it has
a short half-life, O2

•− is the precursor of all other major
reactive oxygen species found in biological systems, includ-
ing the powerful oxidants hydroxyl radical (•OH), hydrogen
peroxide (H2O2), and peroxynitrite (OONO−) [52–55]. It is
generated by a number of sources located throughout the
cell via the incomplete, one-electron reduction of molecular
oxygen (O2). Specifically, under physiological conditions the
redox complexes I (NADH/ubiquinone oxidoreductase) and
III (ubiquinol/cytochrome c oxidoreductase) of the mito-
chondrial electron transport chain are the major constitutive
source, converting up to 5% of molecular O2 to O2

•− [56]. In
addition, O2

•− is produced by the activity of NAD(P)H oxi-
dases, xanthine oxidases, cytochrome P450 monooxygenases,
uncoupled NO synthase (NOS), myeloperoxidases, lipoxyge-
nases, and cyclooxygenases [52–55], which can be induced by
a variety of chemical and physical stimuli, including integrin
ligands, growth factors, G-protein coupled receptor agonists,
cytokines, neurotransmitters, metabolic factors, shear stress,
ischemia/reperfusion, chemotherapeutics, and ionizing radi-
ations, as well as aging [52–54, 57, 58]. Conversely, O2

•−

is rapidly removed by distinct superoxide dismutase (SOD)
isoenzymes, located in the mitochondria (SOD2), cytoplasm
(SOD1), and extracellular (SOD3) compartments, which
catalyze the dismutation of O2

•− into H2O2 and O2. In turn,
H2O2 is reduced to H2O by the catalase and glutathione
peroxidase enzymes. In addition, O2

•− can be converted
to hydroxyl radical (•OH) by the Fenton or Haber-Weiss
reactions, or to peroxynitrite (OONO−) by reacting with
nitric oxide (NO) [59] (Figure 1).

It is now well established that physiologic concentrations
of ROS are endowed with essential signaling properties,
which are mainly due to the reversible oxidation of redox-
sensitive molecular targets, thereby functioning as signaling
molecules. Accordingly, it has been clearly demonstrated
that ROS are involved in the redox-dependent regulation of
multiple signal transduction pathways to fulfill a wide range
of essential biological processes, including cell adhesion,
migration, proliferation, differentiation, and survival [52–
55]. However, at high levels, ROS are known to exert very
damaging effects through oxidative stress. This is caused
by an imbalance between the production of ROS and
the ability of cellular antioxidant mechanisms to readily
detoxify the reactive intermediates. Importantly, because
O2

•− can spontaneously react with NO to form OONO−

at a rate 3 times faster than O2
•− dismutation by SOD,

modest increases of O2
•− can result in a great reduction of

NO bioavailability and increased formation of OONO−, a
very strong oxidant with the potential to produce multiple
cytotoxic effects [60, 61]. In addition, OONO− can also
trigger feedforward mechanisms that further amplify O2

•−

generation and oxidative stress, including the uncoupling
of NO synthase (NOS) which produces O2

•− instead of
NO, thus amplifying the risk of cellular dysfunction and
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Figure 1: Schematic representation of ROS metabolism and signaling. The superoxide anion (O2
•−) is a key determinant of oxidative

effects as well as the precursor of all other major reactive oxygen species, including hydroxyl radical (•OH), hydrogen peroxide (H2O2), and
peroxynitrite (OONO−). It is generated constitutively as by-product of oxidative metabolism, as well as upon stimuli triggering the activation
of oxidative enzymes, including NADPH oxidases, xanthine oxidases, cytochrome P450 monooxygenases, uncoupled NO synthase (NOS),
myeloperoxidases, lipoxygenases (LOX), and cyclooxygenases (COX). Conversely, O2

•− is removed by superoxide dismutase (SOD) enzymes,
which catalyze the dismutation of O2

•− into H2O2 and O2. In turn, H2O2 is reduced to H2O by the catalase (CAT) and glutathione peroxidase
(GPX) enzymes. At physiologic concentrations, ROS are endowed with essential signaling properties, being involved in the redox-dependent
regulation of multiple signal transduction pathways to fulfill a wide range of essential biological processes, including cell adhesion, migration,
proliferation, differentiation, and survival. However, at high levels, ROS exert very damaging effects through oxidative stress. H-W: Haber-
Weiss reaction; NO: nitric oxide.

oxidative injury [52]. The maintenance of highly regulated
mechanisms to control ROS levels and functional specificity
is therefore essential for normal cellular homeostasis and
proper response to environmental stimuli.

Among the major source of ROS, NADPH oxidases
have been demonstrated to play a fundamental role in
the compartmentalization of ROS production and redox
signaling [7].

The NADPH oxidase (NOX) complex was originally
identified in phagocytic leukocytes as an enzymatic defense
system against infections required for the oxidative burst-
dependent microbial killing [62, 63]. It is composed of
membrane-associated and cytosolic components, which
assembly to form the active NOX enzymatic complex in
response to appropriate stimuli. Specifically, this complex
consists of membrane-associated cytochrome b558, com-
prising the catalytic gp91phox (also known as NOX2) and
regulatory p22phox subunits, and four cytosolic regulatory
components, including p40phox, p47phox, p67phox, and the
small GTPase Rac1 [63]. Subsequently, NADPH oxidase
complexes were also found in nonphagocytic cells, where

several isoforms of the catalytic NOX2 protein were identi-
fied, including NOX1, NOX3, NOX4, and NOX5, and shown
to localize in proximity of specific redox-sensitive molecular
targets within discrete subcellular compartments, thereby
facilitating the compartmentalization of redox signaling [7].
Indeed, NADPH oxidases can be targeted and activated
within caveolae/lipid rafts, focal adhesions, cell-cell contacts,
lamellipodial leading edges and membrane ruffles, endo-
somes, and the nucleus, allowing spatiotemporally confined
ROS production and activation of specific redox signaling
events [7].

Besides NADPH oxidase, an important role in the spatio-
temporal regulation of ROS production is also played by
enzymes involved in arachidonic acid (AA) metabolism,
such as phospholipase A2(PLA2), lipooxygenases (LOX),
and cyclooxygenases (COX), suggesting that a complex
regulatory network may take place for proper modulation of
redox signaling [64].

Accumulating evidence points to PTPs as the major
redox-sensitive molecular targets of ROS [65]. This protein
family is indeed characterized by the presence in the active
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site of a highly conserved sequence motif containing a Cys
residue that is essential for catalysis and very susceptible to
reversible inactivating oxidation by ROS. In turn, oxidative
inactivation of PTPs promotes phosphorylation-dependent
downstream signaling events. In addition to PTPs, other
important signaling proteins have been shown to act as
endogenous redox sensors for mediating ROS signaling,
including RPTKs, cytoplasmic kinases, small GTPases of the
Ras and Rho families, and transcription factors [7, 65, 66]
(Figure 1). Conversely, protein oxidation can be reversed by
thiol donors such as glutathione [67].

Remarkably, the activation of redox signaling com-
plexes at integrin-mediated cell-matrix adhesion sites and
cadherin-mediated cell-cell junctions induces opposite ef-
fects, leading to the assembly of focal adhesions and the dis-
assembly of adherens junctions, respectively [7].

3. ROS and Integrins

It is now well established that ROS are implicated in regu-
lating many integrin-mediated cellular responses, including
adhesion, cytoskeleton organization, migration, prolifera-
tion, differentiation, and survival. Indeed, a large body
of evidence demonstrates that integrin activation triggers
a transient and localized burst of ROS, either indepen-
dently or in cooperation with growth factor receptors,
which is essential to the proper transduction of outside-
in signaling pathways [7, 47, 68]. Specifically, although the
underlying molecular mechanisms remain to be precisely
defined, there is clear evidence that integrin engagement
with antibodies or extracellular matrix proteins triggers
ROS production by promoting changes in mitochondrial
metabolic/redox function [69–71], and activation of distinct
oxidases, including NADPH-oxidases [47, 72, 73], and the
AA-metabolizing enzymes 5-lipoxygenase (5-LOX) [70, 72]
and cyclooxygenase-2 (COX-2) [74]. Conversely, there is
evidence that ROS can also influence integrin-mediated
inside-out signaling by inducing the conformational change
required for integrin activation [64]. Remarkably, the small
GTPase Rac1 has emerged as a crucial, common upstream
mediator of ROS production in integrin-mediated outside-
in signaling [64, 69–72]. Consistently, Rac1 acts upstream
of both NADPH oxidase [7] and AA-metabolizing enzymes,
such as PLA2 [75, 76], 5-LOX [70, 72, 76], and COX-2 [77],
whereas many reports show that AA metabolism modulates
NADPH oxidase and mitochondrial ROS production, as
well as the existence of a bidirectional signaling crosstalk
between mitochondria, and NADPH oxidase, suggesting that
Rac1 can orchestrate a complex web of regulation for ROS
production [64, 78] (Figure 2). In addition, it is becoming
evident that the formation of focal adhesions promotes the
assembly of redox signaling platforms, involving integrins,
growth factor receptors, and NADPH oxidases, which are
essential for localized ROS production and activation of
specific redox signaling pathways that mediate adhesion-
dependent cell functions [7]. Furthermore, there is evidence
that fine-tuned sequential compartmentalization and kinet-
ics of ROS production can account for the modulation
of distinct subsets of redox-sensitive signaling molecules

involved in early and late phases of cell adhesion, leading to
distinct outcomes [70, 79].

The signaling properties of integrin-induced ROS are
largely due to the reversible oxidation of target proteins, and
especially of PTPs, as the activity of these proteins is depen-
dent on reactive cysteine residues (Cys-SH) at their active site
that are readily susceptible to reversible oxidation [7, 65].
Indeed, ROS produced locally by the synergistic action of
integrins and growth factor receptors on NADPH oxidase,
as well as on mitochondria and 5-LOX, have been shown to
induce oxidative inactivation of distinct PTPs, including the
low-molecular-weight protein tyrosine phosphatase (LMW-
PTP), PTP1B, PTEN, and SHP2, preventing these enzymes
from dephosphorylating and inactivating specific targets,
and thereby promoting downstream adhesion-related sig-
naling events (Figure 2). Consistently, integrin-mediated
adhesive and signaling functions are significantly mimicked
by PTP inhibition [80]. However, ROS generated by integrin
activation can also activate PTKs and RPTKs through
either direct oxidation of susceptible cysteine residues or
indirect inhibition of negative regulatory PTPs [68], whereas
the synergistic cooperation between integrins and growth
factor receptors expands enormously the plethora of ROS-
regulated target proteins to include redox-sensitive small
GTPases of the Ras superfamily and transcription factors
such as AP-1 and NF-κB [7, 81–83] (Figure 2).

Remarkably, ROS production has often a dual role in
small GTPase regulation, leading to either inhibition or
activation under different conditions [83–88]. In partic-
ular, the inactivation of RhoA has been shown to occur
indirectly through a signaling cascade involving the Rac-
stimulated release of O2

•− from NADPH oxidase, which
in turn inhibits LMW-PTP. Because p190Rho-GTPase-
activating protein (p190RhoGAP) is a substrate of LMW-
PTP, inactivation of LMW-PTP results in accumulation of
the active phosphorylated form of p190RhoGAP, which
stimulates the hydrolysis of bound GTP to produce inactive
GDP-bound RhoA, thereby determining well-characterized
readouts, including decreased cell contractility and stabiliza-
tion of cell-cell junctions [85, 88]. Conversely, RhoA can
be directly activated by ROS-mediated reversible oxidation
of two critical cysteine residues located in a unique redox-
sensitive motif within the phosphoryl binding loop, leading
to characteristic outcomes, including stress fiber and focal
adhesion formation and cell-cell junction weakening [84,
89, 90]. On the other hand, there is evidence that ROS can
activate Rap1 [91], whose signaling is in turn required for
suppression of Ras-generated ROS and protection against
oxidative stress and consequent cell dysfunctions [92–94].

4. ROS and Cadherins

Growing evidence demonstrates that ROS play a major
role in either stabilization or destabilization of cell-cell
junctions mediated by distinct cadherins, including E-, N-,
and VE-cadherin [81, 95–99]. In particular, it has been
reported that Rac1-mediated ROS production is an essential
component in signaling cascades that promote p190RhoGAP
translocation to the AJs and the consequent inhibition of
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Figure 2: ROS mediate integrin outside-in signaling. Integrin engagement with extracellular matrix (ECM) proteins triggers a transient
and localized burst of ROS, either independently or in cooperation with growth factor receptors (GFR), which is essential to the proper
transduction of outside-in signaling pathways. The small GTPase Rac1 acts as a crucial upstream regulator of ROS production, orchestrating
integrin outside-in signaling-mediated changes in mitochondrial metabolic/redox function, and activation of distinct oxidases, including
NADPH-oxidases (NOX), 5-lipoxygenase (5-LOX), and cyclooxygenase-2 (COX-2). The signaling properties of integrin-induced ROS are
largely due to the reversible oxidation of specific subsets of redox-sensitive proteins, including oxidative inhibition of PTPs, and activation
of PTKs, RPTKs, small GTPases of the Ras and Rho families, and transcription factors (TF) such as AP-1 and NF-κB.

local RhoA activity, thus favoring the stabilization of cell-cell
contacts [99]. Conversely, clear evidence shows that Rac1-
induced ROS function as signaling molecules to disrupt
VE-cadherin-based cell-cell adhesion leading to various
biological responses, including endothelial barrier dysfunc-
tion, enhanced microvascular permeability, and endothelial
migration and proliferation involved in angiogenesis [7, 96,
98, 100, 101] (Figure 3). Intriguingly, the apparent contrast
between the positive and negative roles of ROS in the main-
tenance of cadherin-mediated cell-cell junctions correlates
with similar features of small GTPases involved in this
process, including Rac1, RhoA, and Rap1. Indeed, depending
on the extracellular and intracellular context, the activities
of Rac1, RhoA, and Rap1 may be not only involved in
regulating AJs and endothelial barrier maintenance, but also
in active enforcement or disruption of AJs and endothelial
barrier integrity, suggesting that the location and duration
of the activities of these small GTPases affect the choice of
downstream targets, thereby determining distinct biological
outcomes [81]. Indeed, while under basal conditions Rac1
enforces the junctions that form the endothelial barrier by
promoting ROS-mediated p190RhoGAP recruitment to AJs
and the consequent inhibition of local RhoA activity, upon

certain growth factor stimuli, including VEGF, it becomes
part of a barrier-disturbing mechanism by inducing ROS-
mediated phosphorylation of VE-cadherin at Tyr658 and
Tyr731, and β-catenin at Tyr654, which lead to the disassembly
of AJs [81, 96]. Whether ROS act directly on growth factor
receptor kinase activity or, more likely, inhibit VE-cadherin-
associated tyrosine phosphatases has still to be clarified.
In addition, there is evidence for the involvement of the
Pyk2 and Src redox-sensitive kinases in the phosphorylation
of AJ proteins, including β-catenin and p120ctn, and the
resulting loss of cell-cell adhesion mediated by the Rac1-
ROS signaling pathway [95, 100, 102] (Figure 3). Notably, it
has been reported that antioxidant compounds can inhibit
VEGF-induced angiogenesis through disruption of ROS-
dependent Src kinase activation and the subsequent VE-
cadherin tyrosine phosphorylation, resulting in the retention
of VE-cadherin at cell-cell contacts [100]. Conversely, the
cell-cell contact-dependent inhibition of cell growth and
stimulation of PTP activity [103] have been associated with
a decrease in the steady-state levels of intracellular ROS and
the consequent impairment of redox signaling mediated by
growth factor receptors [104].
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Another component of the Rac1-ROS signaling pathway
that plays an important role in the regulation of cadherin
adhesive functions is IQGAP, a scaffold protein involved
in cellular motility and morphogenesis [105]. IQGAP has
been shown to be required for the establishment of VE-
cadherin-based cell-cell contacts, and to colocalize and form
a complex with VE-cadherin at cell-cell contact sites in
quiescent endothelial cells [105]. It may act as a downstream
effector of Rac1, as well as an inhibitor of its GTPase activity
through a RasGAP-related domain [106–108]. Furthermore,
it can facilitate localized ROS production through com-
partmentalization of Nox2 [109]. Indeed, there is evidence
that IQGAP1 plays an essential role in VEGF-stimulated
ROS production and VEGFR2-mediated endothelial cell
migration and proliferation, suggesting that IQGAP1 may
function as a scaffold protein to link VEGFR2 to the
VE-cadherin/β-catenin complex at AJs, thereby promoting
VEGF-stimulated ROS-dependent tyrosine phosphorylation
of VE-cadherin, which may contribute to AJ weakening and
angiogenesis [105, 110] (Figure 3).

Besides biochemical modification of AJ molecules, the
ROS-dependent regulation of cadherins may be also driven
by epigenetic events, as a ROS-induced hypermethylation
of E-cadherin promoter, due to the upregulation of the
transcriptional factor Snail and the recruitment of the DNA
methyltransferase-1, and the consequent downregulation of
cadherin expression have been reported [111].

5. ROS as Potential Pivotal Players in the
Crosstalk between Integrins and Cadherins

A number of experimental reports have shown that the
engagement of integrins with ECM proteins can affect

cadherin-containing adherens junctions via multiple mech-
anisms, including the activation of signaling pathways
mediated by small GTPases [10, 17, 42–45], cell surface
receptors [48–50], and nonreceptor kinases [22, 27, 34, 47,
112], and the modulation of the actin network [26, 34, 51,
112]. Conversely, there are relatively fewer examples where
cadherins have been shown to regulate integrin function
[40, 113], but this may be due to the fact that crosstalk
in this direction has been explored less extensively. In this
context, we have previously reported that the small GTPase
Rap1 plays a pivotal role in regulating the crosstalk between
cadherins and integrins, suggesting a model where Rap1
acts as a turnabout for endosome signaling and membrane
trafficking pathways to orchestrate the control of cadherin
and integrin adhesive and signaling functions [10, 17].

Intriguingly, despite the lack of direct experimental
evidence, the large number of studies implicating ROS as
major modulators of integrin and cadherin adhesive and sig-
naling functions strikingly supports the thought-provoking
hypothesis that ROS play a crucial role in the crosstalk
between integrins and cadherins (Figure 4). In particular,
there is clear evidence that the assembly of integrin-mediated
focal adhesions and the disassembly of cadherin-mediated
adherens junctions require the activation of redox signaling
complexes involving common regulatory proteins and mech-
anisms, including redox-sensitive small GTPases and the
oxidative inactivation of PTPs [7]. Consistently, both focal
adhesions assembly and adherens junctions disassembly are
significantly mimicked by oxidative inhibitors of PTPs [10,
80], and prevented by ROS scavengers [95, 96].

Remarkably, both integrin- and cadherin-related redox
signaling pathways involve Rac1 as a key mediator, which
is in turn implicated in intimately intertwined functional
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relationships with other small GTPases, including Ras, RhoA,
and Rap1 [7, 64, 69–72, 96, 98, 100, 101, 114].

Furthermore and importantly, recent evidence shows
that Rap1 activation by Epac1, a Rap1-GEF involved in the
Rap1-dependent regulation of cadherins, may be stimulated
by ROS and inhibited by ROS scavengers, indicating that
ROS production can trigger Rap1 activation [91]. Con-
versely, Rap1 signaling has been shown to be required for
suppression of Ras-generated ROS and protection against
oxidative stress and consequent cell dysfunctions [92–94].
Taking together, these data suggest that the role of Rap1
as pivotal regulator in the crosstalk between cadherins
and integrins [10, 17] may underlie feedback mechanisms
involving spatially and temporally regulated ROS production
and scavenging. Consistently, KRIT1, a Rap1 effector whose
loss-of-function mutations are implicated in endothelial cell-
cell junction dysfunction and enhanced microvascular per-
meability underlying the Cerebral Cavernous Malformation
disease, has been recently shown to play a role in molecular
mechanisms involved in the maintenance of the intracellular
ROS homeostasis to prevent oxidative cellular damage [115].

Finally, ROS generated by integrin activation could
influence cadherin adhesive functions through the activation
of either PTKs and RPTKs, including Src and growth
factor receptors [68], or IQGAP, a component of the Rac1-
ROS signaling pathway implicated in the modulation of AJ

dynamics [105, 110] as well as in signaling downstream
from both integrins and RPTKs [116], suggesting a further
crosstalk mechanisms (Figure 4).

6. Concluding Remarks

It is well established that, besides their structural roles,
both integrins and cadherins can provide bidirectional trans-
mission of signals across topographically discrete regions
of the plasma membrane. In addition, there is growing
evidence supporting the existence of a fine-tuned, bidirec-
tional crosstalk between these adhesion molecules, which
may enhance or suppress their adhesive and signaling func-
tions depending on the cellular and environmental context.
Indeed, the integrin-cadherin crosstalk is involved in the
epithelial-mesenchymal transition (EMT) underlying funda-
mental physiological and pathological processes, including
embryonic development and cancer [22, 25–27, 33, 39].

This paper highlights recent growing evidence sup-
porting a major role of reactive oxygen species (ROS) in
both outside-in and inside-out signaling of integrins and
cadherins, raising the possibility that ROS constitute master
regulators of the crosstalk between these fundamental cell
adhesion receptors.

Indeed, over the past few years, it has clearly emerged
that outside-in integrin signaling triggers ROS production
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by several distinct mechanisms, such as changes in mito-
chondrial metabolic/redox function [69–71] and activation
of distinct oxidases, including NADPH oxidase [47, 70, 72–
74]. On the other hand, growing evidence demonstrates
that ROS play a major role in the regulation of cadherin
adhesive and signaling functions by mechanisms involving
either biochemical modifications (e.g., phosphorylation) of
AJ proteins, including cadherins and catenins, epigenetic
modifications of the cadherin promoter, or modulation
of small GTPases regulating cadherin-dependent cell-cell
adhesion [7, 81, 95–101].

Remarkably, whereas emerging data show that integrin
and cadherin redox signaling involves shared regulatory
proteins, accumulating evidence suggests that discrete sub-
cellular compartmentalization of ROS constitutes a major
mechanism of localizing activation of downstream redox
signaling events, thereby playing a critical role in trans-
mitting cell signals in response to various environmental
stimuli to regulate distinct cell functions, including cell-
matrix and cell-cell adhesion [7, 117]. In particular, ROS
production may be localized through interactions of NADPH
oxidase with signaling platforms associated with lipid rafts
and caveolae, as well as with endosomes [7, 118]. Fur-
thermore, there is evidence that growth factor receptors
mediate signaling through a subset of signaling endosomes
termed redoxosomes (redox-active endosomes), which are
uniquely equipped with redox-processing proteins capable
of transmitting ROS signals from the endosome interior to
redox-sensitive effectors on the endosomal surface, thereby
controlling redox-dependent effector functions through the
spatial and temporal regulation of ROS as second messengers
[117].

Taken together with the well-established roles of growth
factor receptors, small GTPases and endosome signaling in
the functional relationship between integrins and cadherins
[17], the experimental evidence and observation discussed in
this paper point to a novel hypothetical mechanism whereby
the spatial and temporal regulation of ROS may contribute
significantly to the modulation of the molecular crosstalk
between these cell adhesion receptors, thus opening a novel
research avenue.

Furthermore, as the impairment of the integrin-cadherin
crosstalk is involved in the development of serious patho-
logical processes, including abnormal angiogenesis, tumor
invasion, and metastasis, strategies aimed at controlling
ROS homeostasis to preserve the coordinated adhesive and
signaling functions of integrins and cadherins might harbor
important therapeutic potential for human health.
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