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Abstract 

Background:  Heart disease is the primary cause of morbidity and mortality in the world. It includes numerous prob-
lems and symptoms. The diagnosis of heart disease is difficult because there are too many factors to analyze. What’s 
more, the misclassification cost could be very high.

Methods:  A cost-sensitive ensemble method was proposed to improve the efficiency of diagnosis and reduce the 
misclassification cost. The proposed method contains five heterogeneous classifiers: random forest, logistic regres-
sion, support vector machine, extreme learning machine and k-nearest neighbor. T-test was used to investigate if the 
performance of the ensemble was better than individual classifiers and the contribution of Relief algorithm.

Results:  The best performance was achieved by the proposed method according to ten-fold cross validation. The 
statistical tests demonstrated that the performance of the proposed ensemble was significantly superior to individual 
classifiers, and the efficiency of classification was distinctively improved by Relief algorithm.

Conclusions:  The proposed ensemble gained significantly better results compared with individual classifiers and 
previous studies, which implies that it can be used as a promising alternative tool in medical decision making for 
heart disease diagnosis.

Keywords:  Cost-sensitive, Ensemble, Heart disease

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Heart disease is any disorder that influences the heart’s 
ability to function normally [1]. As the leading cause of 
death, heart disease is responsible for nearly 30% of the 
global deaths annually [2]. In China, it is estimated that 
290 millon people are suffering from heart disease, and 
the rate of death caused by heart disease is more than 
40% [3]. According to The European Society of Cardiol-
ogy (ESC), nearly half of the heart disease patients die 
within initial 2  years [4]. Therefore, accurate diagnosis 
of heart disease in early stages is of great importance in 
improving security of heart [5].

However, as it’s associated with numerous symptoms 
and various pathologic features such as diabetes, smoking 
and high blood pressure, the diagnosis of heart disease 
remains a huge problem for less experienced physicians 
[6]. In order to detect heart disease, several diagnostic 
methods have been developed, Coronary angiography 
(CA) and Electrocardiography (ECG) are the most widely 
used among them, but they both have serious defects. 
ECG may fail to detect the symptoms of heart disease 
in its record [7] while CA is invasive, costly and needs 
highly-trained operators [8].

Computer-aided diagnostic methods based on machine 
learning predictive models can be noninvasive if they are 
based on the data that can be gathered using noninva-
sive methods, they can also help physicians make proper 
and objective diagnoses, hence reduce the suffering of 
patients [9]. Various machine learning predictive mod-
els [10–14] have been developed and widely used for 
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decision support in diagnosing heart disease. Dogan et al. 
[15] built a random forest (RF) classification model for 
coronary heart disease. The clinical characteristics of the 
1545 and 142 subjects were used for training and testing 
respectively, and the classification accuracy of sympto-
matic coronary heart disease was 78% . Detrano et al. [16] 
proposed a logistic regression (LR) classifier for heart 
disease classification and obtained an accuracy of 77% in 
3 patient test groups. Gokulnath and Shantharajah [17] 
proposed a classification model based on genetic algo-
rithm (GA) and support vector machine (SVM), obtain-
ing an accuracy of 88.34% on Cleveland heart disease 
dataset. Subbulakshmi et  al. [18] performed a detailed 
analysis of different activation functions of extreme 
learning machine (ELM) using Statlog heart disease data-
set. The results indicated that ELM achieved an accuracy 
of 87.5% , higher than other methods. Duch et  al. [19] 
used K-nearest neighbor (KNN) classifier to predict heart 
disease on Cleveland heart disease dataset and achieved 
an accuracy of 85.6% , superior to other machine learning 
techniques.

As No Free Lunch Theorem implies, no single model 
or algorithm can solve all classification problems [20]. 
One way to overcome the limitations of a single clas-
sifier is to use an ensemble model. An ensemble model 
is the combination of multiple sets of classifiers, it can 
outperform the individual classifiers because the vari-
ance of error estimation is reduced [21–24]. In recent 
years, many ensemble approaches have been proposed 
to improve the performance of heart disease diagnosis 
systems. For instance, Das et  al. [25] proposed a neural 
networks ensemble and obtained 89.01% classification 
accuracy from the experiments made on the data taken 
from Cleveland heart disease dataset. Bashir et  al. [26] 
employed the ensemble of five heterogeneous classifiers 
on five heart disease datasets. The proposed ensemble 
classifier achieved the high diagnosis accuracy of 87.37% . 
Khened et  al. [27] presented an ensemble system based 
on deep fully convolutional neural network (FCNN) and 
achieved a maximum classification accuracy of 100% on 
Automated Cardiac Diagnosis Challenge (ACDC-2017) 
dataset. Therefore, we use an ensemble classifier to pre-
dict the presence or absence of heart disease in present 
study.

From the previous studies, it is observed that tradi-
tional medical decision support systems usually focused 

only on the maximization of classification accuracy with-
out taking the unequal misclassification costs between 
different categories into consideration. However, in the 
field of medical decision making, it is often the minority 
class that is of higher importance [28]. Further, the cost 
associated with missing a patient (false negative) is much 
higher than that of mislabeling a healthy instance (false 
positive) [29]. Therefore, traditional classifiers inevitably 
result in a defective decision support system. In order to 
overcome this limitation, in this paper we combine the 
classification results of individual classifiers in a cost-
sensitive way so that classifiers that help reduce the costs 
gain more weights in the final decision.

The rest of the paper is organized as follows. Sec-
tion  "Data-mining algorithms" offers brief background 
information concerning Relief algorithm and each 
individual classifier. Section  "Methods" presents the 
framework of the proposed cost-sensitive ensemble. Sec-
tion  "Experimental setup" illustrates the research design 
of this paper in detail. Section  "Results" describes the 
experimental results and compares the ensemble method 
with individual classifiers and previous methods. In sec-
tion  "Discussion", experimental results are discussed in 
detail. Finally, the conclusions and directions for future 
works are summarized in section "Conclusions".

Data‑mining algorithms
Relief feature selection algorithm
Relief is a kind of famous filter feature selection algo-
rithm which adopts a relevant statistics to measure the 
importance of the feature. This statistics can be seen 
as the weight of each feature. Top k features of bigger 
weights are selected. Therefore, the key is to determine 
the relevant statistics [30].

Assume D = {(x1, y1), (x2, y2), . . . (xm, ym)} is a dataset. 
xi is an input feature vector and yi is a class label corre-
sponding to xi . First, select a sample xi randomly. Then, 
Relief attempts to find out its nearest sample xi,nh from 
samples of its same class and nearest sample xi,nm from 
samples of its different class using the same techniques 
as in KNN, xi,nh is called “near-hit”, xi,nm is called “near-
miss”. Next, update the weight of a feature A in W as 
described in Algorithm  1 [31, 32]. Repeat the random 
sampling steps for m times and get the average value of 
W[A], W[A] is the weight of feature A.
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Logistic regression
LR is a generalized linear regression model [38]. There-
fore, it is similar with multiple linear regression in many 
aspects. Usually, LR is used for binary classification prob-
lems where the predictive variable y ∈ [0, 1] , 0 is negative 
class and 1 is positive class. But it can also be used for 
multi-classification.

In order to distinguish heart disease patients from 
healthy people, a hypothesis h(θ) = θTX is proposed. 
The threshold of classifier output is hθ (x) = 0.5 , which is 
to say, if the value of hypothesis hθ (x) ≥ 0.5 , it will pre-
dict y = 1 which means that the person is a heart disease 
patient, otherwise the person is healthy. Hence, the pre-
diction is done.

The sigmoid function of LR can be written as:

where z = θTX.
The cost function of LR can be written as:

where m is the number of instances to be predicted, yi is 
the real class label of the ith instance, and y′i is the pre-
dicted class label of the ith instance.

Support vector machine
Invented by Cortes and Vapnik [39], SVM is a supervised 
machine learning algorithm which has been widely used for 
classification problems [29, 40, 41]. The output of SVM is 
in the form of two classes in a binary classification problem, 
making it a non-probabilistic binary classifier [42]. SVM 
tries to find a linear maximum margin hyperplane that sep-
arates the instances.

hθ (x) =
1

1+ e−z
,

J (θ) =
1

m

m
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i=1

cost(yi, y
′
i),

cost(yi, y
′
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1, otherwise.

In Algorithm 1, diff (x
j
a, x

j
b) depends on the type of fea-

ture j. For discrete feature j:

for continuous feature j:

Repeatedly operate for n times, then average the weights 
of each feature. Finally, choose the top k features for 
classification.

Machine learning classifiers
Machine learning classification algorithms are used to 
distinguish heart disease patients from healthy people. 
Five popular classifiers and their theoretical backgrounds 
are discussed briefly in this paper.

Random forest
RF is a machine learning algorithm based on the ensem-
ble of decision trees [33]. In traditional decision tree 
methods such as C4.5 and C5.0, all the features are used 
for generating the decision tree. In contrast, RF builds 
multiple decision trees and chooses the random sub-
spaces of the features for each of them. Then, the votes 
of trees are aggregated and the class with the most votes 
is the prediction result [34]. As an excellent classification 
model, RF can successfully reduce the overfitting and cal-
culate the nonlinear and interactive effects of variables. 
Besides, the training of each tree are done separately, so it 
could be done in parallel, which reduced the training time 
needed. Finally, combining the prediction result of each 
tree could reduce the variance and improve the accuracy 
of the predictions. There are many studies showing the 
performance superiority of RF over other machine learn-
ing methods [35–37].
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Assume the hyperplane is wTx + b = 0 , where w is a 
dimensional coefficient vector, which is normal to the 
hyperplane of the surface, b is offset value from the origin, 
and x is dataset values. Obviously, the hyperplane is deter-
mined by w and b. The data points nearest to the hyper-
plane are called support vectors. In the linear case, w can 
be solved by introducing Lagrangian multiplier αi . The 
solution of w can be written as:

where m is the number of support vectors and yi are tar-
get labels to x. The linear discriminant function can be 
written as:

sgn is the sign function that calculates the sign of a 
number, sgn(x) = −1 if x < 0 , sgn(x) = 0 if x = 0 , 
sgn(x) = 1 if x > 0 . The nonlinear separation of data set 
is performed by using a kernel function. The discriminant 
function can be written as:

where K (xi, x) is the kernel function.

Extreme learning machine
ELM was first proposed by Huang et al. [43]. Similar to a 
single layer feed-forward neural network(SLFNN), ELM 
is also a simple neural network with a single hidden layer. 
However, unlike a traditional SLFNN, the hidden layer 
weights and bias of ELM are randomized and need not 
to tune, and the output layer weights of ELM are ana-
lytically determined through simple generalized inverse 
operations [43, 44].

K‑nearest neighbor
KNN a supervised classification algorithm. Its procedure 
is as follows: when a new case is given, first search the 
database to find the k historical cases which are closest 
to the new case, namely k-nearest neighbors, and then 
these neighbors vote on the class label of the new case. 
If a class has the most nearest neighbors, the new case is 
determined to belong to the class [45]. The following for-
mula is used to calculate the distance between two cases 
[46]:

w =

m
∑

i=1

αiyixi,

g(x) = sgn

(

m
∑

i=1

αiyix
T
i x + b

)

,

g(x) = sgn

(

m
∑

i=1

αiyiK (xi, x)+ b

)

,

d(xi, xj) =
∑

q∈Q

wq(xiq − xjq)
2 +

∑

c∈C

wcLc(xic, xjc),

where Q is the set of quantitative features and C is the set 
of categorical features, Lc is an M ×M symmetric matrix, 
wq is the weight of feature q and wc is the weight of fea-
ture c.

Methods
The proposed classification system consists of four main 
components: (1) preprocessing of data, (2) feature selec-
tion using Relief algorithm, (3) training of individual 
classifiers, and (4) prediction result generation of the 
ensemble classifier. A flow chart of the proposed system 
is shown in Fig. 1. The main components of the system 
are described in the following subsections.

Data preprocessing
The aim of data preprocessing is to obtain data from dif-
ferent heart disease data repositories and then process 
them in the appropriate format for the subsequent analy-
sis [47]. The preprocessing phase involves missing-value 
imputation and data normalization.

Missing‑value imputation
Missing data in medical data sets must be handled care-
fully because they have a serious effect on the experi-
mental results. Usually, researchers choose to replace 
the missing values with the mean/mode of the attrib-
ute depending on its type [26]. Mokeddem [47] used 
weighted KNN to calculate the missing values. In present 
study, features with missing values more than 50% of all 
instances are removed, then group mean instead of sim-
ple mean are used to substitute remaining missing values, 
as Bashir et al did in their study [41]. For example, if the 
case with a missing value is a patient, the mean value for 
patients is calculated and inserted in place of the missing 
value. In this way the class label is taken into considera-
tion, thus the information offered by the dataset could be 
fully utilized.

Data normalization
Before feature selection, the continuous features are nor-
malized to ensure that they have the mean 0 and vari-
ance 1, thus the effects of different quantitative units are 
eliminated.

Table 1  The cost matrix used by the classifiers

Predicted Reality

Patients Controls

Patients 0 cost2

Controls cost1 0
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Feature selection and training of individual classifiers
In this phase, the dataset is randomly split into training 
set, validation set and test set. That is, 80% of the dataset 
is used for training, 10% is used for validation and 10% is 
used for testing purpose. The features are selected by the 
Relief algorithm on training set and the obtained result is 
a feature rank. A higher ranking means that the feature 
has stronger distinguishing quality and a higher weight 
[48]. Afterwards, features are added to the ensemble 
model one by one, from the most important one to the 
least. Then we can get several models with different num-
ber of features using training set, the number of models 
equals to the number of features. These models are tested 
on validation set, and the ensemble classifier with the 
best performance should have the best feature subset. 
Such classifier is used on test set, and its performance is 
recorded in Sect. 5. This procedure is repeated 10 times.

Prediction result generation
The classification accuracy and misclassification cost 
(MC) of each classifier are taken into account during the 
process of generating the final prediction result. In pre-
sent study, in order to compare the misclassification costs 
for the different classifiers conveniently, the value of the 
correct classification cost is set as 0, and the MC is split 
into two scenarios. In the first scenario, healthy people 
are diagnosed with heart disease, resulting in unneces-
sary and costly treatment. In the second scenario, heart 
disease patients are told that they are healthy, as a result 
they may miss the best time for treatment, which may 
cause the disease to deteriorate or even death. The cost 
matrix is presented in Table  1. Considering the differ-
ent costs people have to pay for misclassification, we set 
cost1 = 10 and cost2 = 1 [49, 50]. Afterwards, an index 
E is constructed to evaluate the performance of each 
classifier:

where Accuracyi represents the accuracy and MCi rep-
resents the MC of ith classifier during the training 
phase (the formula to calculate the MC is presented in 
Sect.  4.2). Ei stands for the efficiency of ith classifier to 
improve the accuracy and reduce the MC simultaneously. 

Ei =
Accuracyi + 1−

MCi
cost1+cost2

2
,

The weights of individual classifiers are based on Ei and 
they are calculated as:

where n is the number of classifiers. Finally, the instances 
of the test set are imported into each classifier, and the 
outputs of ensemble classifier are the labels with the 
highest weighted vote [51].

Experimental setup
In this section, details of datasets are discussed. The 
detail of evaluation metrics and their significance is pre-
sented as well. The experiment is implemented on MAT-
LAB 2018a platform, and the performance parameters of 
the executing host were Win 10, Inter (R) 1.80 GHz Core 
(TM) i5-8250U, X64, and 16 GB (RAM). In present study, 
the number of decision trees to build the RF is 50, the 
Gaussian kernel function is used in SVM, and the number 
of k is 5 in KNN. The parameters of individual classifiers 
are chosen by genetic algorithm. The fitness function is 
the E value of the proposed ensemble classifier. The pop-
ulation size is set to be 50. The crossover fraction is 0.8. 
The migration fraction is 0.2. The generations are 1000.

Datasets description
Three different datasets are used in the proposed 
research, they are Statlog, Cleveland and Hungarian heart 
disease datasets from UCI machine learning repository 
[52]. Statlog dataset consists of 270 instances, Cleveland 
dataset consists of 303 instances and Hungarian dataset 
consists of 294 instances. The number of heart disease 
patients in each dataset is presented in Table 2. The three 
datasets share the same feature set. Details of feature 
information are presented in Table 3.

Performance evaluation metrics
Various performance metrics are used to evaluate the 
performance of the classifiers in this study. In the confu-
sion matrix, the classification result of a two-class prob-
lem is divided into four parts: true positive (TP), true 
negative (TN), false positive (FP) and false negative (FN). 
Based on these error measures, E, MC, G-mean, preci-
sion, specificity, recall and AUC are used to evaluate 
the performance of different classifiers. As accuracy is 
included in the calculation of E, it is not used as an evalu-
ation metric alone. The metrics are calculated as follows:

wi =
Ei
n
∑

i=1

Ei

,

(1)MC =
FP × cost2 + FN × cost1

TP + TN + FP + FN
× 100%,

Table 2  Number of patients in each dataset

Dataset Patients Controls % Patients % Controls

Statlog 120 150 44.44 55.56

Cleveland 139 164 45.87 54.13

Hungarian 106 188 36.05 63.95
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(2)G −mean =

√

TP

TP + FN
×

TN

TN + FP
× 100%,

Ten-fold cross validation is used to obtain the final 
results. The ensemble classifier runs on each test set and 
processes each instance individually. The evaluation met-
rics of the ten folds are averaged to verify the superiority 
of the proposed ensemble classifier. Wilcoxon signed-
rank test is used on all three datasets to examine if the 
new method is statistically better than single classifiers 
and check if the contribution of the Relief algorithm is 
significant.

(3)Precision =
TP

TP + FP
× 100%,

(4)Specificity =
TN

TN + FP
× 100%,

(5)Recall =
TP

TP + FN
× 100%.

Table 3  Features of heart disease datasets

Feature Description Value

Age Age in years Continuous value

Sex Sex 1: male; 0: female

Cp Chest pain type 1: typical angina

2: atypical angina

3: non-anginal pain

4: asymptomatic

Trestbps Resting blood sugar Continuous value in mm hg

Chol Serum Cholestoral Continuous value in mm/dl

Fbs Fasting blood sugar 0 :< 120 mg/dl

1 :> 120 mg/dl

Restecg Resting ECG results 0 :  normal

1 :  having ST-T wave abnormality

2 :  probable or definite

left ventricular hypertrophy

Thalach Maximum heart rate achieved Continuous value

Exang Exercise induced angina 0 :  no

1 :  yes

Oldpeak ST depression induced by exercise relative to rest Continuous value

Slope Slope of the peak exercise ST segment 1 = upsloping

2 = flat

3 = downsloping

Ca Number of major vessels colored by flourosopy 0, 1, 2, 3

Thal Heart beat 3 :  normal

6 :  fixed defect

7 :  reversable defect

Num Predicted class 0, 1

Table 4  Feature ranking on different datasets

*Means that feature is deleted during data preprocessing

Feature Statlog Cleveland Hungarian

Age 9 9 7

Sex 4 4 2

Cp 1 1 1

Trestbps 8 8 5

Chol 13 13 6

Fbs 11 12 10

Restecg 7 7 8

Thalach 12 10 9

Exang 6 5 4

Oldpeak 10 11 3

Slope 5 6 \*

Ca 2 2 \*

Thal 3 3 \*
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Results
This section involves the exhibition of experimental 
results on different heart disease datasets.

Feature ranking on different datasets
Table 4 shows feature ranking on the three heart disease 
datasets. For Hungarian dataset, Slope, Ca and Thal are 
deleted during the process of missing-value imputa-
tion because these features have missing values more 
than 50% of all instances. Therefore, only ten features are 
ranked. Figures  2,  3 and  4 illustrate how many times a 
certain feature is chosen to enter the best feature subset 
in the whole experiment. As we can see, sex, Cp, Exang, 
Slope, Ca and Thal are the most important features on 
Statlog dataset; sex, Cp, Restecg, Exang, Oldpeak, Slope, 
Ca and Thal are the most important features Cleveland 
dataset; sex, Cp, Trestbps, Exang and Oldpeak are the 
most important features on Hungarian dataset.

Performance on Statlog dataset
Table 5 indicates the comparison of performance evalu-
ation metrics for the proposed ensemble with individual 
classifiers on Statlog dataset. It is clear from the results 
that the proposed ensemble algorithm has obtained 
the highest E of 94.44 ± 3.78% , the highest precision of 
92.59± 4.62% , the highest recall of 92.15± 7.10% , the 
highest G-mean of 92.56± 4.79% , the highest specificity 

Table 5  Experimental results on Statlog dataset with the best feature subset

The average +− sd on 10-folds CV. The best result is bolded

Mean ± SD RF LR SVM ELM KNN Proposed ensemble

E (%) 87.53 ± 5.39 87.87 ± 6.82 88.67 ± 5.02 82.81 ± 5.54 76.94 ± 11.33 94.44 ± 3.78
Precision (%) 83.70 ± 6.58 84.07 ± 8.01 84.81 ± 6.40 78.15 ± 6.64 70 ± 15.37 92.59 ± 4.62
Recall (%) 80.64 ± 11.80 82.08 ± 13.07 83.85 ± 10.98 70.65 ± 13.77 62.85 ± 17.51 92.15 ± 7.10
G-mean 83.14 ± 7.54 83.79 ± 8.19 84.41 ± 7.10 76.65 ± 8.05 68.40 ± 15.63 92.56 ± 4.79
MC (%) 51.85  ± 26.07 50 ± 34.67 44.81 ± 23.78 75.19 ± 29.63 96.67 ± 44.56 22.22 ± 19.36
Specificity (%) 86.13 ± 6.17 86 ± 6.58 85.45 ± 7.83 84.29 ± 8.43 75.18 ± 16.55 93.21 ± 5.43
AUC (%) 83.75 ± 8.26 83.92 ± 9.44 85.07 ± 7.72 80.17 ± 6.96 68.42 ± 13.73 92.08 ± 5.51

Table 6  Wilcoxon signed-rank test: proposed ensemble 
versus individual classifiers on Statlog dataset

1The value of Wilcoxon statistics after standardization

*  p < 0.05 ** p < 0.01

RF LR SVM ELM KNN

E

Z-value1 − 2.805 − 2.805 − 2.670 − 2.670 − 2.803

p value 0.002
∗∗

0.002
∗∗

0.004
∗∗

0.004
∗∗

0.002
∗∗

Precision

Z-value − 2.692 − 2.829 − 2.680 − 2.677 − 2.807

p value 0.004
∗∗

0.002
∗∗

0.004
∗∗

0.004
∗∗

0.002
∗∗

Recall

Z-value − 2.374 − 2.527 − 2.388 − 2.670 − 2.536

p value 0.016
∗

0.008
∗∗

0.016
∗

0.004
∗∗

0.008
∗∗

G-mean

Z-value − 2.803 − 2.803 − 2.666 − 2.666 − 2.803

p value 0.002
∗∗

0.002
∗∗

0.004
∗∗

0.004
∗∗

0.002
∗∗

MC

Z-value − 2.654 − 2.805 − 2.670 − 2.670 − 2.803

p value 0.006
∗∗

0.002
∗∗

0.004
∗∗

0.004
∗∗

0.002
∗∗

Specificity

Z-value − 1.825 − 2.243 − 2.371 − 2.673 − 2.675

p value 0.086 0.023
∗

0.016
∗

0.004
∗∗

0.004
∗∗

AUC​

Z-value − 2.547 − 2.599 − 2.668 − 2.666 − 2.666

p value 0.008
∗∗

0.006
∗∗

0.004
∗∗

0.004
∗∗

0.004
∗∗

Table 7  Experimental results on Statlog dataset with 13 features

∗ The average +− sd on 10-folds CV. The best result is bolded.

Mean ± SD RF LR SVM ELM KNN Proposed ensemble

E (%) 71.76 ± 7.44 77.16 ± 4.53 68.49 ± 6.06 77.31 ± 8.11 66.70 ± 4.26 86.36 ± 5.51∗

Precision (%) 65.19 ± 14.96 73.70 ± 7.77 68.15 ± 10.03 61.48 ± 29.28 59.26 ± 11.05 78.52 ± 7.37
Recall (%) 86.54 ± 10.48 83.13 ± 8.57 75.62 ± 6.28 82.45 ± 18.42 73.57 ± 13.65 92.56 ± 8.19
G-mean 82.18 ± 9.64 83.72 ± 14.18 76.29 ± 7.45 82.60 ± 14.51 76.35 ± 18.16 90.17 ± 8.08
MC (%) 75.12  ± 9.10 56.30 ± 7.77 62.69 ± 25.27 41.12 ± 33.75 85.19 ± 43.82 34.81 ± 24.58
Specificity (%) 78.05 ± 7.26 84.32 ± 8.97 76.96 ± 16.40 82.81 ± 8.72 79.23 ± 17.11 87.84 ± 5.73
AUC (%) 79.35 ± 11.28 83.16 ± 9.78 83.16 ± 9.82 81.27 ± 12.51 78.53 ± 6.94 87.99 ± 8.39
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Fig. 1  Flowchart of the proposed ensemble classifier

Fig. 2  Times picked for each feature on Statlog datasets
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Fig. 3  Times picked for each feature on Cleveland datasets

Fig. 4  Times picked for each feature on Hungarian datasets
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of 93.21± 5.43% , the highest AUC of 92.08± 5.51% and 
the lowest MC of 22.22± 19.36% . SVM is ranked second 
at the E level achieving 88.67± 5.02% . The result of Wil-
coxon signed-rank test comparing the proposed ensem-
ble and individual classifiers is shown in Table 6. It can be 
seen that the performance of proposed ensemble is sig-
nificantly superior to individual classifiers on most of the 
metrics, except specificity with RF.

In order to investigate the contribution of Relief algo-
rithm, experiments are done on Statlog dataset with all 
the features to make a comparison. The result is shown in 

Table 7. The proposed ensemble algorithm has obtained 
the highest E of 86.36± 5.51% , the highest precision of 
78.52± 7.37% , the highest recall of 92.56± 8.19% , the 
highest G-mean of 90.17± 8.08% , the highest specificity 
of 87.84 ± 5.73% , the highest AUC of 87.99± 8.39% and 
the lowest MC of 34.81± 24.58% . ELM is ranked sec-
ond at the E level achieving 77.31± 8.11% . Compared 
with Table 5, the ensemble classifier with all the features 
is worse than that with feature subset chosen by Relief 
algorithm. Table  8 gives the result of Wilcoxon signed-
rank test between the two algorithms, from which we can 

Table 8  Wilcoxon signed-rank test: classifiers with feature subset versus classifiers with 13 features on Statlog dataset

1 The value of Wilcoxon statistics after standardization
2 ∗ p < 0.05 , ∗∗ p < 0.01

RF LR SVM ELM KNN Ensemble

E

 Z-value1 − 2.803 − 2.803 − 2.803 − 2.668 − 2.803 − 2.803

 p value2 0.002
∗∗

0.002
∗∗

0.002
∗∗

0.004
∗∗

0.002
∗∗

0.002
∗∗

Precision

Z-value − 2.803 − 2.395 − 2.803 − 2.395 − 2.803 − 2.803

p value 0.002
∗∗

0.014
∗

0.002
∗∗

0.014
∗

0.002
∗∗

0.002
∗∗

Recall

Z-value − 1.988 − 2.701 − 2.803 − 1.580 − 2.803 − 2.803

p value 0.027
∗

0.004
∗∗

0.002
∗∗ 0.131 0.002

∗∗
0.002

∗∗

G-mean

Z-value − 2.803 − 2.701 − 2.803 − 2.599 − 2.803 − 2.803

p value 0.002
∗∗

0.004
∗∗

0.002
∗∗

0.006
∗∗

0.002
∗∗

0.002
∗∗

MC

Z-value − 2.599 − 2.701 − 2.803 − 2.090 − 2.803 − 2.803

p value 0.006
∗∗

0.004
∗∗

0.002
∗∗

0.037
∗

0.002
∗∗

0.002
∗∗

Specificity

Z-value − 2.803 − 2.293 − 2.802 − 2.599 − 2.599 − 2.803

p value 0.002
∗∗

0.020
∗

0.002
∗∗

0.006
∗∗

0.006
∗∗

0.002
∗∗

AUC​

Z-value − 2.803 − 2.701 − 2.803 − 2.803 − 2.803 − 2.803

p value 0.002
∗∗

0.004
∗∗

0.002
∗∗

0.002
∗∗

0.002
∗∗

0.002
∗∗

Table 9  Experimental results on Cleveland dataset with the best feature subset

*The average +− SD on 10-folds CV. The best result is bolded

Mean ± SD RF LR SVM ELM KNN Proposed ensemble

E (%) 86.78 ± 6.15 86.53 ± 6.75 86.50 ± 5.89 84.19 ± 7.59 79.44 ± 9.05 93.83 ± 4.93∗

Precision (%) 82.67 ± 7.28 83.00 ± 7.45 82.00 ± 6.25 79.00 ± 8.32 72.00 ± 11.88 88.67 ± 5.49
Recall (%) 80.26 ± 14.28 78.02 ± 16.41 81.20 ± 15.12 77.86 ± 19.94 73.70 ± 14.34 89.68 ± 8.78
G-mean 82.24 ± 8.84 82.24 ± 9.12 81.51 ± 8.03 78.77 ± 11.80 72.01 ± 11.84 90.77 ± 6.71
MC (%) 54.67  ± 33.45 59.67 ± 38.12 54.00 ± 35.38 63.67 ± 42.95 78.67 ± 39.79 22.00 ± 15.61
Specificity (%) 84.63 ± 7.49 87.49 ± 6.38 82.47 ± 6.54 80.42 ± 7.43 71.26 ± 14.11 89.31 ± 5.13
AUC (%) 81.53 ± 8.75 81.99 ± 9.38 80.91 ± 8.14 79.99 ± 11.05 70.53 ± 12.65  89.54 ± 5.54
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reach the conclusion that the difference is significant. In 
addition, it can be seen from Fig.  2 that only 6 features 
on average are chosen by Relief algorithm for prediction, 
which reduces the computation largely.

Performance on Cleveland dataset
Table  9 shows the classification result of each classi-
fier with reduced feature subset. The proposed ensem-
ble has achieved the highest E of 93.83± 4.93% , the 
highest precision of 88.67± 5.49% , the highest recall of 

89.68± 8.78% , the highest G-mean of 90.77± 6.71% , the 
highest specificity of 89.31± 5.13% , the highest AUC of 
89.54 ± 5.54% and the lowest MC of 22.00± 15.61% . The 
ensemble classifier performs the best on all the evalua-
tion metrics while KNN performs the worst. The result 
of Wilcoxon signed-rank test comparing the proposed 
ensemble and individual classifiers is shown in Table 10. 
The ensemble classifier is obviously better than other 
classifiers on different metrics except for specificity.

The performance of the proposed ensemble without 
Relief algorithm on Cleveland dataset is listed in Table 11. 
The proposed ensemble has achieved the highest E of 
82.07± 6.00% , the highest precision of 83.79± 7.59% , 
the highest recall of 75.88± 11.08% , the highest G-mean 
of 79.76± 7.76% , the highest specificity of 84.16± 6.70% , 
the highest AUC of 79.53± 8.24% and the lowest MC of 
62.96± 26.52% . LR is ranked second at the E level achiev-
ing 77.29± 5.52% . It can be concluded that the ensemble 
classifier performs worse than that with reduced feature 
subset, which indicates that there are irrelevant and dis-
tractive features. Table  12 shows the Wilcoxon signed-
rank test result between the two ensembles. As we can 
see, the classifiers gained significantly better performance 
with reduced feature subset. Besides, as shown in Fig. 3, 
Relief algorithm has cut down the number of features to 
8 on average, simplifying the calculation.

Performance on Hungarian dataset
Figure 4 shows the times each feature is included in the 
best feature subset on Hungarian dataset. Table 13 indi-
cates the experimental results on Hungarian dataset 
with feature subset chosen by Relief algorithm. The pro-
posed ensemble classifier has achieved the highest E of 
89.47± 3.06% , the highest precision of 89.31± 4.44% , 
the highest recall of 82.39± 5.73% , the highest G-mean 
of 82.95± 4.63% , the highest specificity of 92.02± 5.76% , 
the highest AUC of 88.38± 5.36% and the lowest MC of 
38.28± 12.10% . LR is ranked second at the E level achiev-
ing 82.07± 7.12% . The paired Wilcoxon signed-rank 

Table 10  Wilcoxon signed-rank test: proposed ensemble 
versus individual classifiers on Cleveland dataset

1 The value of Wilcoxon statistics after standardization
2 ∗ p < 0.05 , ∗∗ p < 0.01

RF LR SVM ELM KNN

E

Z-value1 − 2.668 − 2.312 − 2.655 − 2.810 − 2.803

p value2 0.004
∗∗

0.021
∗

0.008
∗∗

0.002
∗∗

0.002
∗∗

Precision

Z-value − 2.533 − 2.318 − 2.671 − 2.814 − 2.809

p value 0.011
∗

0.016
∗

0.006
∗∗

0.002
∗∗

0.002
∗∗

Recall

Z-value − 2.668 − 2.173 − 2.524 − 2.668 − 2.668

p value 0.004
∗∗

0.031
∗

0.008
∗∗

0.004
∗∗

0.004
∗∗

G-mean

Z-value − 2.666 − 2.310 − 2.703 − 2.803 − 2.803

p value 0.004
∗∗

0.020
∗

0.004
∗∗

0.002
∗∗

0.002
∗∗

MC

Z-value − 2.668 − 2.312 − 2.655 − 2.810 − 2.803

p value 0.004
∗∗

0.020
∗

0.006
∗∗

0.002
∗∗

0.002
∗∗

Specificity

Z-value − 1.892 − 1.696 − 2.316 − 2.521 − 2.553

p value 0.094 0.101 0.023
∗

0.008
∗∗

0.008
∗∗

AUC​

Z-value − 2.521 − 2.310 − 2.666 − 2.803 − 2.803

p value 0.008
∗∗

0.020
∗

0.004
∗∗

0.002
∗∗

0.002
∗∗

Table 11  Experimental results on Cleveland dataset with 13 features

The average +− SD on 10-folds CV. The best result is bolded

Mean ± SD RF LR SVM ELM KNN Proposed ensemble

E (%) 76.01 ± 5.39 77.29 ± 5.52 75.74 ± 6.15 68.29 ± 8.95 58.43 ± 4.32 82.07 ± 6.00∗

Precision (%) 74.23 ± 6.41 76.84 ± 5.14 75.16 ± 7.47 65.54 ± 11.57 50.26 ± 6.74 83.79 ± 7.59
Recall (%) 68.08 ± 7.92 69.40 ± 13.02 69.41 ± 12.68 56.75 ± 14.76 45.20 ± 7.59 75.88 ± 11.08
G-mean 71.05 ± 6.75 73.59 ± 6.58 71.61 ± 7.07 61.45 ± 12.32 49.71 ± 6.20 79.76 ± 7.76
MC (%) 87.19  ± 21.18 81.61 ± 27.83 82.08 ± 29.68 114.60 ± 37.19 152.39 ± 19.74 62.96 ± 26.52
Specificity (%) 74.50 ± 9.02 79.31 ± 9.11 74.80 ± 8.20 67.32 ± 11.32 49.20 ± 11.80 84.16 ± 6.70
AUC (%) 70.22 ± 7.74 72.18 ± 5.69 71.18 ± 7.73 66.75 ± 11.40 45.32 ± 8.33  79.53 ± 8.24
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test between the ensemble and each classifier is listed in 
Table 14. The ensemble is significantly superior to other 
classifiers on most of the metrics except for specificity 
compared with RF,LR and SVM. This is because the pro-
posed ensemble is cost-sensitive, one of its main aim is 
to identify patients as many as possible, thus the misclas-
sification of healthy people is tolerable to a certain extent.

The performance of each classifier with all the fea-
tures on Hungarian dataset is given in Table  15. The 

proposed ensemble classifier achieved the highest E of 
79.87± 7.32% , the highest precision of 80.89± 7.89% , 
the highest recall of 66.38± 14.13% , the highest G-mean 
of 75.75± 9.22% , the highest specificity of 87.31± 3.60% , 
the highest AUC of 77.64 ± 8.31% and the lowest MC of 
74.08± 32.11% . Table  16 shows the Wilcoxon signed-
rank test result between the ensemble with Relief algo-
rithm and that without it. As we can see, the classifiers 
gained significantly better performance with reduced fea-
ture subset on most of the evaluation metrics.

Table 12  Wilcoxon signed-rank test: classifiers with  feature subset versus  Classifiers with  13 features on  Cleveland 
dataset

1 The value of Wilcoxon statistics after standardization
2 ∗ p < 0.05 , ∗∗ p < 0.01

RF LR SVM ELM KNN Ensemble

E

   Z-value1 − 2.803 − 2.803 − 2.803 − 2.803 − 2.803 − 2.803

   p value2 0.002
∗∗

0.002
∗∗

0.002
∗∗

0.002
∗∗

0.002
∗∗

0.002
∗∗

Precision

   Z-value − 2.599 − 2.701 − 2.497 − 2.293 − 2.803 − 2.803

   p value 0.006
∗∗

0.004
∗∗

0.010
∗

0.020
∗

0.002
∗∗

0.002
∗∗

Recall

   Z-value − 1.988 − 2.701 − 2.293 − 1.674 − 1.988 − 2.803

   p value 0.049
∗

0.004
∗∗

0.020
∗ 0.132 0.049

∗
0.002

∗∗

G-mean

   Z-value − 2.497 − 2.701 − 2.497 − 2.293 − 1.784 − 2.803

   p value 0.010
∗

0.004
∗∗

0.010
∗

0.020
∗ 0.084 0.002

∗∗

MC

   Z-value − 2.293 − 2.701 − 2.497 − 1.784 − 2.599 − 2.803

   p value 0.020
∗

0.004
∗∗

0.010
∗ 0.084 0.006

∗∗
0.002

∗∗

Specificity

   Z-value − 2.803 − 2.803 − 2.802 − 2.702 − 2.701 − 2.803

   p value 0.002
∗∗

0.002
∗∗

0.002
∗∗

0.004
∗∗

0.004
∗∗

0.002
∗∗

AUC​

   Z-value − 2.701 − 2.701 − 2.803 − 2.090 − 2.803 − 2.803

   p value 0.004
∗∗

0.004
∗∗

0.002
∗∗

0.037
∗

0.002
∗∗

0.002
∗∗

Table 13  Experimental results on Hungarian dataset with the best feature subset

The average +− sd on 10-folds CV. The best result is bolded

Mean ± SD RF LR SVM ELM KNN Proposed ensemble

E (%) 80.43 ± 5.37 82.07 ± 7.12 78.91 ± 5.61 80.40 ± 6.86 75.43 ± 8.64 89.47 ± 3.06
Precision (%) 75.52 ± 5.96 77.93 ± 8.48 74.48 ± 6.54 75.86 ± 7.09 66.55 ± 14.99 89.31 ± 4.44
Recall (%) 60.19 ± 16.84 62.08 ± 15.89 53.38 ± 17.93 59.42 ± 19.49 61.36 ± 19.71 82.39 ± 5.73
G-mean 71.04 ± 8.34 73.72 ± 10.15 67.55 ± 9.21 70.97 ± 10.16 59.97 ± 24.07 82.95 ± 4.63
MC (%) 87.93  ± 34.95 82.76 ± 37.63 100.00 ± 36.09 90.34 ± 44.33 94.14 ± 30.89 38.28 ± 12.10
Specificity (%) 86.34 ± 9.83 88.99 ± 7.79 89.10 ± 11.61 88.13 ± 9.92 70.92 ± 25.22 92.02 ± 5.76
AUC (%) 74.07 ± 9.16 76.31 ± 10.87 71.96 ± 10.98 74.59 ± 9.55 69.07 ± 9.98  88.38 ± 5.36
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Comparison of the results with other studies
Tables  17,  18 and  19 showed the comparison of our 
model and previous methods. As class imbalance is wide-
spread in medical datasets, accuracy itself is not a proper 
evaluation metric. Here, we use recall and specificity to 
make the comparison, which are used by these researches 
together. Recall is used to measure the percentage of dis-
tinguishing patients correctly, while specificity is used to 
measure the percentage of distinguishing healthy people 
correctly.

As we can see, on Statlog dataset, heuristic rough 
set has gained similar recall with the proposed model, 
and neural network ensemble has better performance 
on specificity compared with the proposed model. On 
Cleveland dataset, deep belief network and decision 
tree + fuzzy inference system perform better than 
the proposed ensemble. Beyond those methods, the 
proposed ensemble performs better than any other 
models. On Hungarian dataset, the present study has 
achieved the best performance, which implies that the 
proposed ensemble has certain strength in dealing with 
incomplete dataset.

The results state that our proposed method obtains 
superior and promising results in classifying heart dis-
ease patients. Taken recall and specificity together, the 
proposed ensemble classifier has better performance 
than most previous studies. In addition, most research-
ers did not take different kinds of misclassification 
costs into consideration, and the limitation is remedied 
in present study.

Discussion
Nowadays, numerous classification methods have been 
utilized for heart disease diagnosis. However, most of 
them concentrate on maximum the classification accu-
racy without taking the unequal misclassification costs 
into consideration. Therefore, the aim of this study is to 
propose a new ensemble method to tackle the deficiency 
of previous studies and improve the classification accu-
racy and reduce the misclassification cost simultaneously. 
The main contributions of the proposed research are as 
follows: 

(1)	 The proposed ensemble is a novel combination of 
heterogeneous classifiers which had outstanding 
performance in previous studies [15–19]. The limi-
tations of a certain classifier are remedied by other 
classifiers in this model, which improves its perfor-
mance.

Table 14  Wilcoxon signed-rank test: proposed ensemble 
versus individual classifiers on Hungarian dataset

1 The value of Wilcoxon statistics after standardization
2 ∗ p < 0.05 , ∗∗ p < 0.01

RF LR SVM ELM KNN

E

Z-value1 − 2.312 − 2.244 − 2.668 − 2.821 − 2.803

p value2 0.020
∗

0.022
∗

0.004
∗∗

0.002
∗∗

0.002
∗∗

Precision

Z-value − 2.446 − 2.271 − 2.689 − 2.840 − 2.814

p value 0.016
∗

0.023
∗

0.004
∗∗

0.002
∗∗

0.002
∗∗

Recall

Z-value − 2.075 − 2.100 − 2.670 − 2.814 − 2.310

p value 0.035
∗

0.039
∗

0.004
∗∗

0.002
∗∗

0.020
∗

G-mean

Z-value − 2.429 − 2.293 − 2.668 − 2.805 − 2.803

p value 0.012
∗

0.020
∗

0.004
∗∗

0.002
∗∗

0.002
∗∗

MC

Z-value − 1.956 − 2.041 − 2.668 − 2.821 − 2.803

p value 0.051 0.043
∗

0.004
∗∗

0.002
∗∗

0.002
∗∗

Specificity

Z-value − 1.955 − 1.960 − 1.365 − 2.668 − 2.803

p value 0.055 0.055 0.195 0.004
∗∗

0.002
∗∗

AUC​

Z-value − 2.803 − 2.346 − 2.803 − 2.803 − 2.805

p value 0.002
∗∗

0.016
∗

0.002
∗∗

0.002
∗∗

0.002
∗∗

Table 15  Experimental results on Hungarian dataset with 10 features

The average +− sd on 10-folds CV. The best result is bolded

Mean ± SD RF LR SVM ELM KNN Proposed ensemble

E (%) 72.73 ± 6.29 73.85 ± 7.06 72.72 ± 6.78 69.94 ± 8.26 60.09 ± 10.59 79.87 ± 7.32
Precision (%) 72.72 ± 8.17 73.38 ± 8.14 71.78 ± 8.31 69.18 ± 10.08 53.77 ± 13.27 80.89 ± 7.89
Recall (%) 49.00 ± 16.03 52.92 ± 14.85 44.30 ± 17.06 44.39 ± 20.61 37.77 ± 18.40 66.38 ± 14.13
G-mean 62.75 ± 11.18 65.96 ± 10.60 60.44 ± 12.46 58.39 ± 14.78 45.48 ± 14.87 75.75 ± 9.22
MC (%) 109.40  ± 31.01 103.24 ± 32.31 118.24 ± 33.24 123.00 ± 42.83 148.60 ± 48.07 74.08 ± 32.11
Specificity (%) 82.62 ± 5.75 83.40 ± 5.22 85.57 ± 5.62 80.65 ± 8.26 59.28 ± 13.55 87.31 ± 3.60
AUC (%) 67.38 ± 10.99 68.59 ± 10.98 65.43 ± 10.99 61.67 ± 13.98 50.81 ± 15.55  77.64 ± 8.31
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(2)	 We have used a new index to combine the results of 
individual classifiers. The proposed ensemble model 
not only focuses on high classification accuracy, but 
also concerns the costs patients have to pay for mis-
classification.

(3)	 Compared with five individual classifiers and pre-
vious studies, the proposed ensemble classifier has 
achieved excellent classification results. The ensem-

ble classifier gained significantly better performance 
than individual classifiers on all three heart disease 
datasets.

Kononenko [53] applied various machine learning tech-
niques and compared the performance on eight medical 
datasets using five different parameters: performance, 
transparency, explanation, reduction, and missing data 

Table 16  Wilcoxon signed-rank test: Classifiers with  feature subset versus  Classifiers with  10 features on  Hungarian 
dataset

1 The value of Wilcoxon statistics after standardization
2 ∗ p < 0.05 , ∗∗ p < 0.01

RF LR SVM ELM KNN Ensemble

E

   Z-value1 − 2.803 − 2.803 − 2.803 − 2.803 − 2.497 − 2.701

   p value2 0.002
∗∗

0.002
∗∗

0.002
∗∗

0.002
∗∗

0.010
∗

0.004
∗∗

Precision

   Z-value − 2.293 − 2.497 − 1,478 − 2.497 − 1.886 − 2.701

   p value 0.020
∗

0.010
∗ 0.160 0.010

∗ 0.065 0.004
∗∗

Recall

   Z-value − 1.886 − 2.497 − 2.395 − 1.376 − 2.497 − 1.886

   p value 0.065 0.010
∗

0.014
∗ 0.193 0.010

∗ 0.065

G-mean

   Z-value − 2.191 − 2.803 − 2.497 − 2.803 − 1.580 − 2.599

   p value 0.027
∗

0.002
∗∗

0.010
∗

0.002
∗∗ 0.131 0.006

∗∗

MC

   Z-value − 2.090 − 2.803 − 2.599 − 2.599 − 2.497 − 2.191

   p value 0.037
∗

0.002
∗∗

0.006
∗∗

0.006
∗∗

0.010
∗

0.027
∗

Specificity

   Z-value − 2.599 − 2.497 − 1.886 − 2.803 − 1.988 − 2.803

   p value 0.006
∗∗

0.010
∗ 0.065 0.002

∗∗
0.049

∗
0.002

∗∗

AUC​

   Z-value − 2.599 − 2.803 − 2.803 − 2.701 − 2.701 − 2.803

   p value 0.006
∗∗

0.002
∗∗

0.002
∗∗

0.004
∗∗

0.004
∗∗

0.002
∗∗

Table 17  Comparison of the proposed system outcome with previous researches for Statlog dataset

∗ Particle swarm optimization

The values listed in the table represent the average performance on ten folds

Author Method Recall (%) Specificity (%)

Present study Ensemble classifier 92.15 93.21

Marateb and Goudarzi [60] Naive Bayes 78.51 88.74

Bashir et al. [41] BagMOOV 73.47 91.01

Ceylan and Koyuncu [61] PSO∗ neural network 80.83 89.33

Mokeddem and Ahmed [47] Fuzzy classification model 89.17 84.00

Das et al. [25] Neural network ensemble 80.95 95.91

Xiao et al. [62] Heuristic Rough Set 92.33 87.50

Bashir et al. [26] Ensemble model 87.50 87.27
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handling. While individual classifiers have shortcom-
ings on some of these aspects, the proposed ensemble 
is able to overcome their deficiencies. For example, RF 
can generate explicit rules for decision making, and the 
basic idea of KNN is “to solve new problems by identi-
fying and reusing previous similar cases based on the 
heuristic principle that similar problems have a high 
likelihood of having similar solutions” [54], which is 
easily understood by physicians. On the other hand, 
LR, SVM and ELM are more like a “black box”, and 
physicians are willing to accept a “black box” classifier 
only when it outperforms a very large margin all other 
classifiers, including the physicians themselves, but 
such situation is highly improbable [53]. In addition, 
KNN is a lazy evaluation method while the other four 
are eager evaluation methods. Eager algorithm gener-
ates frequent itemset rules from a given data set and 
predicts a class for test instance based on multicriteria 
approach from selected frequent itemset rules [26]. If 
no matching is found, default prediction (i.e., the most 
frequent class in data set) is assigned, which may not 

be correct. In contrast, lazy algorithm uses a richer 
hypothesis space, it makes judgment according to a 
small proportion of the instances in the database, thus 
overcomes the limitation of eager algorithms. However, 
lazy algorithm uses more time for prediction, as multic-
riteria matching is performed for each instance in data 
set [55], while eager algorithm is able to generate the 
prediction results at a very fast speed after the training 
phase. From the above discussion, it can be concluded 
that the selected classifiers complement each other very 
well. In any scenario where one classifier has some limi-
tations, the other classifier overcome them. As a result, 
better performance is achieved. For this reason, we 
have used a combination of both lazy and eager clas-
sification algorithms.

Moreover, the present study takes MC into considera-
tion and tries to reduce it. Most traditional algorithms 
focus only on the classification accuracy, ignoring the 
cost patients have to pay for misclassification. But the 
diagnostic mistakes are of higher importance in the 
medical field, and the price of a false negative instance 

Table 18  Comparison of the proposed system outcome with previous researches for Cleveland dataset

The values listed in the table represent the average performance on ten folds
1 Probabilistic principal component analysis
2 Back propagation neural networks

Author Method Recall (%) Specificity (%)

Present study Ensemble classifier 89.68 89.31

Kahramanli and Allahverdi [63] Hybrid neural network 93 78.5

Shah et al. [64] PPCA1 + SVM 75 90.57

Marian and Filip [65] Fuzzy rule-based classification 84.70 92.90

Ali et al. [56] Gaussian Naive Bayes classifier 87.80 97.95

Ali et al. [57] Deep neural network 85.36 100

Ali et al. [58] Hybrid SVM 82.92 100

Ali et al. [59] Deep belief network 96.03 93.15

Arabasadi et al. [66] Hybrid neural network-genetic algorithm 88 91

Mokeddem and Ahmed [47] Fuzzy classification model 87.39 94.38

Bashir et al. [26] Ensemble model 73.68 92.86

Leema et al. [67] Differential Evolution + BPNN2 82.35 92.31

Mokeddem and Atmani [68] Decision Tree + Fuzzy Inference System 92.44 96.18

Table 19  Comparison of the proposed system outcome with previous researches for Hungarian dataset

The values listed in the table represent the average performance on ten folds

Author Method Recall (%) Specificity (%)

Present study Ensemble classifier 82.39 92.02

Shah et al. [64] PPCA + SVM 80.43 88.42

Arabasadi et al. [66] Hybrid neural network-genetic algorithm 85 88

Mokeddem and Ahmed [47] Fuzzy classification model 82.98 90.57

Mokeddem and Atmani [68] Decision Tree + Fuzzy Inference System 90.42 79.24
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is clearly much higher than that of a false positive one. 
Aiming at this problem, the present study has adopted 
a new method to combine the prediction results of het-
erogeneous classifiers and significantly reduced the MC, 
which could relieve patients from suffering.

Overall, the proposed model has following advantages 
compared with the state-of-the-art methods [56–59] : 

(1)	 The proposed ensemble outperforms the individual 
and ensemble classifiers in all three data sets which 
contain different feature spaces, which means that 
its generalization ability is outstanding. In contrast, 
most previous studies used only one data set [17, 
18, 25], and that weakened the persuasive power of 
their results.

(2)	 As the cost associated with missing a patient (false 
negative) is clearly much higher than that of mis-
labeling a healthy one (false positive), considering 
different kinds of misclassification cost makes the 
proposed method closer to reality.

(3)	 This paper combines accuracy and MC as one eval-
uation metric, so the ensemble classifier is able to 
improve the accuracy and reduce MC at the same 
time. However, there are also shortages and limita-
tions: 

(1)	 The experiment did not take training time into 
consideration. The ensemble classifier needs 
longer training time than individual classifiers.

(2)	 The proposed approach doesn’t include state-
of-the-art techniques such as deep neural net-
work and soft computing method, which would 
be beneficial in improving its performance.

	  On the whole, we believe that the proposed 
ensemble can be a useful tool in aiding physi-
cians in making better decisions.

Conclusions
In this study, a cost-sensitive ensemble method based on 
five different classifiers is presented to assist the diagno-
sis of heart disease. The proposed study takes full account 
of unequal misclassification cost of heart disease diagno-
sis, and employs a new index to combine various classi-
fiers. In order to verify the performance of our proposed 
approach, the ensemble classifier was tested on Statlog 
heart disease dataset, Cleveland heart disease dataset and 
Hungarian heart disease dataset. Then, it was evaluated 
by different parameters such as E, MC, G-mean, preci-
sion, recall, specificity and AUC. Relief algorithm was uti-
lized to select the most important features and eliminate 

the effect of irrelevant features. The significance of the 
results were tested by Wilcoxon signed-rank test. The 
results demonstrated that the proposed approach could 
yield promising results for heart disease diagnosis in 
comparison to individual classifiers and some previous 
works. In the future, the time complexity of the proposed 
ensemble method will be investigated and optimized, and 
new algorithms can be incorporated into the ensemble 
classifier to improve its performance.
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