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A Commentary on

Type I Interferon Response Is Mediated by NLRX1-cGAS-STING Signaling in Brain Injury

by Fritsch, L. E., Ju, J., Gudenschwager Basso, E. K., Soliman, E., Paul, S., Chen, J., Kaloss, A. M.,
Kowalski, E. A., Tuhy, T. C., Somaiya, R. D., Wang, X., Allen, I. C., Theus, M. H., and Pickrell, A. M.
(2022). Front. Mol. Neurosci. 15:852243. doi: 10.3389/fnmol.2022.852243

Neuroinflammation is a central feature of traumatic brain injury (TBI; Smith et al., 2013; Lozano
et al., 2015), and it is also implicated in neurodegeneration (Chen et al., 2016; Hong et al.,
2016). In fact, studies have linked a history of TBI and future development of neurodegenerative
diseases (Surgucheva et al., 2014; Gardner and Yaffe, 2015; Wilson et al., 2017), making the
understanding of TBI-related neuroinflammation a high priority. A key mechanism underlying
neuroinflammation with TBI is the activation of the cyclic GMP-AMP and Stimulator of Interferon
Genes (cGAS-STING) pathway.

cGAS-STING is activated in response to cytosolic double-stranded DNA (dsDNA; Shu et al.,
2014; Hopfner and Hornung, 2020), which may originate from mitochondrial or nuclear DNA
(Glück et al., 2017; Matsui et al., 2021) due to cell damage/stress (Dunphy et al., 2018; Akbari et al.,
2021). Activated cGAS-STING (via STING phosphorylation) upregulates transcription factors
that stimulate interferons (IFNs), interferon-stimulating genes (ISGs), and pro-inflammatory
cytokines (Decout et al., 2021). STING phosphorylation can be inhibited by nucleotide-binding
oligomerization domain leucine-rich repeat containing X1 (NLRX1; Guo et al., 2016), but until
recently, the role of cGAS-STING activation and NLRX1 in TBI in vivo was unknown.

Fritsch et al. (2022) addressed this gap in knowledge using an in vivo model of TBI. Mice were
subjected to a controlled cortical impact (CCI) injury, and the authors found that CCI injury
increased IFN and pro-inflammatory transcripts, including STING transcripts, which remained
elevated 24 h after injury. They also showed that cGAS-STING activation from CCI injury
coincided with increased presence of cytosolic mitochondrial dsDNA (but not nuclear dsDNA).
When the authors repeated their experiments in homozygous cGAS and STING knockout mice,
they found reduced IFN and pro-inflammatory transcript accumulation, as well as less brain tissue
damage and neuronal apoptosis, indicating that cGAS and STING are required for the detrimental
effects of TBI. Lastly, they showed that CCI injury in NLRX1 knockout mice increased STING
phosphorylation and reduced IFN and pro-inflammatory transcripts. Overall, their data suggest
that cGAS-STING may be an important contributor to neuroinflammation with TBI.

A strength of this study is the in vivomodel of TBI via CCI injury, a common pre-clinical model
in which impact depth, velocity, dwell time, and impact tip size are standardized (Osier and Dixon,
2016). This ensures that all mice receive the same TBI, and it allows the contralateral side of the
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brain to be used as an “in-mouse” control. In fact, in
Supplementary Figure 3, Fritsch et al. showed no difference
between sham (no injury) ipsilateral and CCI injury contralateral
cortices (Fritsch et al., 2022). Thus, any observed changes
were the result of TBI-related effects and not “inter-mouse”
differences. Also, in their CCI ipsilateral vs. contralateral
comparisons, the authors included a range of gene expression
measurements (e.g., of ISGs) that have been previously
documented in measuring cGAS-STING activation (Willemsen
et al., 2021), as well as new histological outcomes (e.g., lesion
volume) associated with cGAS-STING activation.

Despite the strengths of the work by Fritsch et al., this
study also raises some important questions. Perhaps the most
important question is whether nuclear ormitochondrial cytosolic
dsDNA is the key contributor to cGAS-STING activation
with TBI. For example, studies in humans have shown that
nuclear dsDNA is implicated in TBI (Schwab et al., 2019) and
cGAS-STING signaling (Li and Chen, 2018). Fritsch et al. did
measure cytosolic HMGB1 (Figure 2F, Fritsch et al., 2022), a
nuclear dsDNA protein reported to be involved in TBI (Paudel
et al., 2018), but they saw no difference between ipsilateral
and contralateral cortices after CCI injury. However, this is
only one marker of nuclear dsDNA, and its absence does not
definitively confirm that nuclear dsDNA is not involved in
cGAS-STING activation. To address this issue, future studies
could utilize more generic markers of nuclear dsDNA, like
anti-dsDNA antibodies (Zhou et al., 2021) combined with
markers of DNA damage (Glück et al., 2017), and/or nuclear
DNA-specific probes could be used to prove that nuclear
dsDNA is not present in the cytosol. Perhaps even better,
immunoprecipitation of nucleic acids bound to cGAS could
be used to test the TBI/mitochondrial dsDNA hypothesis. Pre-
treatment with compounds that protect mitochondria against
stress/injury, like MitoQ, could also be used to further confirm
the role of mitochondrial dsDNA in cGAS-STING activation
in TBI, as mitochondrial dsDNA in the cytosol is often
the result of damage to the mitochondria (Chung et al.,
2019). Similar studies with compounds that modulate nuclear
permeability could address the relative role of nuclear dsDNA.
Experiments like these would more convincingly demonstrate
that mitochondrial vs. nuclear dsDNA accumulation activates
cGAS-STING in TBI. Admittedly, the distinction between
nuclear and mitochondrial dsDNA would not matter once
cGAS-STING signaling is activated, but identifying the source
of these cytosolic dsDNAs could be important for “upstream”
therapeutic approaches.

Another important point is that impaired behavioral function
is commonly associated with TBI in mice and humans
(Gorgoraptis et al., 2019; Xu et al., 2021), but behavioral
testing was not performed in this study. Such data would
connect the molecular and pathological findings with CCI
injury to physiological dysfunction often seen with TBI, and
demonstrate that inhibiting cGAS-STING signaling may be
a viable therapeutic strategy. Fritsch et al. did mention that
behavioral changes in response to CCI-induced TBI were
previously shown (Barrett et al., 2020) and therefore, they
investigated motor dysfunction instead. However, the cited study

used an IFNβ homozygous knockout mouse and not cGAS
and STING knockouts (Barrett et al., 2020). IFN activation,
specifically of IFNβ, can result from signaling via pathways
other than cGAS-STING, like the RIG-I/MDA5 pathway (which
responds to dsRNA; Dhir et al., 2018), and therefore, it cannot
be concluded that behavioral impairments seen with an IFNβ

knockout would be similar to those in cGAS and/or STING
knockouts. Furthermore, Fritsch et al. did not demonstrate a
direct link between cGAS-STING, cytokines/IFNs, and brain
pathology, and cGAS-STING could modulate other pathways
that may influence pathology, like autophagy (Liu et al., 2018),
apoptosis (Cerboni et al., 2017), and tau phosphorylation (via
cGAS targets like TBK1; Abreha et al., 2021).

Finally, Fritsch et al. found greater gene expression of
cGAS and STING in microglia compared to other brain
cells, suggesting that microglia may be central to cGAS-
STING activation (Supplementary Figure 5, Fritsch et al.,
2022), which is an important observation consistent with
the central role of microglia in neuroinflammation (Shao
et al., 2022). However, others have also shown that astrocytes
are involved in TBI-related responses (Burda et al., 2016;
Michinaga and Koyama, 2021) and cGAS-STING activation
(Jeffries and Marriott, 2017), and the current data do not rule
out the contribution of other glial cells—especially since cell
isolation protocols themselves can contribute to inflammatory
microglial activation (Cadiz et al., 2022) and the authors did
not report on cGAS-STING levels in adherent cells other than
microglia. In addition to studying other cells like astrocytes,
future studies could leverage single-cell sequencing approaches
(e.g., single-cell RNA-seq) to confirm the importance of
microglia and/or other cell types in cGAS-STING activation
with TBI.

To conclude, Fritsch et al. have nicely documented the
importance of cGAS-STING activation in TBI-related
neuroinflammation using cGAS and STING knockouts.
However, future studies could be conducted to confirm
their findings and provide important insight on specific
mechanisms and potential therapeutic strategies related to
TBI-induced neuroinflammation.
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