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Abstract. We have generated mice transgenic for a hu- 
man multidrug resistance (MDR)3 mini-gene driven by 
a hamster vimentin promoter. The MDR3 gene en- 
codes a P-Glycoprotein that resembles the mouse mul- 
tidrug resistance 2 P-Glycoprotein shown to be in- 
volved in the translocation of the phospholipid 
phosphatidylcholine through the hepatocyte canalicu- 
lar membrane (Smit et al., 1993. Cell. 75:451-462). The 
vimentin promoter drives expression of the MDR3 
transgene in mesenchymal tissues and in the eye lens. 

We show here that the presence of human multidrug 
resistance 3 P-Glycoprotein in the lens results in a se- 
vere lenticular pathology. Lens structural abnormalities 
initiate at a late embryonic stage and increase during 
postnatal lens development. Differentiation of the pri- 
mary fibers is affected, and the terminal differentiation 
of the lens epithelium into secondary fibers is also per- 
turbed. The ultrastructural alterations, particularly of 
the lens plasma membranes, resemble those identified 
in congenital mouse osmotic cataract. 

p -GLYCOPROTEINS (pgp)l are highly conserved mem- 
brane proteins that can function as ATP-dependent 
efflux pumps (23, 31, 57). They belong to the family 

of ATP-binding cassette transporter proteins (37). Two 
genes for Pgps have been identified in humans: human 
multidrug resistance gene (MDR)I and MDR3 (also called 
MDR2 [10, 72, 73], and three in mice: mouse multidrug re- 
sistance gene (mdr)l (or mdrlb), mdr3 (or mdrla), and 
mdr2 (16, 33, 35). 

The human multidrug resistance (MDR)I Pgp (and the 
related murine mdrl and mdr3, and hamster pgpl and 
pgp2 Pgps), can extrude a wide range of hydrophobic 
drugs from mammalian cells (18, 34, 42, 70). Increased lev- 
els of these proteins in cancer cells result in MDR. De- 
fense against naturally occurring xenobiotic (toxic) com- 
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pounds may represent the main physiological function of 
these Pgps (60). Attempts to show that the human MDR3 
or the closely related mouse mdr2 Pgp (91% identity at 
the amino acid level) can confer MDR have been negative 
thus far (5, 35, 58, 73). 

To find a physiological function for this class of Pgps, we 
have generated mice that are either unable to make the 
mdr2 Pgp or overproduce the MDR3 Pgp in many tissues 
(64; Smit, J.J.M., F. Baas, J.E. Hoogendijk, G. Jansen, F. 
Jennekens, M.A. van der Valk, A.H. Schinkel, A.J.M. 
Berns, K. Nooter, and P. Borst, manuscript in prepara- 
tion). Mice homozygous for a disrupted mdr2 gene de- 
velop liver disease. A detailed analysis of these mice has 
shown that the mouse mdr2 Pgp (and presumably there- 
fore also its human MDR3 counterpart) is essential for 
translocating phosphatidylcholine through the hepatocyte 
canalicular membrane into the bile (64, 65). This indicates 
that this Pgp is a specific phospholipid translocator, as has 
recently been supported by in vitro experiments (54, 66). 

We have generated mice containing an MDR3 mini- 
gene under the control of a vimentin promoter which 
drives the expression of the transgene in mesenchymal tis- 
sues and in the eye lens. These mice develop a peripheral 
neuropathy and microphthalmia. Here we present an anal- 
ysis of the abnormalities in the lenticular cells of these 
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mice during embryonic, newborn, and adult life. Immuno- 
cytochemical and ultrastructural observations show that 
the expression of the transgene product progressively in- 
duces cell membrane alterations that resemble those 
known to perturb the control of the vectorial electrochem- 
ical gradient across the lens. As a consequence, a postnatal 
cataract develops that may be osmotic in nature. 

Materials and Methods 

Transgenic Mice 
We have generated mice containing an MDR3 mini-gene under the con- 
trol of a vimentin promoter which drives the expression of the transgene 
in mesenchymal tissues and in the eye lens. In this study, we have exam- 
ined lenses from mice of the transgenic Friend Virus B (FVB) strains VO1 
and VO4. Control lenses were either selected from wild-type offspring ob- 
tained from the same litter as the transgenic offspring or from mating of 
the wild-type FVB mouse strain. 

Lens Samples 
Embryos were obtained from crosses of VO1 and VO4 transgenic mice 
with wild-type FVB mice. Animals were mated overnight, and those with 
vaginal plugs were separated the following morning, which was considered 
to be gestational day 1 (El). Pregnant mice were killed on E12 and El4, 
and the complete eyes were dissected from the embryos. Lenses or intact 
eye s from newborn (1-8 d after birth) and adult mice (between 2 wk and 4 
mo old) were also examined. The material was rapidly fixed by immersion 
in cold (-20°C) 100% acetone or methanol, or in 3% paraformaldehyde 
in PBS, pH 7.4, at 4°C for 1 h. 

For cryosectioning, the dissected lenses or the whole eyes were washed 
in PBS and impregnated in 2.3 M sucrose-PBS overnight at 4°C. Samples 
were frozen and subsequently stored in liquid nitrogen. Cryosections of 
1 I~m were made at -85°C with the Ultracut E (Reichert Jung S.A., Rueil, 
France) equipped with an FC4D cryoattachment as described by Toko- 
yasu (68). 

Antibodies 
We used affinity-purified rabbit polyclonal antibodies (polyvim K34) di- 
rected against vimentin (53) at 1:200 dilution (Organon Teknica, Turn- 
hout, Belgium); rabbit polyclonal antibodies directed against the major in- 
trinsic membrane protein of the lens fibers (MP26) at 1:500 dilution (19); 
mouse mAb C219, recognizing an epitope present in all human and mouse 
Pgps, at 1:100 dilution (28, 65); and affinity-purified rhodamine-labeled 
donkey secondary antibodies directed against rabbit and mouse IgG 
(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA). For im- 
munogold labeling, we used as secondary antibodies goat anti-mouse IgG 
conjugated to 5- or 10-nm gold particles (Amersham International, Little 
Chalfont, UK), or protein A conjugated to 10-rim gold particles (Depart- 
ment of Cell Biology, University of Utrecht, The Netherlands). 

RNA Analyses 
Total RNA from tissues was isolated by acidic guanidinium isothiocya- 
nate-phenol-chloroform and was analyzed by RNase protection as described 
(64). The plasmid construct for detection of MDR3 contains a 310-nucleotide 
HindII-TaqI fragment (64). For detection of glyceraldehyde-3-phosphate 
dehydrogenase (gapdh) mRNA, a 146-bp BsteII-HindIII fragment from 
pmGAP was blunted and cloned in a SmaI site of pGEM3-Zf( - ) .  To syn- 
thesize antisense RNA probes, we linearized the plasmid templates with 
BamHI (gapdh) and HindlII (MDR3), and transcribed them with 3-7 
RNA polymerase. 32p-labeled RNA transcripts were hybridized with 10 
p~g of total RNA from the tissue of interest. The protected probe was visu- 
alized by electrophoresis through a denaturing 6% gel, followed by auto- 
radiography. 

SDS-PAGE and Immunoblotting 
Decapsulated lenses of control and transgenic mice were homogenized in 
40 mM KC1, 2 rhM MgCI2, and 50 mM Tris-HC1, pH 7.5 (TKM buffer), 

containing 2 mM PMSF. After two washes in TKM buffer, the plasma 
membrane--cytoskeleton complex obtained by centrifugation at 3,000 g for 
10 rain was subsequently treated with 4 M urea for 15 min. The urea-insol- 
uble material was collected by centrifugation at 100,000 g for 45 min. SDS- 
PAGE was carried out in 12 and 10% polyacrylamide slab gels according 
to Laemmli (see also 20) using a miniprotean If slab cell (Bio-Rad Labo- 
ratories, Richmond, CA) operating at 180 V for 1 h. Aliquots of the differ- 
ent samples were solubilized in sample buffer (2% SDS, 5% 2-13-mercap- 
toethanol) without heating. After electrophoresis, the gels were stained 
with Coomassie blue. 

Proteins separated by SDS-PAGE were electrophoretically transferred 
onto nitrocellulose paper and incubated with the primary antibodies as 
described (20). Alkaline phosphatase--conjugated or HRP-labeled goat 
anti-mouse or anti-rabbit IgG were used as secondary antibodies (Pro- 
mega Biotec, Madison, WI). For alkaline phosphatase-coujugated anti- 
bodies, the color reaction was developed with 5-bromo-4-chloro-3-indolyl 
phosphate/nitroblue tetrazolium (BCIP/NBT kit; Kirkegaard & Perry 
Laboratories, Inc., Gaithersburg, MD). For HRP-labeled antibodies, en- 
hanced chemiluminescence detection was performed (ECL kit; Amer- 
sham International). 

Immunofluorescence 
Immunofluorescence experiments were performed on 1-1xm cryosections, 
placed onto poly-L-lysine-coated coverslips. Sections were fixed with 3% 
paraformaldehyde-PBS for 10 min, thoroughly washed in PBS, and incu- 
bated in a quenching solution of 50 mM NH4CI-PBS for 20 min and in a 
blocking solution (PBS-0.2% gelatin) for 30 min. Immunolabeling was 
performed by incubating the sections consecutively in the primary and in 
the rhodamine-labeled secondary antibodies for 45 min. 0.2% gelatin-PBS 
solution was used for antibody dilutions and washes. Nuclei of cells were 
stained with 4,6-diamidino-2-phenylindole, 0.1 mg/ml in PBS, for 5 min. 
Sections were mounted using Mowiol (Hoechst, Frankfurt, Germany) and 
examined with a microscope (Aristoplan; E. Leitz, Inc., Wetzlar, Ger- 
many) equipped with epifluorescence illumination and with x63 NA 1.4 
and x 100 NA 1.32 immersion optics. 

Con focal Laser Scanning Microscopy 
Confocal laser scanning microscopy was performed using an MRC-600 
(Bio-Rad Laboratories) mounted on a microscope (Optiphot II; Nikon 
Inc., Garden City, NY) equipped with a x60 objective (plan apochromatic 
NA 1.4), on 2.5-~m cryosections processed for immunofluorescence as de- 
scribed before. For rhodamine, a helium-neon ion laser adjusted at 543 
nm was used, close to the maximum of absorption. The signal was treated 
by Kalman filter (average eight images), and the pinhole of the confocal 
system was adjusted to allow a field depth of ~0.6 p.m. A focal series of up 
to 10 sections apart was collected for each specimen and then processed to 
produce single composite images (extended focus) with high spatial reso- 
lution. 

Photographs were taken on film (Kodak T-Max; Eastman Kodak Co., 
Rochester, NY) using a camera mounted on a film recorder (VM-1710; 
Lucius & Baer, Geretsried, Germany). 

Histological Sections 
Lenses or intact eyes were fixed overnight in a mixture of 0.25% glutaral- 
dehyde and 3% paraformaldehyde-PBS at 4°C. After washing in PBS, the 
samples were dehydrated in a series of graded ethanol solutions and em- 
bedded in LR white. 1.5-mm semithin sections were placed onto poly-L- 
lysine-coated slides, dried, stained with 1% toluidine blue, and examined 
with a Leitz Aristoplan microscope. 

Electron Microscopy 
Four thin-section EM lenses were fixed in 2% glutaraldehyde in 0.2 M ca- 
codylate buffer, pH 7.4, for 1 h, washed in the same buffer, and subse- 
quently fixed in a mixture of 1% osmium tetroxide/0.8% potassium ferro- 
cyanate in the same buffer for 40 min. After washing, the samples were 
dehydrated in a series of graded ethanol solutions and embedded in Epon 
Araldite. Thin sections were stained with uranyl acetate and lead citrate. 

Immunogold labeling was performed on 1-~m cryosections of 3% 
paraformaldehyde- or methanol-fixed intact tissue with the same protocol 
described for immunofluorescence, using as secondary antibodies the cor- 
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Figure 1. The level of MDR3 m R N A  in the transgenic lens. Total 
RNA was isolated from the lenses of transgenic (7) V01 animals 
or wild-type (IV) animals and analyzed by RNase protection. The 
protected fragments representing MDR3, mdr2, and gadph 
m R N A  are indicated on the right side. For comparison, an analy- 
sis of MDR3 expression levels in RNA isolated from a human 
liver and a V01 transgenic mouse liver. Due to the partial se- 
quence homology of the MDR3-specific RNA probe with mouse 
mdr2 sequences, a smaller fragment was detected that represents 
mdr2 m R N A  in RNA from liver. As size marker (M), an end- 
labeled DdeI digest of M13mpl9 DNA was used; relevant sizes 
are indicated at the left. 

responding gold conjugates. The immunogold-labeled cryosections were 
postfixed in 2% glutaraldehyde in 0.2 M cacodylate buffer for 30 min and 
in 1% osmium tetroxide in the same buffer for 45 min, and then processed 
for thin sections as described before. To favor the immunogold labeling, 
some cryosections were fixed with 1.5% paraformaldehyde for 20 min, ex- 
tracted for 5 min with 1% Triton X-100 in PBS, postfixed with 100% cold 
methanol (-20°C), and then processed for immunogold labeling. Other 
lens samples were extracted with 1% Triton X-100 in TKM, after repeated 
washing in the same buffer, fixed in 1.5% paraformaldehyde for 20 min, 
and processed for cryosectioning and immunogold labeling using the C219 
antibody. After the latter step, the cryosections were embedded either in 
Epon or in LR white. Thin sections of this material were stained with ura- 
nyl acetate. 

For freeze fracturing, small pieces of the 2% glutaraldehyde-fixed 
lenses were washed in PBS and gradually impregnated with 30% glycerol/ 
PBS overnight at 4°C. Each piece was mounted in a specimen holder, rap- 
idly frozen in Freon 22, (Dehon, Paris, France) and stored in liquid nitro- 
gen. Freeze fracturing was performed at -120°C or at -150°C in a freeze- 
fracture apparatus (model 301; Balzers, Liechtenstein). After fracture, the 
specimens were immediately shadowed by platinum/carbon evaporation 
from an electron gun. 

Figure 2. (A) Immunoblot anal- 
ysis of urea-insoluble lens 
plasma membrane fractions 
from newborn transgenic mouse 
lenses (lane a) and of cataractous 
adult transgenic mouse lenses 
(lane b). For comparison, an 
urea-insoluble fraction of eye 
tissue of a control mouse after 
removal of the lens (lane c). Pro- 
tein blots were incubated with 
the Pgp-reactive mAb C219. De- 
tection was done by chemilumi- 
nescence. (B) Immunoblot anal- 
ysis of urea-insoluble lens 
plasma membrane fractions 
from control lenses (lane a) and 
from cataractous transgenic 
mouse lenses (lane b). Protein 
blots were incubated with the 
polyclonal antiserum against 
MP26. Detection was achieved 
by an alkaline phosphatase-  
based method. 

Thin sections and freeze-fracture replicas were examined with an elec- 
tron microscope (EM 400 or EM 410; Philips, Eindhoven, Holland) oper- 
ating at 80 kV. 

Chemicals 

Unless otherwise indicated, all chemicals used for this work were pur- 
chased from Sigma Chemical Co. (St. Louis, MO). 

Results 

Generation of  Mice Transgenic for the Human 
MDR3 Gene 

Several transgenic mice strains (VO1 to VO8), have been 
generated (Smit et al., manuscript in preparation) by in- 
jecting an MDR3 P-glycoprotein mini-gene under the con- 
trol of the hamster vimentin promoter into fertilized mouse 
oocytes. This promoter drives the expression of the trans- 
gene in all tissues in which the vimentin gene is normally 
expressed, i.e., in tissues of mesenchymal origin and in the 
eye lens (52). 

Detection of  MDR3 RNA and MDR3 Pgp in Transgenic 
Lens Extracts 

We have previously shown that immortalized transgenic 
fibroblast cells derived from the VO1 mouse strain contain 
a high level of MDR3 mRNA which is translated into full- 
length MDR3 Pgp and routed to the plasma membrane 
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Figure 3. (A) Histological section (LR white) of transgenic mouse embryonic eye (day 14). Note the normal organization of the lens pri- 
mary fibers (F), the lens anterior epithelium (E), and all other ocular tissues. Bar, 300 ixm. (B) Cryosection of a control embryonic eye 
(day 14), incubated with the Pgp-reactive mAb C219. Note the presence of highly fluorescent ocular connective-tissue derivatives sur- 
rounding the lens. In contrast, the lens appears completely negative. E, epithelium; F, primary fibers. Bar, 125 Ixm. (C and D) Cryosec- 
tions of transgenic mouse embryonic lenses (day 14) incubated with the C219 antibody. MDR3-Pgp is present only in a few randomly 
scattered primary fibers. Bars: (C) 150 Ixm; (D) 200 I~m. 

(59, 65). Fig. 1 shows that MDR3 m R N A  can be detected 
in the lens of newborn transgenic mice, but not in that of 
control mice. In agreement with these results, a protein 
migrating at ~170 kD, the relative mobility of full-length 
glycosylated MDR3 Pgp (58), was detected in immuno- 
blots of isolated lens plasma membranes from newborn 
transgenic mice (Fig. 2 A, lane a), but not from control 
mice (not shown). The C219 antibody used in these exper- 
iments reacts with all human and murine Pgps. No 170-kD 

band was found in samples of isolated plasma membranes 
from adult cataractous transgenic lenses (Fig. 2 A, lane b), 
but instead there was a prominent  band at 100 kD, which 
was also present in other lanes in Fig. 2 A. Several bands 
ranging from N80 kD to 150 kD were recognized by C219 
in immunoblots of control mouse ocular tissues after re- 
moval of the lens (Fig. 2 A, lane c). Whether  these bands 
are due to Pgp degradation products or cross-reacting pro- 
teins remains to be established. 
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Figure 4. (A) Confocal laser scanning microscopy on a cryosection of newborn transgenic mouse lens incubated with the C219 antibody. 
The MDR3 expression appears distributed in a mosaic fashion, particularly in the lens fibers (F) lying underneath the anterior epithe- 
lium (E). Bar, I00 p~m. (B and C) Confocal laser scanning microscopy on cryosections of newborn transgenic mouse lenses incubated 
with an MP26 antibody. Note the great variety of shape and orientation of the fibers (F) outlined by the intense fluorescence of the 
membrane profiles. The fibers (F) lying underneath the epithelium (E) are no longer detectable, and areas of liquefaction (Lq) are visi- 
ble in regions where MP26 forms clusters of intensely fluorescent granular material. Bar, 100 Ixm. (D) Confocal laser scanning micros- 
copy on cryosection of control newborn mouse lens incubated with MP26 antibody. The typical aspect and regular pattern of the fiber 
membrane profiles are outlined by the antibody. Bar, 200 nm. 

Immunoblots  stained with the antibody raised against 
MP26, the major intrinsic membrane  protein of  the lens fi- 
bers, indicate that the isolated fiber plasma membranes,  
after 4 M urea extraction, contain MP26 but not its degra- 
dation product,  MP22. This pattern is present in the iso- 
lated plasma membranes from newborn (not shown) and 
adult cataractous lenses of  transgenic mice (Fig. 2 B). 

Gross Defects in Eyes of Transgenic Mice 

The shape, size, and transparency of lenses from E12-E14 
transgenic embryos were comparable to those of control 
mice, but in newborns the transgenic lenses were smaller 
and softer than in controls. Adul t  mice developed mi- 
crophthalmia. Histological sections revealed that the rem- 
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Figure 5. Cryosection of newborn transgenic mouse lens incubated with C219 antibody. Elongating fibers display uneven distribution of 
the transgene product which appears in a mosaic fashion. Note the presence of highly fluorescent material either filling the fibers or out- 
lining the membranes (arrows). Bar, 50 p~m. 

nant lens appeared more like a bladder than a compact cel- 
lular mass (see also Fig. 8 A). 

lmmunocytochemistry of Embryonic Lenses 

In Fig. 3 A, the normal cell organization of the transgenic 
embryonic lens is shown. The C219 antibody stains a few 
randomly scattered cells (mainly primary fibers) in the 
transgenic lens (Fig. 3, C and D), but not in control lenses 
(Fig. 3 B). In addition, other eye tissues are intensely 
stained with C219, both in the transgenics and controls 
(Fig. 3 B). This may be due to endogenous mouse Pgps, 
which are also recognized by C219. 

In both transgenic and control lenses, vimentin is uni- 
formly distributed in primary and secondary fibers and in 
the anterior epithelial layer. Antibodies against MP26 re- 
act with the lens fiber plasma membranes but not with the 

epithelium in both transgenic and control embryonic lenses 
(not shown). 

Immunocytochemistry and Electron Microscopy 
of Lenses from Newborn and Adult Transgenic and 
Control Mice 

In newborn transgenic mouse lenses, the MDR3-Pgp de- 
tected by fluorescence with the C219 antibody is dramati- 
cally increased in comparison with the embryonic stages. 
However, the expression is still not uniform, but very high 
in some cells, whereas in others, particularly in the ante- 
rior lens epithelium, MDR3-Pgp is not detectable (Figs. 4 
and 5). The MDR3-Pgp appears to be present mainly as 
the equatorial/epithelial cells elongate, orient themselves 
obliquely, and come to lie beneath the epithelium. Nucle- 
ated bow fibers are also occupied by C219-reactive material, 
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Figure 6. (A and B) Thin sections of newborn transgenic mouse lenses stained with uranyl acetate and lead citrate. The fiber cytoplasm 
is occupied by many vacuoles of different sizes and shapes containing either amorphous material (A, arrow) or sequestrated membrane 
remnants (B, arrow). Bar, 30 nm. 
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Figure Z (A and B) Cryosections of transgenic mouse lens fragments extracted with Triton X-100 and immunogold labeled with C219 
antibody. Note that the gold particles are labeling amorphous material closely attached to the cytoplasmic sides either of the vesicular 
profiles (small arrows) or of junctional complexes (arrowheads). Gold particles are also visualized on tangential sections going through 
the membrane profiles (thick arrows). Bars: (A) 120 nm; (B) 150 nm. 

and the expression of the transgene is also evident in sev- 
eral primary fibers of the lenticular core (Fig. 5). Fluores- 
cence appears either associated with amorphous cytoplas- 
mic material or outlining the plasma membrane (Fig. 5, 
arrows). Many cells expressing MDR3 have a polygonal 
shape, while some others fuse together forming rather 
large cellular conglomerations underlining the anterior ep- 
ithelium or the posterior capsule (Fig. 4 A). Using the 
MP26 antibody, the honeycomb arrangement, characteris- 
tic of the control lens fibers (Fig. 4 D), is no longer appar- 
ent. The fibers display a large variation in shape, thickness, 
and orientation (Fig. 4, B and C). Internalization of mem- 
brane and junction domains is also a predominant feature. 
In the lens regions where the C219 staining is highest, cell 
fusion and liquefaction are detectable. In these areas, 
staining with the MP26 antibody shows disruption of the 
plasma membranes and a granular material dispersed 
within the fused fibers (Fig. 4 B). In control newborn mice, 
transgene expression, monitored with the C219 fluores- 
cence, was totally absent in all lenticular cells. Intense flu- 
orescence was present only in the remnants of the hyaloid 
vascular system and in other derivatives of ocular connec- 
tive tissue, as also shown in embryonic control eyes (Fig. 3 B). 

Electron microscopic sections of newborn transgenic 
mouse lenses show the presence of many cytoplasmic vac- 
uoles (Fig. 6 A) absent in control mice. These vesicles have 

different sizes and shapes and contain internalized mem- 
brane profiles and amorphous material (Fig. 6 B). Immu- 
nogold labeling of cryosections with the C219 antibody, 
particularly of Triton-extracted lens samples, shows that 
many gold particles are associated either with amorphous 
material or with internalized membranes and junctions 
(Fig. 7, A and B). 

The advanced stages of lens pathology of adult trans- 
genic mice are characterized by swollen fibers and abla- 
tion of the central lenticular core. The anterior and poste- 
rior sutures become undetectable, and the lens appears 
more like a bladder than a compact cellular suborgan (Fig. 
8 A). The lenticular tissue is surrounded by a thick cap- 
sula. Underneath this fibrillar coat, a layer of either polyg- 
onal or elongated flattened cells is present surrounding the 
central cavity (Fig. 8, A and C). The cells forming the wall 
of the lens bladder possess a well-developed ER, mito- 
chondria, and Golgi apparatus (Fig. 8 C). They contain 
thick bundles of vimentin intermediate filaments (not 
shown). 

Immunocytochemistry on cryosections of adult trans- 
genic mouse cataractous lenses, using specific antibodies 
against Pgp (Fig. 8 B) and vimentin, respectively (Fig. 8 C, 
inset), reveals that many cells express these proteins. 

In this material, some polygonally shaped cells are char- 
acterized by a great number of surface projections and mi- 
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Figure 8. (A) Histological section (LR white) of a cataractous adult transgenic mouse lens. The lens appears as a bladder surrounded by 
a thick capsule and formed by multilayered, round-shaped, and elongated nucleated cells. The bladder cavity is occupied by swollen cel- 
lular debris. Bar, 150 I~m. (B) Confocal laser scanning microscopy on cryosection of a cataractous adult transgenic mouse lens incubated 
with C219 antibody. Note the mosaic distribution of the transgene product highly expressed in elongated multilayered cells. Note that 
the capsule (C) is not stained. Bar, 60 I~m. (C) Thin section of the wall of the lens bladder in a transgenic mouse adult cataractous lens, 
stained with uranyl acetate and lead citrate. The cells are characterized by a well-developed, rough ER (arrows). Note the presence of 
cytoplasmic vacuoles and shedded membranes (arrowheads). L, lumen; C, capsule. Bar, 2 I~m. (Inset) Cryosection of the same material 
incubated with anti-vimentin antibody, showing the mosaic distribution of this protein. F, fibers; C, fragment of capsule detached from 
the lens during sectioning. Bars: (C) 200 nm; (inset) 80 p~m. 
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crovilli that occupy the intercellular space. Some of these 
cellular projections appear pinched off from the plasma 
membrane and lie as individual round or oval structures in 
the extracellular domain (Fig. 9 A). Immunofluorescence 
(Fig. 9 B) and immunogold labeling (Fig. 9 A, inset), using 
antibodies against MP26, show that this protein is associ- 
ated with the surface of cell projections. 

Freeze Fracture of  Lenses from Embryonic, Newborn, 
and Adult Transgenic and Control Mice 

Embryonic lenses of transgenic mice are characterized by 
freeze-fracture features comparable to those found in con- 
trol mice. The intramembranous particles (IMP) of the 
protoplasmic fracture face (PF) and the pits, characteristic 
of the external fracture face (EF) of the plasma mem- 
brane, are randomly distributed (not shown). 

In newborn transgenic mouse lenses, freeze fracture of 
the outer cortical fiber plasma membranes reveals the 
presence of large areas of PF occupied by tetrameric IMP 
forming a lattice of packed arrays (Fig. 10). Such square 
arrays are also present in deeper regions of the lens. In the 
newborn control lenses, the same arrays are only restricted 
to the nuclear fiber plasma membranes (not shown). 

The plasma membrane of the adult cataractous trans- 
genic mouse lens cells is characterized by an impressive ac- 
cumulation of tetrameric IMP arrays on the PF, either 
forming randomly scattered small clusters or large square 
lattices of repeating subunits (Fig. 11 A) often interspaced 
by areas devoid of particles (Fig. 11 B). The cells forming 
the lenticular cataractous wall can be easily recognized be- 
cause they have an elongated shape and fingerlike pro- 
cesses. Freeze fracture of these cells reveals that their PFs 
are characterized, in addition to the square arrays (Figs. 10 
and 11), by the presence of 8-rim particles, exhibiting clus- 
ter distribution or forming interlaced rows (Fig. 12, A and 
C). Typical gap junctions are also present, being character- 
ized by both geometrically packed arrays of 8-nm repeat- 
ing subunits, or by large nongeometric assemblies of 8-nm 
repeating subunits (Fig. 12, B and D). 

Discussion 

Expression of  the MDR3-Pgp in the Lens 

Our results demonstrate that the human MDR3 gene, 
driven by the vimentin promoter, is expressed in lenticular 
cells. The level of expression, monitored by immunofluo- 
rescence, is prominent in the newborn and adult mouse 
lens. mAb C219, which we have used as immunoprobe, 
recognizes all mammalian Pgps (28), and we have shown 
that no Pgps are present in the normal eye lens. This fact 
made it possible to identify both the onset and site of pro- 
duction of the MDR3-Pgp in the lens and to characterize 
tissue alterations when the ectopic Pgp becomes expressed. 

Differing from the endogenous vimentin expression (20, 
21, 38, 56), the occurrence of MDR3-Pgp is not uniform, 
but follows a randomly dispersed mosaic pattern. The 
number of cells expressing the transgene increases from 
newborn to adult lenses. Therefore, the MDR3-Pgp pro- 
duction, although remaining patchy, can account for the 
progressive and extensive damages leading to cataract. 

The expression of Pgps in eye tissues other than the lens 
is presumably not the cause of lens damage since during 
the embryonic stages, the derivatives of ocular connective 
tissue fully express the transgene or the endogenous Pgps, 
while the lens displays a normal organization, and its de- 
velopment proceeds unaffected. 

Ultrastructural Features of  the Lens 
Expressing MDR3-Pgp 

The early ultrastructural alterations in the MDR3-Pgp- 
expressing lens cells are characterized by the presence of 
cytoplasmic vacuoles of different size and shape, many of 
them containing internalized membrane profiles and 
amorphous material. Immunofluorescence and immu- 
nogold labeling reveal that the MDR3-Pgp is mainly asso- 
ciated to the plasma membrane outlining the fiber con- 
tours and to the membrane-internalized profiles. Moreover, 
immunoblotting experiments using the antibody raised 
against P-glycoproteins (mAb C219) demonstrate that 
MDR3-Pgp is associated to the isolated lens plasma mem- 
branes. 

At more advanced stages of damage, the inner cortex 
and the lenticular core show liquefaction areas within the 
fibers, and the lens is transformed into a cavity comprising 
cellular debris. The wall of this cavity consists of flattened 
overlapping cells, with a fully differentiated nuclear and 
cytoplasmic organization, characterized by a great number 
of surface projections. Many of these cells express MDR3- 
Pgp and vimentin. Since they express MP26 too, presum- 
ably, they are epithelial cells committed to terminal differ- 
entiation and elongation into fibers. Moreover, they are 
also characterized by membrane domains displaying all 
different stages of gap junctional assembly characteristic 
of the process of fiber elongation (2) (Fig. 12, A and C). 

All these data lead us to the conclusion that the expres- 
sion of MDR3-Pgp in transgenic mouse lenses affects the 
organization of the plasma membrane, particularly of 
MP26. This major intrinsic polypeptide of lens fiber mem- 
branes (also called MIP or aquaporine) belongs to a super- 
family of putative transmembrane channel-forming pro- 
teins widespread among living organisms from mammals 
to bacteria (3, 11, 22). Major functions of this superfamily 
include the control of water (49, 74, 75) and ion permeabil- 
ity (12, 14, 15, 50). In normal lens fibers and in reconsti- 
tuted proteoliposomes containing exclusively MP26, the 
protein forms tetrameric oligomers randomly dispersed in 
the bilayer (19). Furthermore, the MP26 oligomers can 

Figure 9. (A) Thin section of cellular elements forming the wall of the lens bladder in an adult cataractous transgenic mouse lens, 
stained with uranyl acetate and lead citrate. Note the presence of a great number of surface projections and swollen microvilli occupying 
the membrane surface. (Inset) Ultracryosection of the same material incubated with the MP26 antibody. Note that a discrete immu- 
nogold labeling outlines the cell surface projections (arrows). Bars: (A) 1 txm; (inset) 125 nm. (B) Cryosection of a cataractous adult 
transgenic mouse lens, immunolabeled with the MP26 antibody. The MP26 fluorescent material is associated either with the plasma 
membrane or with granular material in the cell cytoplasm. Bar, 50 nm. 
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Figure 10. Freeze-fracture replica of a newborn transgenic mouse lens. The protoplasmic fracture face (PF) is characterized by a great 
number of small clusters of square arrays of IMPs. Bar, 120 nm. 

form, both in situ and in reconstituted proteoliposomes 
(19, 46), square arrays of tetrameric subunits. However, in 
normal lenses, the lattice organization is restricted to the 
plasma membranes of the nuclear fibers (3, 13, 22, 39, 43). 
This type of membrane organization has been tentatively 
correlated with posttranslational degradation of MP26 

into MP22 that normally occurs in aged nuclear fibers (3, 
13, 22, 39, 43). Square arrays of tetrameric subunits, al- 
though to a limited extent, have been described in the 
nonosmotic hereditary cataract in aged Emory mice, which 
is a model for senile lens opacification (44, 45, 69). 

Our freeze-fracture experiments show that large accu- 
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Figure 11. (A and B) Freeze-fracture replica of a cataractous transgenic mouse lens. (A) PF fracture faces displaying a great number of 
square arrays of tetragonal particles. (B) IMPs are assembled in large clusters of tetragonally packed repeating subunits, interspaced by 
areas void of particles. Bars: (A) 50 nm; (B) 80 nm. 

mulations of square arrays of tetrameric subunits are 
present in cortical fiber plasma membranes of newborn 
transgenic lenses. This freeze-fracture feature becomes 
more pronounced in cataractous lenses. The massive ap- 
pearence of square arrays in MDR3 transgenic mouse 
lenses seems not to be associated with the proteolytic deg- 
radation of MP26. This is shown by our immunoblotting 
experiments using an MP26 antibody. The square array of 
MP26 tetrameric subunits in MDR3 transgenic mouse lens 
fibers may therefore reflect changes in the membrane lipid 
environment. Actually, the square lattice, present in the 
aged nuclear fiber membranes of a normal lens, not only 
coincides with the posttranslational processing of MP26, 
but also, if not primarily, with changes of the lipid compo- 
sition of the plasma membranes. In a normal lens, the ag- 
ing process of the fiber plasma membranes is characterized 
by loss of phospholipids, in particular phosphatidylcholine 
(7, 9, 24). The nuclear fiber membranes contain less than 
one-third of the concentration of the total phospholipid 

present in the cortex, with a corresponding increase of the 
cholesterol/phospholipid ratio (24), 

Characteristics o f  Lens Abnormalit ies in Transgenic 
Mouse Lenses 

Although cataracts have been described in other trans- 
genic mice, these opacifications lack the characteristic os- 
motic features of the cataracts in mice overexpressing the 
MDR3 gene. Cataracts generated in lenses overexpressing 
dominant mutations of intermediate filament genes driven 
by the vimentin promoter (4, 6, 20, 21) or in transgenic 
mice overexpressing the retinoic acid receptor protein tar- 
geted to the lens by the aA-crystallin promoter (1) lacked 
a prominent osmotic component. Even overexpression of 
an ectopic single-pass membrane protein, the H-2D d ma- 
jor histocompatibility complex class I chain (47), did not 
induce the distinct alterations of the lens membrane orga- 
nization observed in MDR3 transgenic mice. 
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Figure 12. Freeze-fracture replica of a cataractous transgenic mouse lens. (A and C) The fracture reveals two classes of particles on the 
PF: particles of heterogeneous size between 4 and 7 nm, and 8-nm particles forming linear arrays or clusters. Bar, 70 nm. (B and D) The 
fracture reveals macular gap junctions either characterized by a hexagonal array of pitted images on EF and geometrical packing of 8-nm 
particles on PF (D), or by nongeometrical clusters of 8-nm particles (B). Arrows point to EF and PF, respectively. Bars: (B) 120 nm; (D) 
80 nm. 

The ultrastructural abnormalities detected in the lens of 
newborn and adult transgenic mice expressing the MDR3- 
Pgp have morphological features in common with those 
described in the osmotic cataracts of Nakano, Philly, and 
Fraser (CAT) mice (8, 25, 32, 36, 40, 51, 67, 69, 71). These 
cataracts develop either during embryonic life or after 
birth and are characterized by the osmotic swelling of cy- 

toplasmic membrane compartments, internalization of mem- 
brane profiles, and liquefaction of the lenticular core. The 
osmotic cataract in Nakano mice is characterized by the 
presence of a protein factor that inhibits the Na ÷,K+-ATP- 
ase and by posttranslational processing of MP26 into 
MP22 (25-27, 40, 67, 69). In Philly mice, a deletion of four 
amino acids has been identified in a region nearby the car- 
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boxyl terminus of 13B2-crystallin affecting the assembly 
and protein-protein interactions of this protein (8). The 
osmotic cataracts in both Nakano and Philly mice have 
been tentatively correlated with an accelerated degrada- 
tion of MP26 (55). 

In mice affected by the dominant Fraser mutation 
(CATFr), lens opacification develops ~day  14 of gestation. 
The swelling of lens fibers correlates with a defect in the 
ionic balance (36). Furthermore, the mRNA profile of 
CAT lenses is consistent with a mutation in the mouse 
MP26 gene, which results in truncation of MP26 mRNA 
(48, 49, 61--63). 

Strikingly, in the three types of congenital osmotic cata- 
racts mentioned, a major feature is either an inherited 
dominant defective expression or a degradation process of 
MP26, in addition to other changes in the metabolism of 
crystallins (8, 36, 40, 51, 76). 

Role of MDR3-Pgp Expression in Lens Damage 

Several mechanisms can be envisaged by which the ex- 
pression of MDR3-Pgp might cause the observed abnor- 
malities. The MDR3 gene is the human homologue of the 
mouse mdr2 gene, and it has recently been shown that an 
MDR3 transgene can rescue the liver abnormalities in an 
mdr2 ( - / - )  mouse homozygous for a disruption of the 
mdr2 gene (Smith, A. J., and P. Borst, unpublished obser- 
vations). The mdr2-Pgp is a phosphatidylcholine translo- 
cator that probably acts as a "flippase," transferring phos- 
phatidylcholine from the inner leaflet of the plasma 
membrane to the outer leaflet (64). In the presence of bile 
salts (64) or phosphatidylcholine transfer protein (66), the 
action of the mdr2/MDR3 translocator may promote ex- 
port of phosphatidylcholine from the cell. In the absence 
of such a phospholipid acceptor, i.e., in lens fiber cells, no 
net phospholipid export can be expected (54, 66), but the 
action of the translocator might still result in an abnormal 
distribution of phospholipid species between the two leaf- 
lets of the plasma membrane. This, in turn, might induce 
lattice assembly of MP26, affecting the channel properties 
of this protein. The new vectorial organization of mem- 
brane phospholipids might also generate a lipid bilayer 
configuration promoting membrane fusion, internaliza- 
tion, and budding of surface projections (17), processes 
identified in the MDR3 transgenic lenses. We cannot ex- 
clude, however, that the insertion of a bulky glycoprotein 
into the plasma membrane would in itself be sufficient to 
disturb the membrane function, even if it had no direct ef- 
fect on phospholipid distribution. It is conceivable, for in- 
stance, that the MDR3-Pgp could modify either the func- 
tion of gap junction constituents (29, 30, 41) or of active 
transporters (26, 27). 
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