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Abstract: The first step in the diagnosis of gastric abnormalities is the detection of various abnormali-
ties in the human gastrointestinal tract. Manual examination of endoscopy images relies on a medical
practitioner’s expertise to identify inflammatory regions on the inner surface of the gastrointestinal
tract. The length of the alimentary canal and the large volume of images obtained from endoscopic
procedures make traditional detection methods time consuming and laborious. Recently, deep learn-
ing architectures have achieved better results in the classification of endoscopy images. However,
visual similarities between different portions of the gastrointestinal tract pose a challenge for effective
disease detection. This work proposes a novel system for the classification of endoscopy images by
focusing on feature mining through convolutional neural networks (CNN). The model presented
is built by combining a state-of-the-art architecture (i.e., EfficientNet B0) with a custom-built CNN
architecture named Effimix. The proposed Effimix model employs a combination of squeeze and
excitation layers and self-normalising activation layers for precise classification of gastrointestinal
diseases. Experimental observations on the HyperKvasir dataset confirm the effectiveness of the
proposed architecture for the classification of endoscopy images. The proposed model yields an
accuracy of 97.99%, with an F1 score, precision, and recall of 97%, 97%, and 98%, respectively, which
is significantly higher compared to the existing works.

Keywords: gastrointestinal diseases; CNN; squeeze and excitation; HyperKvasir dataset

1. Introduction

The gastrointestinal (GI) tract is a tubular passage through which ingested food travels
from the mouth to the anus. In anatomy, the GI tract is divided into two major portions. The
‘upper’ GI tract runs from the mouth to the duodenum, while the ‘lower’ GI tract consists
of the portion from the small intestine to the anus. The upper GI tract is chiefly responsible
for the swallowing and breaking down of food. Gastric acids and enzymes present in this
region are responsible for the digestion of food before it is passed on to the lower GI tract.
The lower GI tract furthers the digestive process with the small intestine. Water, nutrients,
and electrolytes are absorbed in the large intestine. The remaining material forms a solid
waste that is stored in the rectum, which later leaves the body through the anus.

The GI tract is also susceptible to various medical conditions, which may need to
be examined by medical professionals. These include gastrointestinal diseases, tissue
inflammations, and abnormal growth. For example, acid reflux can cause alterations in
the oesophagus lining, an abnormal immune response may trigger inflammations, or
dividing cells may clump to form a polyp on the colon lining. These abnormalities can be
serious themselves, as in the case of ulcers or sores. Another possibility is the development
of complications at a later stage, as with polyps that may become malignant. Medical
professionals demand visual examination of organs present in the GI tract.
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Examination of the GI tract usually takes place with a procedure known as en-
doscopy [1]. These techniques involve an instrument known as an endoscope, a long
and flexible tube usually attached to a fibre-optic camera, inserted through an opening.
This provides a medical practitioner visual access to the GI tract, and they must then iden-
tify abnormalities while the endoscope travels the GI tract. Colonoscopy is an endoscopic
technique where an endoscope is inserted through the anus for an examination of the colon
or large intestine. Other types of endoscopic techniques include wireless capsule endoscopy
(WCE) and narrow band imaging (NBI).

Medical image classification is an important area of image recognition and aims
to help medical professionals provide diagnoses on the disease. Computer vision and
artificial intelligence can assist medical professionals in the process of classifying endoscopic
images into different classes. Computational endoscopic image analysis consists of four
stages: pathology detection, pathology classification, pathology localisation, and pathology
segmentation [2]. Researchers have been working on different learning models to carry
out accurate classification of gastrointestinal images. This work presents an automatic
deep-learning-based approach for classification of different GI diseases.

2. Related Work

Deep learning and machine learning methods have been extensively applied for
the classification of biomedical images. These classification approaches aid the medical
professionals to perform accurate diagnosis and devise precise treatment plans. This section
reviews the existing methods applied to the classification of GI diseases.

2.1. Machine Learning Methods

In this section, we have discussed different machine-learning-based methods for
endoscopic image classification. These methods include classification algorithms like naive
Bayes, decision tree (DT), random forest, support vector machine (SVM), and so on.

Sivakumar et al. proposed an approach for the automatic classification of obscure
bleeding using superpixel segmentation and naive Bayes classifier [3]. The features ex-
tracted include area, centroid, and eccentricity of the segmented region. The expectation-
maximisation method was applied as the learning method in this work. Hassan et al.
presented an approach to detect gastrointestinal haemorrhage from WCE images using
normalised grey level co-occurrence matrix (NGLCM) features [4]. These features were
trained using SVM for classification. Ali et al. utilised hybrid texture features based on
Gabor transform for the detection of gastric abnormalities [5]. Gabor-based grey-level co-
occurrence matrix-based features were extracted from the input chromoendoscopy images
and classified using SVM.

Jani et al. presented an ensemble approach for the classification of capsule endoscopy
images [6]. Colour, texture, and wavelet moments were extracted as features and trained
with the ensemble classifier involving k-nearest neighbour (KNN) and SVM. Charfi et al.
proposed another approach based on texture features for the detection of colon abnormali-
ties from WCE images [7]. Discrete wavelet transform was applied to the input image and
local binary pattern-based features were extracted. SVM and multilayer perceptron was
used for classification.

In addition to the methods discussed above, few research works have employed
invariant features for classification of GI diseases. Moccia et al. presented an approach
for the classification of laryngoscopic images [8]. Eight different types of features were
employed as descriptors for each frame and classified using SVM. Another approach based
on invariant features for the classification of Barrett’s oesophagus and adenocarcinoma
was presented by Luis et al. [9]. Invariant features were extracted using three algorithms,
namely scale-invariant feature transform, speeded-up robust features, and accelerated
KAZE. These features were finally classified using the optimum path forest classifier. All
the above methods analyse different types of features to detect and classify GI diseases.
Al-Rajab et al. presented an approach for the classification of colon cancer using SVM [10].
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Optimisation was carried out using genetic algorithms and particle swarm optimisation to
yield improved performance.

The performance of the machine learning methods discussed above relies heavily on
the precise identification and selection of distinct features from the input endoscopy images.
This requires significant domain expertise involving gastroenterology.

2.2. Deep Learning Methods

Deep-learning-based approaches are applied for different machine-based tasks in the
field of healthcare for the classification of images. The CNN models are fully connected
neural networks that develop a certain perception of the class of disease through a layered
stack of learnable units. It can comprehensively analyse the features of different GI diseases
in endoscopic images for precise classification. CNN has been employed to perform GI
image classification in many research works [11–13]. These works utilise different types of
architectures such as AlexNet [11], LSTM [14], and U-Net [13]. Igarashi et al. employed
the AlexNet architecture to classify fourteen categories of upper gastrointestinal regions
associated with gastric cancer [11]. Another work proposed, for the classification of wireless
capsule endoscopic images, using two different models, namely ResNet and DenseNet [15].
It was reported that the DenseNet network yielded optimal results after fine tuning the
model. KahsayGebreslassie analysed the performance of ResNet50 and DenseNet121
models to classify eight GI diseases [12]. It was reported that Res Net50 model was able to
outperform DenseNet121 model. Rather than training separate networks, Rahman et al.
used a combination of three architectures, namely Xception, ResNet-101, and VGG-19 [16].
It was reported that the ensemble architecture was effective in classifying the input images
when compared to the individual networks.

Another feature fusion model was proposed by Zeng et al. for the classification of
ulcerative proctitis [17]. Ensembling was performed with three different networks, namely
Xception, ResNet, and DenseNet. Ellahyani et al. proposed an ensemble approach for polyp
detection from colonoscopy images [18]. Lafraxo et al. proposed a transfer-learning-based
approach for the classification of endoscopic images [19]. It involved the application of
MobileNet, VGGNets, and InceptionV3 architecture. He et al. proposed an approach that
used pretrained ResNet-152 and MobileNetV3 to classify gastrointestinal diseases using
the HyperKvasir dataset [20]. This work involved a two-stage approach for detection and
segmentation. Another approach was proposed using the application of MobileNetV2
and ResNeXt-50 models for an imbalanced dataset [21]. Barbhuiya et al. employed a tiny
darknet model for the detection of lesions from endoscopic images [22]. All the above-
discussed methods employ pretrained networks for feature extraction. The performance of
these methods can be further improved by applying appropriate customisations to these
models for precise feature learning.

Ozturk et al. presented a residual long short-term memory (LSTM) model for the clas-
sification of GI diseases [14]. It was reported that the residual LSTM structure outperformed
the state-of-the-art methods in terms of classification performance. Zhao et al. proposed an
abnormal feature attention network for the classification of GI endoscopy images [23]. This
network leveraged the significance of few-short learning to obtain improved performance.
Luo et al. proposed another attention-based deep learning network for the diagnosis of
ulcerative colitis [24]. This network utilised the spatial and channel attention mechanisms
on top of DenseNet to obtain better results. In addition to the above-discussed networks,
custom CNNs were also proposed for the classification of GI diseases.

Wang et al. proposed a three-stream classification network for esophageal cancer [25].
This network involved hybrid hessian filtering for preprocessing the images. Iakovidis et al.
proposed a weakly supervised deep learning network for the detection and localisation of
GI anomalies [26]. It employed the concepts of deep saliency detection and iterative cluster
unification for precise detection and localisation. Cao et al. proposed an attention-guided
network for the classification of WCE images [27]. Global and local features were extracted
from the input images and refined using the attention feature fusion module. Rahim et al.
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proposed a deep CNN for the detection of polyps from colonoscopy images [28]. This
network consisted of sixteen convolutional layers with Mish and ReLU activations. Hatami
et al. presented a deep learning network for the detection and classification of gastric
and precancer diseases [29]. This network involves squeeze and excitation mechanisms
for improved performance. Galdran et al. proposed a hierarchical approach for the
analysis of GI images. This network utilised double autoencoders for the segmentation of
polyps. Gjestang et al. proposed a teacher-student framework for the classification of GI
diseases [30]. This network utilises unlabelled data for better generalisation.

Jin et al. proposed a convolutional multilayer perceptron encoder for accurate polyp
segmentation by considering the low-level features using a parallel self-attention module [31].
Ji et al. presented video-based polyp segmentation using a network called SUN-SEG [32]. The
network was designed with novel elements such as global and local encoder and normalised
self-attention blocks. Zhang et al. presented an adaptive context selection method for precise
segmentation of polyp structures [33]. All the above methods present the efficacy of the deep
learning models for the detection and segmentation of GI diseases.

2.3. Research Gaps and Motivation

The following are the research gaps observed with respect to the classification of
GI diseases:

1. Most of the research works for the classification of GI diseases were conducted with
limited datasets due to privacy concerns and the rarity of abnormalities. Hence, to
improve the effectiveness of these models, these methods must be analysed with
benchmark datasets.

2. Though the cumulative performance of the above-discussed methods were consid-
erable, the class-wise metrics are often overlooked. This is due to the similarity in
the morphological features existing between two or more diseases. Identification of
precise hand-crafted features is a challenging task. Hence, the power of deep learning
methods needs to exploited in the place of machine learning methods, which require
manual feature extraction.

3. Though few deep learning research works were already reported for GI disease
classification, these methods were restricted to pre-trained models or a fusion of
pre-trained models. Hence, there exists a vital need to apply suitable architectural
enhancements/customisations to these models for improved performance.

The following are the research contributions made toward addressing these gaps:

1. The proposed experiments were conducted with the HyperKvasir benchmark dataset
for better generalisation of all classes. This ensures that the proposed method is
evaluated for a benchmark dataset with 23 different classes of GI.

2. The proposed research presents a hybrid deep learning approach involving a pre-
trained network and a custom CNN. While EfficientNet B0 was applied on one track to
extract prominent features, custom CNN was employed on the other side for effective
feature calibration. Finally, the features from both networks are fused to represent a
high context feature vector representing each class.

3. We have proposed an effective feature extractor namely ‘Effimix’. It involved the
application of squeeze and excitation layers, background elimination, and a non-
monotonic activation function. By combining the features from Effimix and Efficient-
Net B0 backbone, the proposed feature fusion network was able to achieve good
inter-class metrics.

3. Proposed System

Figure 1 presents an architectural overview of the proposed system. A wide interest
has been observed in medical research that interprets gastrointestinal images using artificial
intelligence (AI) algorithms. This research proposes an automated classification technique
based on deep learning to classify different gastrointestinal diseases. The HyperKvasir
labelled images dataset is used to train the proposed models. The input images are initially
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augmented to increase the number of samples for better generalisation. These augmented
samples were fed to two independent networks, namely EfficientNet B0 and the proposed
Effimix network. The features from these two networks were combined using feature
concatenation and subjected to dropout regularisation. The proposed work classifies the
input gastrointestinal images into 23 classes.
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Figure 1. Architectural overview of the proposed system.

3.1. Dataset Description

The proposed research has utilised 10,662 labelled images from the HyperKvasir
dataset [34]. This is an open access dataset and licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0). This dataset has 23 classes of data representing
different gastrointestinal diseases. The input images were provided in JPEG format. The
distribution of samples under each class is presented in Table 1. It could be observed that
the distribution of images under different classes is highly imbalanced. The structure of the
dataset has been described in Figure 2.

Table 1. Distribution of samples for 23 gastrointestinal diseases.

Sl. No. Class Name No. of Samples

1 barretts-short 53

2 barretts 41

3 bbps-0-1 646

4 bbps-2-3 1148

5 cecum 1009

6 dyed-lifted-polyps 1002

7 dyed-resection-margins 989

8 esophagitis-a 403

9 esophagitis-b-d 260

10 hemorrhoids 6

11 ileum 9

12 impacted-stool 131

13 polyps 1028

14 pylorus 999

15 retroflex-rectum 391

16 retroflex-stomach 764

17 ulcerative-colitis-grade-0-1 35

18 ulcerative-colitis-grade-1-2 11

19 ulcerative-colitis-grade-1_ 201

20 ulcerative-colitis-grade-2-3 28

21 ulcerative-colitis-grade-2 443

22 ulcerative-colitis-grade-3 133

23 z-line 932
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Figure 2. Structure of the dataset used for classification.

3.2. Data Augmentation

To perform model fitting on a large dataset, the endoscopic images in the dataset were
augmented by applying four random geometric transformations: horizontal flip, width
shift, height shift, rotation. The parameters for the transformation function for rotation is
45◦. ∆x and ∆y are the shifts for width and height, set within 0.3 of the original images.
The fill-mode parameter was used for horizontal flip. By doing so, the number of input
images also increases considerably. Data augmentation was performed to handle the class
imbalance associated with the dataset. After augmentation, a total of 23,000 images were
generated through data augmentation, and the class-wise distribution of the samples are
highlighted in Figure 3.
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3.3. EfficientNet B0

Tan et al. proposed a novel family of models known as the EfficientNets in the year
2019 [35]. Refinements to network width, depth, and image resolution were performed to
achieve higher accuracy than existing ConvNet models. The baseline network reported
in the previous study was EfficientNet B0. It contains 5.3M parameters, the fewest in the
EfficientNet family. EfficientNet B0 network relies on squeeze and excitation layers and an
inverted bottleneck block called MBConv. The MBConv block was originally introduced in
the MobileNetV2 model to improve parameter reduction [36].

3.4. Effimix

The overall architecture of the proposed Effimix network is presented in Figure 4. It
consists of three different processing stages. The first stage involves the application of
squeeze and excitation layers. These layers are used to improve the representational power
of the network by enabling it to perform dynamic channel-wise feature recalibration. In
this network, two fire blocks are involved to implement squeeze and excitation. Each fire
block consists of a squeeze convolution layer (which has only 1 × 1 filters), feeding into
an expand layer that has a mix of 1 × 1 and 3 × 3 convolution filters. The output of the
expand layer is fed into a concatenation layer that combines the feature maps derived from
the previous layers.
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The second stage involves the application of background erasing and foreground mining.
The concept of background erasing and foreground mining is inspired from DSI-Net [37]. This
stage uses the features from the first fire block as a base feature map. Foreground features are
extracted from the foreground mask, from which high-confidence feature vectors are selected
to represent the foreground areas. Similarly, mined background areas are represented by high
confidence feature vectors extracted. Both the background and foreground vectors are passed
through a binary gated united (BGU) to reduce noise. Then, to the base feature map, the
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background features are subtracted, and foreground features are added. The resulting feature
map provides a better input to the classification layer.

The final stage involves a series of convolutional operations for classification. These
layers include convolution and batch normalisation, followed by a non-monotonic activa-
tion function, Mish [38].

The Mish activation function was employed to achieve a deeper propagation of
information across the network and to avoid saturation during training. The relation for
Mish activation is presented in Equation (1).

f (x) = x.tanh so f tplus(x) , where so f tplus(x) = ln(1 + eˆx) (1)

The final output of the Effimix model will be a set of distinct feature maps, which
enable precise classification of gastrointestinal diseases.

3.5. Classification

The feature maps extracted from the two models, namely EfficientNet B0 and Effimix,
are combined using feature concatenation. These features were subject to alpha dropout
regularisation for final classification. The alpha dropout layer is responsible for randomly
setting activations to a negative saturation value. This ensures the self-normalising property
of the model. The mean and variance after the alpha dropout are given in Equations (2)
and (3), respectively.

E
(
xd + α′(1− d)

)
= qµ+ (1− q)α′ (2)

Var
(
xd + α′(1− d)

)
= q((1− q)

(
α′ − µ)2 + v

)
(3)

where x is an activation, q is a probability value in the range 0 < q ≤ 1, µ is the mean
before dropout, v is the variance before dropout, d is the dropout variable, and α′ is the
random values set by the dropout function.

Following the alpha dropout layer, these feature vectors are subjected to dense layers
followed by softmax activation to classify 23 gastrointestinal diseases.

4. Results and Discussion

This section discusses the environmental setup that was used to train the proposed
models. It also provides an overview of the different ablation studies carried out as part
of this research. Finally, it compares the performance of the proposed model against the
existing works.

4.1. Environmental Setup

The proposed network was trained on two 12 GB NVIDIA Tesla K80 GPUs available
on Google Cloud VM. The implementation of the network was done with the PyTorch
framework. The model was trained with the Adam optimiser, with a learning rate of 0.0001
and a weight decay of 0.0001. To train the data, 15,264 images in the training data set
were divided into 954 batches, each with 16 images. Certain classes in the original data set
had very few images available for training. Hence, data augmentation was employed to
address the class imbalance existing in the input dataset. In addition, we have adopted
a sampling approach to admit an equal number of images from each class for all batches
during training.

4.2. Ablation Studies

In this section, we will discuss the importance and effectiveness of different compo-
nents employed as part of the proposed network. The network benefits from the contribu-
tions made by the different modules, which are explained in the forthcoming subsections.
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4.2.1. Analysis of the EfficientNet B0 Network

The EfficientNet B0 model was trained for 50 epochs to ensure convergence of the
different sub-modules. The Adam optimiser was used, with a learning rate and weight
decay of 0.001 and 0.0001, respectively. The training accuracy experienced a steady increase
throughout the training. While the validation accuracy trajectory staggered mid-training,
its value fluctuated around a ±6 interval around the 90% band. The model presented an
accuracy of 95.6%, with an F1 score, precision, and recall of 95%, 95%, and 95%, respectively.
The epoch-wise accuracy and loss of the EfficientNet B0 model is presented in Figure 5.
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4.2.2. Analysis of the Effimix Network

The Effimix model was trained for 50 epochs to ensure convergence of the different
sub-modules. The Adam optimiser was used, with a learning rate and weight decay
of 0.0001 and 0.0001, respectively. The training accuracy experienced a steady increase
throughout the training. While the validation accuracy staggered in the initial part of the
training, it was progressively increasing until it showed signs of saturation around the 40th
epoch. The model presented an accuracy of 85.4%, with an F1 score, precision and recall of
85%, 85%, and 85%, respectively. The epoch-wise accuracy and loss of the Effimix model is
presented in Figure 6.
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4.2.3. Analysis of the Proposed Feature Fusion Network

The feature maps from the EfficientNet B0 were combined with the Effimix network
to improve the feature representation power of the proposed network. This combined
model was trained for 100 epochs to ensure convergence of the different sub-modules. The
Adam optimiser was used, with a learning rate and weight decay of 0.0001 and 0.0001,
respectively. The training accuracy showed signs of saturation around the 60th epoch
and stabilised around the 80th epoch during the training. While validation accuracy
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experienced staggered changes mid-training, it progressively increased throughout the
training. The model presented an accuracy of 97.99%, with an F1 score, precision, and
recall of 97%, 97%, and 98%, respectively. The epoch-wise accuracy and loss is presented in
Figure 7. The receiver operator characteristic (ROC) plot obtained for the proposed systems
is presented in Figure 8, and the area under curve (AUC) obtained is 0.977. In addition, the
Mathew’s correlation coefficient (MCC) and the kappa scores obtained for the proposed
networks are 0.9806 and 0.9807, respectively. The confusion matrix obtained for the test set
is presented in Figure 9.

A summary of the ablation studies made is presented in Table 2. Table 3 depicts the
class-wise metrics of the proposed model. As can be observed from Table 3, classes such
as ‘Esophagitis-a’, ‘Ulcerative Colitis Grade 2′, and ‘Cecum’ achieved low F1 scores when
the EfficientNet B0 model was trained on them. A similar observation can be made for the
Effimix model with the ‘Baretts-short’, ‘Esophagitis-a’, and ‘Cecum’ classes. However, the
F1 scores of these classes have been increased significantly when the combined model was
trained on them. Thus, our combined model has improved the classification metrics of
particularly low-performing classes in our data set as well.

The model parameters employed for training the networks listed above are consoli-
dated in Table 4. It could be inferred that the proposed method is computationally huge
when compared to the baseline models. This trade-off in computation vs. accuracy can be
considered as the cost of obtaining good inter-class metrics.
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Table 2. Summary of the ablation studies made.

Sl.
No. Model Accuracy

Macro Average Weighted Average

F1 Precision Recall MCC Kappa F1 Precision Recall MCC Kappa

1 EfficientNet B0 0.956 0.95 0.95 0.95 0.954 0.956 0.95 0.95 0.95 0.95 0.95

2 Effimix Network 0.854 0.85 0.85 0.85 0.85 0.856 0.85 0.85 0.85 0.85 0.856

3 Proposed network 0.9799 0.97 0.97 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.98
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Table 3. Class-wise metrics of the proposed model.

S.
No. Class Name

EfficientNet B0 Effimix Combined Model

F1 Precision Recall F1 Precision Recall F1 Precision Recall

1 barretts-short 0.941 0.932 0.949 0.64 0.71 0.58 0.96 0.97 0.95

2 barretts 0.937 0.91 0.95 0.67 0.77 0.58 0.99 0.94 0.97

3 bbps-0-1 0.97 0.97 0.98 0.98 0.99 0.97 0.99 1 0.99

4 bbps-2-3 0.99 0.99 1 1 1 1 0.99 1 0.99

5 cecum 0.97 1 0.94 0.99 0.99 0.99 1 1 1

6 dyed-lifted-polyps 0.95 0.97 0.94 0.77 0.84 0.81 0.96 1 0.94

7 dyed-resection-margins 0.96 0.95 0.97 0.83 0.78 0.88 0.96 0.94 1

8 esophagitis-a 0.85 0.87 0.83 0.44 0.45 0.43 0.92 0.92 0.91

9 esophagitis-b-d 0.93 0.97 0.89 0.69 0.65 0.74 0.96 0.96 0.97

10 hemorrhoids 1 1 1 0.98 0.97 1 1 1 1

11 ileum 0.99 0.99 1 0.99 0.98 1 1 1 1

12 impacted-stool 0.99 0.99 0.98 0.99 0.99 1 0.99 0.99 1

13 polyps 1 1 1 0.98 0.99 0.98 0.99 1 0.99

14 pylorus 0.96 0.93 1 0.98 0.99 0.97 0.99 0.99 1

15 retroflex-rectum 0.98 0.99 0.97 0.94 0.97 0.91 0.99 0.99 0.98

16 retroflex-stomach 0.98 0.99 0.98 0.92 0.89 0.95 0.99 0.99 0.99

17 ulcerative-colitis-grade-0-1 0.93 0.88 0.99 0.94 0.91 0.96 0.98 0.96 1

18 ulcerative-colitis-grade-1-2 1 1 1 0.99 0.99 0.99 0.99 0.99 1

19 ulcerative-colitis-grade-1_ 0.91 0.94 0.88 0.72 0.78 0.67 0.95 0.99 0.91

20 ulcerative-colitis-grade-2-3 0.97 1 0.95 0.94 0.89 0.99 0.99 0.98 1

21 ulcerative-colitis-grade-2 0.87 0.9 0.84 0.66 0.7 0.63 0.95 0.96 0.94

22 ulcerative-colitis-grade-3 0.95 0.92 0.98 0.86 0.8 0.93 0.96 0.92 1

23 z-line 0.88 0.84 0.92 0.6 0.54 0.68 0.95 0.96 0.94

Average 0.95 0.95 0.95 0.84 0.85 0.85 0.97 0.97 0.97

Table 4. Model parameters of the networks trained.

S. No. Network Hyper Parameters Total Number of Trainable
Parameters

1 EfficientNet B0

Optimiser: Adam optimiser
No. of epochs: 50

Learning rate: 0.001
Weight decay: 0.0001

1,729,176

2 Effimix Network

Optimiser: Adam optimiser
No. of epochs: 50

Learning rate: 0.0001
Weight decay: 0.0001

5,288,548

3 Proposed feature fusion network

Optimiser: Adam optimiser
No. of epochs: 100

Learning rate: 0.0001
Weight decay: 0.0001

7,041,276
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4.3. Performance Analysis

The performance of the proposed model is compared against the existing works that
include 23 classes for classification, and the results are presented in Table 5. To present a
valid comparison between the proposed model and existing works, we have presented the
performance analysis with the works that have employed all 23 classes on the HyperKvasir
dataset. The proposed work has yielded the best F1-score and accuracy for GI disease
classification compared to most of the existing works. This is due to the fusion of significant
features from two powerful networks, namely EffficientNet B0 and the proposed Effimix.
The integrated features from these networks enabled the proposed model to achieve better
inter-class metrics.

Table 5. Performance comparison of the proposed network against existing networks.

S. No. Source Method F1 Precision Accuracy Recall

1 He et al. [20] ResNet-152, MobileNetV3 0.66 0.68 - 0.65

2 Gjestang et al. [30] Teacher-student framework 0.89 0.89 0.89 -

3 Barbhuiya et al. [22] DarkNet 0.71 0.71 - 0.74

4 Galdran et al. [2] CNN—BiT 0.92 - - -

5 Galdran et al. [21] MobileNetV2, ResNeXt-50 0.64 - 0.65 -

6 Proposed work Novel feature fusion network 0.97 0.97 0.98 0.98

5. Conclusions

Gastrointestinal diseases are one of the most prevalent causes of disability in the work-
force community. Accurate detection of abnormal tissue growth and other abnormalities
plays an important role in determining whether surgical intervention is required. However,
the challenges of manually observing each frame received during an endoscopic procedure
necessitates the assistance of an AI-powered system. The existing deep learning architec-
tures proposed for gastrointestinal disease classification employ various state-of-the-art
CNN models and their combinations. These models mostly apply specific frameworks
to improve overall training and loss on the data set. However, there is still room for im-
provement in terms of overall and class-wise accuracy. In this work, an automated method
for gastrointestinal disease classification was proposed. The CNN architecture efficiently
aggregates the feature maps from two different models, namely EfficientNet B0 and Effimix.
The proposed networks were trained on HyperKvasir benchmark dataset. The proposed
model yields an accuracy of 97.99%, with a F1 score, precision, and recall of 97%, 97%, and
98%, respectively on the HyperKvasir dataset. The proposed network can be extended to
other gastrointestinal imaging modalities like endoscopic ultrasound (EUS).
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