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Abstract

Background: Statistical methods for the analysis of harm outcomes in randomised controlled trials (RCTs) are rarely
used, and there is a reliance on simple approaches to display information such as in frequency tables. We aimed to
identify whether any statistical methods had been specifically developed to analyse prespecified secondary harm
outcomes and non-specific emerging adverse events (AEs).

Methods: A scoping review was undertaken to identify articles that proposed original methods or the original
application of existing methods for the analysis of AEs that aimed to detect potential adverse drug reactions (ADRs)
in phase II-IV parallel controlled group trials. Methods where harm outcomes were the (co)-primary outcome were
excluded.
Information was extracted on methodological characteristics such as: whether the method required the event to be
prespecified or could be used to screen emerging events; and whether it was applied to individual events or the
overall AE profile. Each statistical method was appraised and a taxonomy was developed for classification.

Results: Forty-four eligible articles proposing 73 individual methods were included. A taxonomy was developed
and articles were categorised as: visual summary methods (8 articles proposing 20 methods); hypothesis testing
methods (11 articles proposing 16 methods); estimation methods (15 articles proposing 24 methods); or methods
that provide decision-making probabilities (10 articles proposing 13 methods). Methods were further classified
according to whether they required a prespecified event (9 articles proposing 12 methods), or could be applied to
emerging events (35 articles proposing 61 methods); and if they were (group) sequential methods (10 articles
proposing 12 methods) or methods to perform final/one analyses (34 articles proposing 61 methods).
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Conclusions: This review highlighted that a broad range of methods exist for AE analysis. Immediate
implementation of some of these could lead to improved inference for AE data in RCTs. For example, a well-
designed graphic can be an effective means to communicate complex AE data and methods appropriate for
counts, time-to-event data and that avoid dichotomising continuous outcomes can improve efficiencies in analysis.
Previous research has shown that adoption of such methods in the scientific press is limited and that strategies to
support change are needed.

Trial registration: PROSPERO registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=97442

Keywords: Randomised controlled trials, Adverse events, harms, adverse drug reactions, Scoping review,
Methodological review, Investigational drug, Signal detection

Background
Randomised controlled trials (RCTs) are considered the
‘gold-standard’ for evaluating the efficacy/effectiveness of
interventions. RCTs also provide invaluable information
to allow evaluation of the harm profile of interventions.
The comparator arm provides an opportunity to com-
pare rates of adverse events (AEs) which enables signals
for potential adverse drug reactions (ADRs) to be identi-
fied [1, 2].1 Whilst statistical analysis methods for effi-
cacy outcomes in clinical trials are well established the
same cannot be said for the analysis of harm outcomes
[3–5].
The last 15 years has seen increasing emphasis on de-

veloping harm profiles of drugs. Working groups have
developed guidance on the reporting of harm data for
journal articles. Including: the harms extension to CON-
SORT; the pharmaceutical industry standard from the
Safety Planning, Evaluation and Reporting Team (SPER
T); the extension of PRISMA for harms reporting in sys-
tematic reviews; and the joint pharmaceutical/journal
editor collaboration guidance on reporting of harm data
in journal articles [6–9]. Regulators including the Euro-
pean Commission and the Food and Drug Administra-
tion have also issued detailed guidance on the collection
and presentation of AEs/Rs arising in clinical trials [10–
12]. Whilst these recommendations and guidelines call
for better practice in collection and reporting, they are
limited in recommendations for improving statistical
analysis practices. The pharmaceutical industry standard
from SPERT has perhaps given the greatest consider-
ation to analytical approaches, for example suggesting
consideration should be given to survival techniques [9].
Analysing harms in RCTs is not without its challenges

and could, in part, explain a lack of progress in analysis
practices [13, 14]. Unlike efficacy outcomes which are

well defined and restricted in number at the planning
stage of an RCT, we collect numerous, undefined harms
in RCTs. Furthermore, collection requires additional in-
formation to be obtained on factors such as severity,
timing and duration, number of occurrences and out-
come, which for efficacy outcomes would have all been
predefined [4]. From a statistical perspective consider-
ation to type-I (false-positive) and type-II (false-negative)
errors is crucial especially when considering how to ana-
lyse non-pre-specified emerging events. RCTs are typic-
ally designed to test the efficacy of an intervention and
are not powered to detect differences in harm outcomes
such as detecting difference in proportions of events,
which could be indicative of an ADR. As a trial is not
powered to detect ADRs, there is a possibility that any
statistical testing of data may result in the drug being
deemed safe or a trial not being stopped early enough
resulting in more participants than necessary suffering
an ADR. In addition, the vast number of potential emer-
ging events can lead to issues of multiplicity [15, 16].
That said any adjustment for multiplicity is likely to
make a “finding untenable” and therefore the value of
adopting traditional sequential monitoring methods used
for efficacy outcomes might be limited for monitoring
harms [17]. It is also important to consider the impact
of differential follow-up and/or exposure times, the time
events occur and dependencies between events and ana-
lysis should account for this where necessary [18].
Despite these complexities journal articles, one of the

main sources of dissemination of clinical trial results, pre-
dominantly rely on simple approaches such as tables of fre-
quencies and percentages when reporting AEs [4, 19]. In
view of the lack of sophisticated statistical methods used
for the analysis of harm outcomes we performed a review
to investigate which statistical methods have been proposed
in order to improve awareness and facilitate their use.

Methods
Aim
To identify and classify statistical methods that have
been specifically developed or adapted for use in RCTs

1An adverse event is defined as ‘any untoward medical occurrence that
may present during treatment with a pharmaceutical product but
which does not necessarily have a causal relationship with this
treatment’. An adverse drug reaction (ADR) is defined as ‘a response
to a drug which is noxious and unintended …’ where a causal
relationship is ‘at least a reasonable possibility’.
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to analyse prespecified secondary harm outcomes and
non-specific emerging AEs. We undertook a scoping re-
view to identify methods for AE analysis in RCTs whose
aim was to flag signals for potential ADRs. A scoping re-
view was conducted to uncover all proposed method-
ology rather than a more structured systematic review as
we did not aim to perform a quantitative synthesis and
did not want to limit the scope of our results [20].

Search strategy
A systematic search of Medline and Embase databases
via Ovid and the Web of Science and Scopus databases
was performed in March 2018 and updated up until Oc-
tober 2019. No time restrictions were placed on the
search. The search strategy was developed by studying
key references in consultation with both experts in the
field and experts in review methodology. Full details of
the search terms can be found in Additional file 1. Refer-
ence lists of all eligible articles were also searched and a
search of the Web of Science database was undertaken
to identify citations of included articles.
One reviewer (RP) screened titles and abstracts of arti-

cles identified. Full text articles were scrutinised for eli-
gibility and all queries regarding eligibility were
discussed with at least one other reviewer (VC or OS).

Selection criteria
The review included articles that proposed original
methods or the original application of existing methods
developed for the analysis of AEs in phase II-IV trials
that aimed to identify potential ADRs in a parallel con-
trolled group setting. Methods where harm outcomes
were the primary or co-primary outcome such as dose-
finding or risk-benefit methods were excluded. Estab-
lished methods designed to monitor efficacy outcomes,
which could be used to monitor prespecified harm out-
comes, such as the methods of e.g. O’Brien and Fleming,
Lan and DeMets, were excluded [21, 22]. Foreign lan-
guage articles were translated where needed. Full eligibil-
ity criteria is specified in the review protocol, which can
be accessed via the PROSPERO register for systematic
reviews (https://www.crd.york.ac.uk/prospero/display_
record.php?RecordID=97442).

Data extraction
Data from eligible articles was extracted using a standar-
dised pre-piloted data extraction form (RP) (Add-
itional file 2). Information was collected on
methodological characteristics including: whether the
method required the event to be prespecified or could
be used to screen emerging events; whether it was ap-
plied to individual events or the overall adverse event
profile; data type applicable to e.g. continuous, propor-
tion, count, time-to-event; whether any test was

performed; what, if any, assumptions were made; if any
prior or external information could be incorporated; and
what the output included e.g. summary statistic, test-
statistic, p-value, plot etc. All queries were discussed
with a second reviewer (VC) and clarified with a third
reviewer (OS), if necessary.

Analysis
Results are reported as per the PRISMA extension for
scoping reviews [23, 24]. Each statistical method was ap-
praised in turn and a taxonomy was developed for classi-
fication. Data analysis was primarily descriptive, and
methods are summarised and presented by taxonomy.

Results
Study selection
The search identified 11,118 articles. After duplicate ar-
ticles were removed, 10,773 articles were screened, 10
articles were identified from the reference lists of eligible
articles and two articles were identified through the
search of citations of eligible articles. Review of titles
and abstracts reduced the number of articles for full re-
view to 169. Review of full text articles resulted in a fur-
ther 125 exclusions (Additional file 3 lists the articles
excluded at this point). The main reasons for exclusion
after full text review were: the method presented was
not original or the original application of a method for
the analysis of AEs (33%); there was no comparison
group or comparison made (23%); articles were pub-
lished conference abstracts and therefore were not peer-
reviewed and/or lacked sufficient detail to undergo a full
review (14%). This left 44 eligible articles for inclusion
that proposed 73 individual methods (Fig. 1).

Characteristics of articles
Articles were predominantly published by authors work-
ing in industry (n = 20 (45%)), eight (18%) were published
by academic authors and four (9%) were published by au-
thors from the public sector. Eight (18%) articles were
from an industry/academic collaboration, two (5%) an aca-
demic/public sector collaboration, one (2%) an industry/
public sector collaboration and one (2%) from an indus-
try/academic/public sector collaboration.

Taxonomy of statistical methods for AE analysis
Due to the number and variety of methods identified, we
developed a taxonomy to classify methods. Four groups
were identified (Fig. 2).

Visual summary methods
Methods that propose graphical approaches to view sin-
gle or multiple AEs as the principal analysis method.
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Hypothesis testing methods
Methods under the frequentist paradigm. These
methods set up a testable hypothesis and use evidence
against the null hypothesis in terms of p-values based on
the data observed in the current trial.

Estimation methods
Methods that quantify distributional differences in AEs
between treatment groups without a formal test.

Methods that provide decision making probabilities
Statistical methods under the Bayesian paradigm. The
overarching characteristic of these methods is output of
(posterior) predicted probabilities regarding the chance
of a predefined threshold of risk being exceeded based
on the data observed in the current trial and/or any rele-
vant prior knowledge.

All methods were further sub-divided into whether
they were for use on prespecified events, which could be
listed in advance as harm outcomes of interest to follow-
up and may already be known or suspected to be associ-
ated with the intervention, or followed for reasons of
caution; or could be applied to emerging (not prespeci-
fied) events that are reported and collected during the
trial and may be unexpected. Further, we made the dis-
tinction between (group) sequential methods (methods
to monitor accumulating data from ongoing studies) and
methods for final/one analysis (Fig. 3).
The number of articles and methods identified by type

is provided in Table 1. Articles most frequently pro-
posed estimation methods (15 articles proposing 24
methods), followed by hypothesis testing methods (11
articles proposing 16 methods). Ten articles proposed 13
methods to provide decision-making probabilities and

Fig. 1 Flow diagram describing the assessment of sources of evidence
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eight articles proposed 20 visual summaries. The majority
of articles developed methods for emerging events (35 ar-
ticles proposing 61 methods) and final/one analysis (34 ar-
ticles proposing 61 methods). Individual article
classifications and brief summaries are presented in
Table 2 and articles ranked according to ease of compre-
hension/implementation are provided in Additional file 4.

Summaries of methods by taxonomy
Visual summaries – emerging events
The review identified eight articles published between
2001 and 2018 that proposed 20 methods to visually

summarise harm data, including binary AEs and, con-
tinuous laboratory (e.g. blood tests, culture data) and
vital signs (e.g. temperature, blood pressure, electrocar-
diograms) data (Additional file 5, Table S1) [14, 25–31].
The majority of the proposed plots were designed to dis-
play summary measures of harm data (n = 14) and the
remaining plots displayed individual participant data
(n = 6). None of the plots required the event to be pre-
specified. Eight of the plots were designed to display
multiple binary AEs; an example of one such plot is the
volcano plot (Fig. 4) [31, 67]. The remaining plots were
proposed to focus on a single event per plot, three of
which proposed time-to-event plots and nine proposed
plots to analyse emerging, individual, continuous harm
outcomes such as laboratory or vital signs data. These
plots can aid the identification of any treatment effects
and identify outlying observations for further evaluation.

Hypothesis tests - prespecified outcomes
Five articles published between 2000 and 2012 present
seven methods to analyse prespecified harm outcomes
under a hypothesis-testing framework (Additional file 5,
Table S2) [32–36]. Six of these methods were specifically
designed and promoted for sequentially monitoring pre-
specified harm outcomes. Two of the methods incorpo-
rated an alpha-spending function (as originally proposed
for efficacy outcomes) [22], two performed likelihood ra-
tio tests, one used conditional power to monitor the fu-
tility of establishing safety and one proposed an arbitrary
reduction in the traditional significance threshold when
monitoring a harm outcome [32–34, 36]. In addition,
one method proposed a non-inferiority approach for the
final analysis of a prespecified harm outcome [35].

Fig. 2 Taxonomy of methods for adverse event (AE) analysis

Fig. 3 Classification terminology
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Hypothesis tests - emerging
Six articles published between 1990 and 2014 suggest
nine methods to perform hypothesis tests to analyse
emerging AE data (Additional file 5, Table S3) [37–42].
All of the methods were designed for a final analysis
with one method incorporating an alpha-spending func-
tion allowing the method to be used to monitor ongoing
studies. Methods are suggested for both binary and
time-to-event data with several accounting for recurrent
events.
Two methods proposed a p-value adjustment to ac-

count for multiple hypothesis tests to reduce the false
discovery rate (FDR) [41, 42]. One article proposed two
likelihood ratio statistics to test for differences between
treatment groups when incorporating time-to-event and
recurrent event data [40]. Three articles adopted multi-
variate approaches to undertake global likelihood ratio
tests to detect differences in the overall AE profile,
where the overall profile describes multiple events that
are combined for evaluation [37–39].

Estimation – emerging
Fifteen articles proposed 24 methods published between
1991 and 2016 for emerging events (Additional file 5,
Table S4) [15, 43–56]. These estimates reflect different
characteristics of harm outcomes such as point estimates
for incidence or duration, measures of precision around
such estimates, or estimates of the probability of occur-
rence of events. They rely on subjective comparisons of
distributional differences to identify treatment effects.
Point estimates such as the risk difference, risk ratio

and odds ratio to compare treatment groups with corre-
sponding confidence intervals (CIs) such as the binomial
exact CI (also known as the Clopper-Pearson CI) are a
simple approaches for AE analysis [4, 45]. Three articles
proposed alternative means to estimate CIs [44, 50, 52].
Eight articles provided methods to calculate estimates

that take into account AE characteristics, such as recur-
rent events, exposure-time, time-to-event information,
and duration, which can help develop a profile of overall

AE burden [15, 43, 46–48, 51, 53, 55, 56]. For example,
methods such as the mean cumulative function, mean
cumulative duration or parametric survival models esti-
mating hazard ratios. Several of these methods incorpo-
rated plots that can highlight when differences between
treatment groups start to emerge, which would other-
wise be masked by single point estimates.
A Bayesian approach was developed to estimate the

probability of experiencing different severity grades of
each AE, accounting for the AE structure of events
within body systems [49]. One article developed a score
to indicate if continuous outcomes such as laboratory
values were within normal reference ranges and to flag
abnormalities [54].

Decision making probabilities – prespecified outcomes
Four articles suggested five Bayesian approaches to
monitor prespecified harm outcomes (Additional file 5,
Table S5) [57–60]. The first paper was published in
1989 but no further research was published in this area
until 2012, the last paper was published in 2016. Each of
the methods incorporates prior knowledge through a
Bayesian framework, outputting posterior probabilities
that can be used to guide the decision whether to con-
tinue with the study based on the harm outcome.
Each of the methods was designed for use in interim

analyses to monitor ongoing studies but could be used
for the final analysis without modification. They could
be implemented for continuous monitoring (i.e. after
each observed event) or in a group sequential manner
after several events have occurred. These methods re-
quire a prespecified event, an assumption about the
prior distribution of this event, a ‘tolerable risk differ-
ence’ and an ‘upper threshold probability’ to be set at
the outset of the trial [59]. At each analysis, the prob-
ability that the ‘tolerable risk difference’ threshold is
crossed is calculated and if the predetermined ‘probabil-
ity threshold’ is crossed then the data indicate a prede-
fined unacceptable harmful effect.

Table 1 Summary level classifications

Taxonomy of methods

Visual
Articles N = 8
[Methods N = 20]

Hypothesis testing
Articles N = 11
[Methods N = 16]

Estimation
Articles N = 15
[Methods N = 24]

Decision making probabilities
Articles N = 10
[Methods N = 13]

Classification n (%) n (%) n (%) n (%)

Type of event

Prespecified 0 (0) [0 (0)] 5 (55.6) [7 (58.3)] 0 (0) [0 (0)] 4 (44.4) [5 (41.7)]

Emerging 8 (22.9) [20 (32.8)] 6 (17.1) [9 (14.8)] 15 (42.9) [24 (39.3)] 6 (17.1) [8 (13.1)]

Time of analysis

(Group) sequential 0 (0) [0 (0)] 5 (50.0) [6 (50.0)] 0 (0) [0 (0)] 5 (50.0) [6 (50.0)]

Final/one-analysis 8 (23.5) [20 (32.8)] 6 (17.6) [10 (16.4)] 15 (44.1) [24 (37.5)] 5 (14.7) [7 (11.5)]
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Table 2 Article classifications

Authors Year Taxonomy
a

Further classification variables Brief summary

V, HT, E,
DMP

Prespecified or
Emerging (single or
multiple outcomes)

(Group)
Sequential
(monitoring) -
yes/no

Amit, Heiberger &
Lane [25]

2008 V Emerging (single &
multiple)

No Dot plot for emerging AEs, Kaplan-Meier and hazard func-
tion for single AEs and cumulative frequency plots, boxplots
and line graphs for continuous outcomes

Chuang-Stein, Le &
Chen [26]

2001 V Emerging (single) No Displays two-by-two frequencies graphically for emerging
AEs, histograms and delta plots for continuous outcomes

Chuang-Stein & Xia
[27]

2013 V Emerging (single &
multiple)

No Bar charts, Venn diagrams and Forest plots for emerging
AEs, risk over time for single AEs and e-Dish plots for con-
tinuous outcomes

Karpefors &
Weatherall [28]

2018 V Emerging (multiple) No Tendril plot for emerging AEs

Southworth [29] 2008 V Emerging (single) No Scatterplot with regression outputs for continuous
outcomes

Trost & Freston [30] 2008 V Emerging (multiple) No Vector plots for continuous outcomes, includes 3 outcomes
per plot

Zink, Wolfinger &
Mann [31]

2013 V Emerging (multiple) No Volcano plot for emerging AEs

Zink, Marchenko,
Sanchez-Kam, Ma &
Jiang [14]

2018 V Emerging (multiple) No Heat map for emerging AEs

Bolland &
Whitehead [32]

2000 HT Prespecified Yes Alpha spending function

Fleishman & Parker
[33]

2012 HT Prespecified Yes Alpha spending function, adjustment to significance
threshold and conditional power

Lieu et al. [34] 2007 HT Prespecified Yes Likelihood ratio test

Liu [35] 2007 HT Prespecified No Non-inferiority test

Shih, Lai, Heyse &
Chen [36]

2010 HT Prespecified Yes Likelihood ratio test

Agresti &
Klingenberg [37]

2005 HT Emerging (overall
profile)

No Multivariate likelihood ratio tests for overall AE numbers

Bristol & Patel [38] 1990 HT Emerging (overall
profile)

No Multivariate likelihood ratio test with Markov chains for
overall AE numbers, incorporating recurrent events

Chuang-Stein,
Mohberg &
Musselman [39]

1992 HT Emerging (overall
profile)

No Multivariate test for overall AE numbers with chi-squared
distribution, incorporating severity and participant accept-
ability scores

Huang, Zalkikar &
Tiwari [40]

2014 HT Emerging (single) Yes Likelihood ratio tests for AE rate (i.e. incorporating exposure
time), incorporating recurrent events

Mehrotra &
Adewale [41]

2012 HT Emerging (multiple) No P-value adjustment

Mehrotra & Heyse
[42]

2004 HT Emerging (multiple) No P-value adjustment

Allignol,
Beyersmann &
Schmoor [43]

2016 E Emerging (single) No Estimates cumulative incidence function in presence of
competing risks

Borkowf [44] 2006 E Emerging (single) No Confidence interval for difference in proportions

Evans & Nitsch [45] 2012 E Emerging (single) No Proportions, incidences, odds ratios etc.

Gong, Tong, Strasak
& Fang [46]

2014 E Emerging (single) No Non-parametric estimate for mean cumulative number of
recurrent events in presence of competing risks

Hengelbrock,
Gillhaus, Kloss &
Leverkus [47]

2016 E Emerging (single) No Survival based methods to estimate hazard ratios for
recurrent events
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Table 2 Article classifications (Continued)

Authors Year Taxonomy
a

Further classification variables Brief summary

V, HT, E,
DMP

Prespecified or
Emerging (single or
multiple outcomes)

(Group)
Sequential
(monitoring) -
yes/no

Lancar, Kramar &
Haie-Meder [48]

1995 E Emerging (single) No Non-parametric estimate for prevalence allowing for
recurrent events

Leon-Novelo, Zhou,
Nebiyou Bekele &
Muller [49]

2010 E Emerging (multiple) No Bayesian approach to estimate the probability of severity
grading of events in treatment and control groups
separately

Liu, Wang, Liu &
Snavely [50]

2006 E Emerging (single) No Confidence interval for difference in exposure adjusted
incidence rates

Nishikawa, Tango &
Ogawa [51]

2006 E Emerging (single) No Estimates the cumulative incidence function in presence of
competing risks and conditional estimate for recurrent
events

O’Gorman,
Woolson & Jones
[52]

1994 E Emerging (single) No Confidence intervals for difference in proportion

Rosenkranz [53] 2006 E Emerging (single) No Survival based method to estimate dependence between
AE time and discontinuation time

Siddiqui [15] 2009 E Emerging (single) No Non-parametric estimate for the cumulative mean number
of events allowing for recurrent events

Sogliero-Gilbert,
Ting, & Zubkoff [54]

1991 E Emerging (multiple) No A score to indicate abnormal laboratory values

Wang & Quartey
[55]

2012 E Emerging (single) No Non-parametric estimate for mean cumulative event
duration allowing for recurrent events

Wang & Quartey
[56]

2013 E Emerging (single) No Semi-parametric estimate for mean cumulative event
duration allowing for recurrent events

Berry [57] 1989 DMP Prespecified Yes Bayesian approach to estimate the posterior probability that
event rate or incidence rate (incorporating exposure time) is
greater in the treatment group compared to control group

French, Thomas &
Wang [58]

2012 DMP Prespecified Yes Bayesian logit model and a piecewise exponential models
to give posterior probabilities that predefined risk difference
threshold is exceeded

Yao, Zhu, Jiang &
Xia [59]

2013 DMP Prespecified Yes Bayesian beta-binomial model to give posterior probability
that predefined risk difference threshold is exceeded

Zhu, Yao, Xia &
Jiang [60]

201638 DMP Prespecified Yes Bayesian gamma-Poisson model to give posterior probabil-
ity that predefined risk difference (incorporating exposure
time) threshold is exceeded

Berry & Berry [61] 2004 DMP Emerging (multiple) No Bayesian hierarchical logit model to give posterior
probability that event rate greater in treatment group
compared to control group

Chen, Zhao, Qin &
Chen [62]

2013 DMP Emerging (multiple) Yes Bayesian hierarchical logit model to give posterior
probability that event rate greater in treatment group
compared to control group for interim analysis

Gould [63] 2008 DMP Emerging (multiple) No Bayesian approach to estimate the posterior probability that
AEs in treatment group produced by a larger process than
AEs in control group

Gould [64] 2013 DMP Emerging (multiple) No Bayesian approach to estimate the posterior probability that
AEs in treatment group produced by a larger process than
AEs in control group accounting for exposure time

McEvoy, Nandy &
Tiwari [65]

2013 DMP Emerging (multiple) No Bayesian multivariate approach to give posterior probability
of difference in event rates based on indicator functions

Xia, Ma & Carlin
[66]

2011 DMP Emerging (multiple) No Bayesian hierarchical logit and log-linear (incorporating ex-
posure time) models to give posterior probability that event
rate greater in treatment compared to control group

aV Visual, HT Hypothesis Testing, E Estimation, DMP Decision-Making Probabilities
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Decision making probabilities – emerging outcomes
Six articles published between 2004 and 2013 proposed
eight Bayesian methods to analyse the body of emerging
AE data (Additional file 5, Table S6) [61–66]. Each of
the methods utilise a Bayesian framework to borrow
strength from medically similar events. Berry and Berry
were the first, proposing a Bayesian three-level random
effects model [61]. The method allows AEs within the
same body system to be more alike and information can
be borrowed both within and across systems. For ex-
ample, within a body system a large difference for an
event amongst events with much smaller differences will
be shrunk toward zero. This work was extended to in-
corporate person-time adjusted incidence rates using a
Poisson model and to allow sequential monitoring [62,
66]. Two alternative approaches were also developed fol-
lowing similar principles. The output from all these
models is the posterior probability that the relative
measure does not equal zero or that the AE rate is
greater on treatment than control.

Discussion
In our previous work we found evidence for sub-
optimal analysis practice for AE data in RCTs [4]. In
this review, we set out to identify statistical methods
that had been specifically developed or adapted for
use in RCTs and had therefore had given full

consideration to the nuances of harm data building
on the recent work of Wang et al. and Zink et al.
[14, 68] The aim being to improve awareness of ap-
propriate methods. We found that despite the lack of
use, there are many suitable and differing methods to
undertake more sophisticated AE analysis. Some
methods have been available since 1989 but most
have been published since 2004. Based on our earlier
work, personal experience and low citations of these
articles, the uptake of these approaches appears to be
minimal. The reasons for low uptake have been ex-
plored in detail in a survey of clinical trial statisti-
cians from both academia and industry, and whilst
participants indicated a moderate level of awareness
of the methods summarised in this review, uptake
was confirmed to be low, with a unanimous call from
participants for guidance on appropriate methods for
AE analysis and training to support change [69].
Issues of multiple testing, insufficient power and com-

plex data structures are sometimes used to defend the
continued practice of simple analysis approaches for AE
data. For example, harm outcomes are often accompan-
ied with additional information such as the number of
occurrences, severity, timing and duration that need to
be taken into consideration. However, the predominant
practice is to reduce this information to simple binary
counts [4, 19, 70–72]. We believe these challenges do

Fig. 4 Volcano plot for adverse events experienced by at least three participants in either treatment group from Whone et al. The size of the
circle represents the total number of participants with that event across treatment groups. Colour indicates direction of treatment effect. Colour
saturation indicates the strength of statistical significance (calculated from whichever test the author has deemed appropriate). Circles are plotted
against a measure of difference between treatment groups such as risk difference or odds ratio on the x-axis and p-values (with a transformation
such as a log transformation) on the y-axis. Data taken from Whone et al. (2019) [67].
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not justify the prevalent use of simplistic analysis ap-
proaches for AE analysis.
Under the frequentist paradigm, performing multiple

hypothesis tests increases the likelihood of incorrectly
flagging an event due to a chance imbalance. However,
when analysing harm outcomes multiple hypothesis tests
can be considered less problematic than for efficacy out-
comes, if incorrectly flagging an event simply means that
it undergoes closer monitoring in ongoing or future tri-
als [73]. This is supported by the recently updated New
England Journal of Medicine statistical guidelines to au-
thors that state, “Because information contained in the
safety endpoints may signal problems within specific
organ classes, the editors believe that the type I error
rates larger than 0.05 are acceptable”.
Multiplicity is also not typically an issue for multivari-

ate approaches that aim to identify global differences.
Whilst these methods can be used to flag signals for dif-
ferences in the overall harm profile and can help identify
any differences in patient burden, a global approach to
harm analysis could mask important differences at the
event level. Therefore, such approaches should be con-
sidered in addition to more specific event-based analysis.
Whilst failure to consider the consequences of a lack

of power can lead to inappropriate conclusions that a
treatment is ‘safe’, prespecified analysis plans for prespe-
cified events of interest would prevent post-hoc, data-
driven, hypotheses testing. Nevertheless, most AE ana-
lysis is undertaken without a clear objective. Well-
defined objectives setting out the purpose of the AE ana-
lysis to be undertaken for both prespecified and emer-
ging events could help improve practice.
Visual summaries, estimation and decision-making

probability methods identified in this review, are typic-
ally less obviously affected by issues of power and multi-
plicity since their purpose is not to undertake formal
hypothesis testing to detect a statistically significant dif-
ference at a specified level of significance or power. In-
stead they provide a multitude of useful, alternative ways
to analyse AE data where the focus is more in the frame
of detecting signals for ADRs. For example, a well-
designed graphic can be an effective way to communi-
cate complex AE data to a range of audiences and help
to identify signals for potential ADRs from the body of
emerging AE data [27]. Similarly, estimation methods
provide a means to identify distributional differences in
the AE profile between treatment groups and can in-
corporate information on, for example, time of occur-
rence or recurrent events, which is often ignored in AE
analysis. However, both approaches rely on visual in-
spections and subjective opinions regarding a decision
whether to flag a signal for potential ADRs. As such,
they both provide a useful means to support AE analysis
but consideration of use in combination with more

objective means such as statistical tests or Bayesian
decision-making methods, which provide clear output
for interpretation to flag differences between treatment
groups, might be appropriate.
Existing knowledge on the harm profile of a drug can

be used to prespecify known harm outcomes for moni-
toring and using an appropriate Bayesian decision-
making method allows formal incorporation of existing
information. Such analyses can provide evidence to aid
decisions about the conduct of ongoing trials or future
trials based on the emerging harm profile. Incorporating
prior and/or accumulating knowledge into ongoing ana-
lyses in this way ensures an efficient use of the existing
evidence allowing a cumulative assessment of harm,
which is especially valuable in the context of rare events.
Like the hypothesis test approaches, output can be used
to objectively make decisions about whether to flag
events as potential ADRs but do not suffer to the same
extent with issues of insufficient power or multiplicity
[74–76]. However, such methods are reliant on the prior
information incorporated so sensitivity of the results to
the prior assumptions should be explored and careful
consideration of the appropriateness of the source of
prior knowledge and its applicability is needed [77].
The most appropriate method for analysis will depend

on whether events have been prespecified or are emerging
and the aims of the analysis. Statistical analysis strategies
could be prespecified at the outset of a trial for both pre-
specified and emerging events as we would for efficacy
outcomes and any post-hoc exploratory analysis should be
clearly identified with justification [9]. There are a multi-
tude of specialist methods for the analysis of AEs and
there is no one correct approach, rather a combination of
approaches should be considered. An unwavering reliance
on tables of frequencies and percentages is not necessary
given the alternative methods that exist, and we urge stat-
isticians and trialists to explore the use of more specialist
analysis methods for AE data from RCTs.
We have not examined the performance of the individ-

ual methods included in this review, so we cannot make
quantitative comparisons and as such have avoided mak-
ing recommendations of specific methods to use. We ac-
knowledge that single reviewer screening could have
resulted in missing articles and that single reviewer data
extraction could result in incorrect classifications. How-
ever, both the scoping and ongoing nature of the search
and ongoing discussions between the authors regarding
each article would have kept any bias to an absolute
minimum. How harms are defined, trial procedures such
as spontaneous versus active collection of data and cod-
ing practices are all important considerations when
assessing the harm profile of an intervention. With any
method it is important to remain mindful of the implica-
tions of differing practices both within and between
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trials when making conclusions. We have focused on
original methods and the original application of existing
methods for the analysis of harm outcomes. We have
not searched for specific refinements of these methods
and as such these would not be included in the review
unless identified in the original search. Many methods
that could be applied to harm analysis have not been
specifically proposed for such analysis and as such are
not included in this review. In this review, attention was
restricted to methods specifically designed or adapted
for harm outcomes to gain a better understanding on
what has been done to prevent duplication in future
work and to flag unknown or underutilised methods. In
addition, many of the methods included in this review
could be used for outcomes other than harms. There are
also many methods that have been proposed for harm
analysis in RCTs that were not included as they did not
meet our eligibility criteria. This includes methods such
as those proposed by Gould and Wang or Ball, which
are both designed to be used in the RCT setting but fail
to utilise a control group, combining treatment arms in
an effort to preserve blinding [78, 79]. Whilst these
methods have merit and offer alternative, objective ways
to flag potential harms they are excluded from this re-
view as interest lies in those methods that utilise the
control group to enhance inference. This review builds
on existing work to provide a comprehensive overview
and audit of statistical methods available to analyse harm
outcomes in clinical trials [25, 27].

Conclusions
There are many challenges associated with assessing and
analysing AE data in clinical trials. This review revealed
that there are a broad range of suitable methods avail-
able to overcome some of these challenges but evidence
of application in clinical trials analysis is limited.
Coupled with the knowledge of barriers to implementa-
tion of such methods, development of strategies to sup-
port change are needed, thus ultimately improving
analysis of harm outcomes in RCTs.
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