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Abstract

The implementation of high-throughput and deep sequencing methods in routine genetic 
diagnostics has significantly improved the diagnostic yield in patient cohorts with growth 
disturbances and becomes increasingly important as the prerequisite of personalized 
medicine. They provide considerable chances to identify even rare and unexpected 
situations; nevertheless, we must be aware of their limitations. A simple genetic test in 
the beginning of a testing cascade might also help to identify the genetic cause of specific 
growth disorders. However, the clinical picture of genetically caused growth disturbance 
phenotypes can vary widely, and there is a broad clinical overlap between different growth 
disturbance disorders. As a consequence, the clinical diagnosis and therewith connected 
the decision on the appropriate genetic test is often a challenge. In fact, the clinician 
asking for genetic testing has to weigh different aspects in this decision process, including 
appropriateness (single gene test, stepwise procedure, comprehensive testing), turnaround 
time as the basis for rapid intervention, and economic considerations. Therefore, a 
frequent question in that context is ‘what to test when’. In this review, we aim to review 
genetic testing strategies and their strengths and limitations and to raise awareness for the 
future implementation of interdisciplinary genome medicine in diagnoses, treatment, and 
counselling of growth disturbances.
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Introduction

Human growth is a complex physiological process, driven 
by the orchestrated expression of multiple genes and 
systems to control cell proliferation, cell hypertrophy, 
and extracellular matrix production, and be responsible 
for growth plate matrix production and growth plate 
chondrogenesis. It has a high degree of heritability based 
on common variants in genes implicated in different 
growth-associated pathways (1).

Growth disorders can be the result of non-genetic 
secondary factors, such as nutrition, chronic systemic 
disorders, and psychosocial deprivation, but in privileged 
countries, most forms of short and tall stature have 
probably an underlying primary genetic cause. They can 
be clinically divided into non-syndromic and syndromic 
disorders. In the case of syndromic disorders, complex 
symptoms in addition to growth disorders are observed. 
For a deeper understanding of the molecular mechanisms, 
the classification according to the underlying cause of a 
growth disorder is particularly important.

Multiple genetic anomalies are associated with short 
and tall stature and range from chromosomal variants to 
single bp changes and imprinting defects. Patients with 
large chromosomal variants (numerical chromosomal 
aberrations, (sub)microscopic copy number variants of 
several kb) most often have multiple comorbidities and 
associated features, since more than one gene is affected 
by the genetic alteration. Nevertheless, these syndromic 
growth disturbances can also occur in monogenetic 
disorders, depending on the physiological function of the 
disease-causing gene. Examples are the short stature KBG 
syndrome (OMIM 148050) based on ANKRD11 variants 
(Table 1: case 1) and the Sotos overgrowth syndrome 
caused by NSD1 variants. Altered growth can also be the 
only or major clinical sign, which is commonly associated 
with single gene variants. Variants in genes encoding 
members of the hypothalamo–pituitary axis were the 
first pathogenic changes which were identified to be 
responsible for growth retardation, but recently other 
monogenetic causes have also been considered as causative 
for idiopathic short stature (ISS), e.g. mutations in SHOX 
or ACAN (for reviews see 1, 2). Tall stature can also be 
caused by single gene variants like in NPR2 or NPR3 (3, 4, 
5). However, the transition between syndromic and non-
syndromic growth disturbances is not clearly defined: even 
in families with the same genetic variant, the phenotype 
can vary considerably, as is, for example, shown for 
CDKN1C variants in families with Beckwith–Wiedemann 
syndrome (BWS) (6). The clinical spectrum and severity 

of phenotypic changes due to mutations within the same 
gene are influenced by their localization in the functional 
domains of the encoded protein, the type of the variant, 
the zygosity status, the imprinting status/the sex of the 
contributing parent, and modifying factors.

There is an increasing demand for precise molecular 
diagnosis as the basis for targeted clinical management, 
ranging from prognosis, monitoring of growth, the 
identification of disease-specific comorbidities, and 
the selection of the best treatment option. Advanced 
molecular technologies have exponentially increased 
our understanding of the underlying causes of short 
stature, but despite established clinical diagnostic and 
management recommendations, the decision on the 
molecular testing strategy in patients with growth 
disturbances can be a challenge in daily practice. In the 
past, molecular testing was hampered by limitations with 
respect to scope, availability, turnaround time, and costs. 
The continuing implementation of high-throughput next-
generation sequencing (NGS) approaches (i.e. targeted 
NGS panels, whole exome sequencing (WES)) in routine 
genetic diagnostics of patients with growth disturbances 
is continuously increasing, which is reflected by the rising 
number of publications from 4 papers in 2011 to 76 in 2021 
(https://pubmed.ncbi.nlm.nih.gov/, search terms ‘whole 
exome sequencing’, ‘diagnostic’, and ‘stature’). Accordingly, 
the diagnostic yield is permanently increasing (e.g. 7, 8, 9, 
10, 11, 12, 13, 14), and NGS makes rapid diagnosis in acutely 
ill children with unclear diagnosis possible (15). The next 
step is the diagnostic use of whole genome sequencing 
(WGS), as it allows a more comprehensive view of our 
genome, and its feasibility has already been demonstrated 
(see below) (16, 17).

In everyday clinical practice, the question of the 
appropriateness of a genetic test continues to be addressed, 
and both the clinician and the geneticist must weigh 
the arguments for and against a genetic test based on the 
patient’s interest and the public health issues (‘when to 
test what’). In this review, we illustrate the power of current 
and future comprehensive molecular genetic strategies for 
an accurate and personalized diagnosis and assess their 
appropriate use.

Clinical evaluation

Clinical evaluation of a child with a suspected growth 
disorder starts with a thorough past and current medical 
history including the family and social history, physical 
examination including anthropometric measurements, 
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and reconstruction of the child’s growth curve. Once 
these data are analyzed and there is clinical suspicion of 
a growth disorder, the next steps include radiological and 
laboratory screening analyses to investigate secondary 
growth disorders and karyotyping or microarray analysis, 
e.g. in girls with growth failure to investigate Turner 
syndrome (Fig. 1). Numerous studies have published 
guidelines with stepwise diagnostic approaches to a child 
with a suspected growth disorder (10, 18, 19, 20, 21, 22). If 
radiologic and clinical examinations suggest an endocrine 
cause of the growth disturbance, growth hormone 
stimulation tests (GHSTs), serum insulin-like growth 
factor (IGF1), and sometimes an IGF1 generation test are 
used to investigate the growth hormone (GH)–IGF1 axis 
in more detail in patients with short stature (including 
in some cases IGF-BP3 and IGF-ALS measurements) and/
or growth failure, and clinical and biochemical signs 
that raise suspicion for a GH–IGF1 axis disorder (23, 24). 
Interpretation of these endocrine test results remains 
challenging. Several publications have discussed cut-off 
IGF1 levels and cut-off peak GH levels during GHSTs to aid 
in predicting the likelihood of GH deficiency (GHD), the 
high rate of false positive tests in short children, and the 
lack of reproducibility of these tests (18, 19, 24, 25, 26). 
Children with short stature and no connective tissue defect 
likely have a continuum of GH–IGF1 axis defects (19, 27). 
Where the extreme forms of GHD and GH insensitivity are 
easily recognized, the milder forms are often challenging 
to diagnose especially in the light of the flaws/setbacks of 
endocrine testing. 

Part of the clinical examination is to describe the 
phenotype of a patient who presents with a growth 
disorder. Clinical scoring systems can guide physicians 
in their decision if genetic testing is indicated. Examples 
of clinical scoring systems are the Netchine-Harbison 
system for Silver–Russell syndrome (SRS) (28), the scoring 
system for IGF1R mutations (29), the revised Ghent criteria 
for Marfan syndrome (30), and a clinical score for Sotos 
syndrome (31). Features can sometimes be recognized 
as part of a well-known genetic syndrome. More often 
the disorder is not easily recognizable due to the rarity 
of the disorder, variability in phenotype, or only minor 
dysmorphic features (32). Advances in artificial intelligence 
and deep-learning algorithms have led to the development 
of tools and exchange platforms like Face2Gene (https://
www.face2gene.com) and GestaltMatcher DB (https://
db.gestaltmatcher.org/) as an aid to help clinicians to 
recognize syndromes based on facial morphologic features 
(33, 34) (Fig. 2).

Currently applied molecular 
diagnostic methods

The benefit of genome medicine as the personalized 
therapeutic regime based on the genetic constitution of 
a patient leads to increasing demand for comprehensive 
genetic tests in pediatrics. Therefore, genetic tests help 
to refine a clinical diagnosis and to guide therapeutic 
approaches (Fig. 1), both in terms of the selection of the 
best treatment option and also in the decision of avoiding 
certain treatments (case 2: Bloom from 35). Furthermore, 
the molecular diagnosis is of significant value for genetic 
and reproductive counselling, as it contributes to precise 
information on the chance of recurrence in the family, and 
thereby supports the patient and his/her family in their 
self-determined process towards their decision on family 
planning (36, 37), including the option of prenatal testing.

Though we have entered the era of genome medicine 
with the chance to identify extremely rare molecular 
alterations in the whole genome, targeted assays and 
stepwise diagnostic algorithms should be considered 
as first-line tests in case of clinical features known to be 
associated with specific molecular alterations (Fig. 2 and 
Table 2).

Dependent on the spectrum of molecular changes 
in congenital disorders associated with single gene 
alterations, the appropriate methodology has to be chosen 
to ensure the reliable detection of the disease-causing 
variant: single nucleotide variants (SNVs) are commonly 
addressed by (Sanger) sequencing approaches, but this 
method fails to detect larger structural genomic variants, 
copy number variants (CNVs: deletions, duplications), 
or balanced rearrangements. The appropriateness of tests 
to target CNVs is influenced by the size of the expected 
genomic imbalance. Whereas single exon deletions or 
duplications can be analyzed in a routine genetic setting by 
multiplex ligation-dependent probe amplification (MLPA) 
or other techniques, larger CNVs are commonly addressed 
by cytogenomic techniques, i.e. microarray-based tests 
(SNP array or CGH array). However, balanced chromosomal 
rearrangements without any gain or loss of genetic material 
but with position effects are not detectable by these 
quantitative assays. Classically conventional chromosomal 
analysis and fluorescence in-situ hybridization (FISH) have 
been applied to encompass this group of mutations, but 
they are limited due to their low resolution of hundreds 
of kilobases (FISH) to megabases (chromosomal analysis). 
For genetic diagnostic testing of patients with growth 
disturbances, methylation at imprinted loci has to be 
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addressed as aberrant imprinting marks significantly 
contribute to the etiology of imprinting disorders (e.g. 
SRS and BWS). Meanwhile, methylation-specific MLPA is 
widely accepted as a diagnostic tool for these molecular 
changes (Table 2).

The advantage of these single locus approaches is that 
they are often based on low-cost technologies, and the 
majority are fast and specific for a one or a small number 
of genetic loci or variants. However, this restriction to 
single genes and/or molecular variants is obviously the 
major limitation of single locus testing, in particular in 
the heterogeneous group of growth disturbances. In the 

‘pre-NGS era’, patients with a presumed genetic diagnosis 
were, therefore, labor- and cost-intensive as well as time-
consuming, in case the molecular cause was not identified 
at the beginning of the testing cascade. Many patients 
were left without a molecular diagnosis, with a long 
diagnostic odyssey accompanied by inappropriate clinical 
management and counseling (Table 1: cases 1, 3, 4).

With the development of NGS-based assays and 
their implementation in human genetic diagnostic 
settings, this major disadvantage of single locus testing 
is circumvented since a bundle of genes up to the whole 
genome can be analyzed in the same run now. In routine 

Figure 1
Diagnostic genetic testing algorithm for patients with growth disturbances. In case of non-syndromic disorders, specific molecular alterations addressed 
by single locus or methylation tests as well as chromosomal disturbances are not expected; therefore, a panel of genes involved in isolated growth might 
be suitable to be screened. 1Gene panel: targeted analysis of specific genes, either based on a targeted enrichment or a targeted bioinformatics analysis 
of whole exome/genome data. The choice of genes might be leaned on https://panelapp.genomicsengland.co.uk/panels. 2Decision on first-line test 
depends on the clinical phenotype of the patient, consensus guidelines, and on national regulations. For some disorders and phenotypes, targeted tests 
might be preferred; for some clinical indications (e.g. relatively non-specific growth disturbance, dysmorphisms, developmental delay), tests targeting the 
whole genome by cytogenomic tests or even WES or WGS might be suitable. Family history (more than one affected individual) should also be 
considered. 3In case of a positive result of a first-line test, additional genetic tests might be required to confirm the first result, to characterize it more 
precisely, or to determine its inheritance as the basis for an adequate genetic counselling. 4Depending on the disorder, national regulations, and clinical 
consensus guidelines, positive reports may also include recommendations for further action such as clinical management and counseling. In general, 
laboratory reports have to follow international standards (i.e. DIN ISO EN 15189).
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diagnostics, different NGS-based diagnostic strategies have 
been validated and implemented. In fact, exome or even 
genome-wide approaches appear to be the most efficient 
and promising assays, the complementary use with long 
read assays or optical genome mapping will ensure a 
comprehensive identification of disease-causing molecular 
alterations.

Typical examples for single locus analysis by Sanger 
sequencing or methylation testing are Léri–Weill syndrome 
caused by SHOX mutations or BWS and SRS linked to 
imprinting defects on chromosome 11p15, respectively. 
On the other hand, the phenotypic outcome of these 
molecular changes is very broad, even contributing to 
non-syndromic growth retardation in case of SHOX (38) or 
rather unspecific phenotypes in case of 11p15 imprinting 
defects (39).

Thus today, clinicians can either order targeted single 
locus tests (e.g. SHOX), or cytogenomic tests to identify 
chromosomal alterations (see Table 2; e.g. in patients 
suspicious for Turner or Klinefelter syndrome) in case of 
patients with specific features. When these genetic tests 
come back negative, exome or genome-wide analyses can 
be conducted (WES, WGS) (Fig. 1).

A major challenge for all diagnostic tests is mosaicism, 
i.e. the occurrence of two or more genetically different 

sets of cells. Mosaic mutations mostly originate from 
postzygotic errors after fertilization; therefore, they are 
not inherited. The severity of clinical symptoms depends 
on the time of the mutation event and can affect only 
specific tissues and sides of the body. Mosaicism, therefore, 
additionally contributes to clinical heterogeneity and 
is a diagnostic challenge requiring (ultradeep) targeted 
molecular analysis and testing of different tissues as 
shown for PIK3CA-associated overgrowth (40). In fact, the 
recent development of targeted therapies in the PIK3CA 
overgrowth illustrates the urgent need for precise molecular 
diagnosis and the power of precision medicine (41).

Use of NGS-based techniques in routine 
diagnostics: chances and challenges

WES or (in the future) WGS testing should be carefully 
considered and ordered after consultation with clinical 
geneticists, as chances and challenges of uncertain or 
unexpected findings from genome-wide tests have to be 
considered in decision-making. On the other hand, the 
diagnostic value of WES/WGS is without question as it 
has contributed to a significant increase in diagnostic 
yield in a broad spectrum of pediatric disorders (see the 

Figure 2
Interdisciplinary and integrative decision strategy to improve diagnostics and management of patients with growth disorders. (American College of 
Medical Genetics (ACMG) criteria to standardize the pathogeneity of human genetic variants (44); Human Genome Variation Society (HGVS) recommends 
a standardized nomenclature of genetic variants (https://varnomen.hgvs.org/), variant of uncertain significance (VUS), human phenotype ontology (HPO; 
https://hpo.jax.org/app/), European reference network (ERN), and Clinical Patient Management System (CPMS) used by the ERNs).
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‘Introduction’ section). Additional improvements can be 
expected by further progress and integration of methods, 
bioinformatics pipelines for lab data analyses, databases, 
and exchange platforms (Fig. 2).

The classification of the pathogenicity of a genetic 
variant is a major challenge nowadays, and the evaluation 
by clinical laboratory geneticists requires all information 
available from databases, literature, clinical data, and family 
history (Fig. 2). Standardization of the genetic and clinical 
classification is another important prerequisite to allow 
the exchange between clinicians and labs and to submit 
cases to public exchange platforms in order to further 
improve and enlarge clinical genetic databases as the basis 
for knowledge exchange, training, and future guidelines. 
In this context, the standardized coding of clinical 
diagnoses, e.g. as human phenotype ontology (HPO) 
terms, is becoming increasingly important for the basis 
for submission to databases and bioinformatic algorithm. 
All these activities significantly improve the diagnostic 
algorithms, even retrospectively by recall evaluation (Table 
1: case 1) for the benefit of the patients and their families. 
Last but not least, these data compilations and exchanges 
have to consider ethical and privacy protection issues, 
in close collaboration with patient support groups and 
advocacies (e.g. in networks like ERNs).

Apart from financial considerations which might 
argue for a stepwise testing, clinicians ordering genetic 
tests as well as the laboratory geneticists themselves 
should keep in mind two further challenging unintended 
findings which can be obtained by NGS-based tests, i.e. 
variants of uncertain clinical significance (VUS) and 
incidental findings. The chance to detect these types of 
variants increases with the scale of genetic tests (Table 2), 
as impressively illustrated for genetic testing in hereditary 
breast cancer (42, 43).

Both VUS and incidental findings have the potential 
to create confusion for patients and their families, as well 
as for clinicians. VUS represent genetic variants for which 
the association with a disease is unclear at the time of their 
classification (44). In 2016, it has been estimated that up 
to 40% of genetic variants identified by NGS testing were 
classified as VUS (45), and the reason for the challenge to 
classify a variant as (likely) pathogenic or (likely) benign 
is that none or only scarce information is documented at 
the time of testing. A major task in translational medicine 
is therefore the documentation of all acquired information 
of a variant in public databases, and in combination with 
permanently improving bioinformatics and self-learning 
algorithms, the ratio of VUS among newly detected 
variants will decrease in the future.

There are contradictory arguments for and against 
reporting of VUS to clinicians and families: only VUS in 
disease-associated genes should be reported (46), and in 
diagnostic context, analysis should be focused on risk 
genes for the clinical diagnosis the test has been asked 
for. Except for some common genetic disorders, a periodic 
reevaluation of the pathogenicity of VUS is currently not 
available. Therefore, a recall after 2 or 3 years should be 
offered in the report (Fig. 1) (47), as the rationale for this 
procedure has been corroborated by numerous examples 
(e.g. (43), Table 1 – case 1 (48)).

The second challenge in NGS-based diagnostics is the 
identification and particularly the reporting of incidental 
findings (also called unsolicited findings), meaning 
pathogenic variants that are unrelated to the initial clinical 
questions but of clinical relevance. They differ from so-called 
‘secondary findings’ which are pathogenic variants in genes 
not related to the original clinical diagnosis but actively 
looked for. As a growing number of genes is reported for 
which individuals carrying pathogenic variants remain 
without symptoms for several years, but preventive 
therapies exist, the American College of Medical Genetics 
has suggested a list of so-called ‘medically actionable 
genes’ (49). Numerous studies and suggestions have been 
published about the pros and cons of reporting incidental 
as well as secondary findings, and discussions are ongoing 
with variations in international policy documents (e.g. 
(50)). The healthcare providers involved in genetic testing 
should be aware of these discussions and the national rules 
and reporting practices. In particular, the information 
and permission of the patients and their families prior to 
diagnostic testing in respect to the handling of incidental 
findings must be considered. Therefore, addressing ethical 
and privacy issues is a major task in this context.

In addition to its suitability to analyze a huge number 
of disease-associated genes in parallel and its sensitivity to 
detect low-level mosaicism, a further advantage of WES and 
WGS techniques is the chance to identify rare, unexpected, 
and even new variants and genes. New monogenic 
growth disorders are constantly being diagnosed via both 
WES and WGS, whose disease value can also be proven 
because it is possible to bring together patients with rare 
and ultra-rare genetic disorders via exchange platforms 
such as Match-Maker and GeneMatcher. Thereby, these 
techniques as well as additional new methods (Table 2) 
have the potential to further increase detection rates as 
the basis of knowledge-driven personalized medicine. A 
prerequisite to reach the best benefit with omic result is 
their integrative analysis and interpretation, as well as 
submission to databases and registries (Fig. 2). With the 
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implementation of molecular and phenotype-driven 
exchange (self-learning) platforms in the processing of 
variant evaluation, the pathogenicity of variants may 
become more precisely and thus contribute to a better 
understanding of their pathoetiology and to a better 
personalized patient management.

Personalized management from a 
clinician standpoint

The rapidly expanding possibilities of genetic testing 
challenge the clinician to choose the appropriate test in 
daily practice. After ruling out a secondary growth disorder, 
the clinician will have to decide what to do next. First, the 
decision must be made whether or not there is suspicion 
of a primary growth disorder. We should be aware to avoid 
medicalization of children who are not severely short or tall 
and do not have other clues that point toward a syndromic 
or monogenic disorder. If there are clues for a primary 
growth disorder or a genetic disorder associated with short 
or tall stature, a stepwise approach as highlighted in Fig. 1 
can be of help.

Short stature after being born SGA and ISS are not clinical 
diagnoses, but definitions based on anthropometric data. 
The pretest likelihood of finding a genetic disorder in short 
SGA children is relatively high (approximately 30–40%), 
especially in case of additional features such as micro- or 
macrocephaly, dysmorphic features, developmental delay, 
and severe short stature (<−3 SDS) (19). It is also important 
to consider genetic testing in these children to search for 
contra-indications for GH treatment, such as chromosomal 
breakage disorders (Table 1, case 3). A short child born SGA 
who develops elevated IGF1 levels during GH treatment, or 
who does not demonstrate catch-up growth, also warrants 
genetic investigation.

Genetic testing can guide therapeutic management. 
The indications for GH treatment have expanded, e.g. for 
short children due to NPR2 and ACAN gene variants (51, 
52, 53). However, also children with rare syndromes and 
severe short stature such as Wiedemann–Steiner syndrome, 
Okur–Chung syndrome, 18q deletion syndrome, and 
Aarskog syndrome can be offered a trial with GH treatment 
in various countries (54, 55, 56). Furthermore, genetic 
disorders such as SHOX, ACAN, NPR2, and IGF1R gene 
variants require higher doses of GH.

Sometimes a genetic diagnosis can identify potential 
future medical conditions that warrant follow-up and/or 
treatment, e.g. tumor predisposition in specific overgrowth 
syndromes.

Collaboration with or referral to a clinical geneticist 
or pediatric endocrinologist is advised. In specialized 
centers for rare growth disorders, one might benefit from 
a joint clinic of a pediatric endocrinologist and clinical 
geneticist (23). Thus, personalized medicine becomes a 
guidance for clinical evaluation, molecular evaluation, 
and therapy.

Perspective I: future diagnostic strategies

Though the era of genome medicine has already started, 
future genome analysis needs further embedding in 
integrated and multidisciplinary approaches which 
consider all available laboratory and clinical data (Fig. 2). 
These ‘big data’ bear the potential for a personal and more 
precise medicine. The accumulation of these data may help 
to identify the progression from health to disease, helping 
to uncover preventable disease risk factors and allowing 
more precision diagnostic and prognostic information. 
Furthermore, it could be the basis for personalized 
treatment. At the population level, big data may help to 
integrate multiple social and environmental risk factors.

However, despite these enthusiastic future perspectives, 
the advantages and disadvantages of the new methods and 
their potential have to be carefully evaluated with respect 
to both individual and public health issues (57, 58).

As in the recent years has been shown, the power 
of NGS based assays lies in the chance to shorten and 
even avoid diagnostic odysseys (examples in Table 1), 
and thereby to allow a targeted clinical management as  
early as possible. Particularly, in acutely ill neonates 
and children, ‘rapid’ NGS approaches are promising 
prerequisites for customized acute therapeutic regimes and 
are in the process to be implemented in clinical settings 
(for review see 15).

Perspective II: relevance for transition from 
child to adult care – long-term studies

Children with short stature as part of rare genetic syndromes 
often have multiple medical problems. Due to improved 
multidisciplinary care during childhood, life expectancy 
has increased, and transition to specialized adult care is 
needed for future care into adulthood. For many of the 
growth disorders, there is limited knowledge about their 
natural history, development of comorbidities, and best 
overall management. A multidisciplinary approach with a 
clinical algorithm was recently published (59). This can be 
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improved by centralized care, registries, or collaborations 
in networks such as the ERN-Endo.

Experiences with the application of recombinant 
human growth hormone (rhGH) for the treatment of GHD 
are available for almost 4 decades (60). The indications for 
GH treatment in non-GH-deficient children are expanding 
and often require higher doses of GH to induce catch-up 
growth, e.g. in short children due to SHOX gene variations.

Long-term safety of rhGH treatment has been 
investigated in GHD patients, short children born SGA, 
and patients with ISS (61, 62). No overall increased 
mortality risk was observed in patients without an 
underlying diagnosis that is associated with increased 
mortality (idiopathic GHD or ISS). In patients with an a 
priori increased risk of mortality due to the underlying 
diagnosis, no association was found between the increased 
risk of mortality and daily or cumulative GH dose which 
probably indicates there is no effect of GH treatment on 
mortality risk (61). GH treatment in children with short 
stature due to GHD, being born SGA, or ISS was associated 
with a small but increased risk of cardiovascular disease, 
especially in girls and short children born SGA (62). Being 
born SGA in itself is associated with an increased risk of 
cardiovascular disease (63).

Long-acting GH (LAGH) analogs are currently being 
marketed in the United States, Europe, and Asia for children 
and adults with GHD. Studies to investigate the efficacy and 
safety of LAGH for other indications are being executed. 
Possible safety concerns include metabolic effects related to 
the non-physiological profile of serum GH and IGF1 levels 
during treatment (64). Ongoing surveillance of patients 
who were treated with GH as a child is necessary since 
studies so far were performed in relatively young adults 
(<40 years of age). The international registry project GloBE-
Reg (www.GloBE-Reg.net) develops a newly developed 
platform to support long-term follow-up registry-based 
studies. 

Conclusions

The implementation of high-throughput and deep 
sequencing methods in routine genetic diagnostics 
has significantly improved the diagnostic yield in 
patient cohorts with growth disturbances and becomes 
increasingly important as the prerequisite of a personalized 
medicine. They provide considerable chances to identify 
even rare and unexpected situations; nevertheless, we have 
to be aware of their limitations and that simple genetic 
tests in the beginning of a testing cascade might also help 

to identify the genetic cause of specific growth disorders. 
Existing and future networks like the ENDO-ERN will 
further improve the consenting on testing strategies as well 
as their standardization.

The clinician asking for genetic testing has to weigh 
manifold aspects in this decision process, including 
appropriateness (single gene test, stepwise procedure, 
comprehensive testing), turnaround time as the basis 
for a rapid intervention, and economic considerations. 
The future will see further increasing implementation 
of interdisciplinary genome medicine in diagnoses, 
treatment, and counselling of growth disturbances, with 
the maximum benefit for the patient and his family.
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