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Reference-free transcriptome exploration reveals novel
RNAs for prostate cancer diagnosis
Marina Pinskaya1,* , Zohra Saci1,*, Mélina Gallopin2, Marc Gabriel1, Ha TN Nguyen2,3, Virginie Firlej4,5, Marc Descrimes1,
Audrey Rapinat6, David Gentien6 , Alexandre de la Taille4,5,7, Arturo Londoño-Vallejo8 , Yves Allory9,
Daniel Gautheret2 , Antonin Morillon1

The use of RNA-sequencing technologies held a promise of im-
proved diagnostic tools based on comprehensive transcript sets.
However, mining human transcriptome data for disease bio-
markers in clinical specimens are restricted by the limited power
of conventional reference-based protocols relying on unique and
annotated transcripts. Here, we implemented a blind reference-
free computational protocol, DE-kupl, to infer yet unreferenced
RNA variations from total stranded RNA-sequencing datasets of
tissue origin. As a bench test, this protocol was powered for
detection of RNA subsequences embedded into putative long
noncoding (lnc)RNAs expressed in prostate cancer. Through fil-
tering of 1,179 candidates, we defined 21 lncRNAs that were
further validated by NanoString for robust tumor-specific ex-
pression in 144 tissue specimens. Predictive modeling yielded a
restricted probe panel enabling more than 90% of true-positive
detections of cancer in an independent The Cancer Genome Atlas
cohort. Remarkably, this clinical signature made of only nine
unannotated lncRNAs largely outperformed PCA3, the only used
prostate cancer lncRNA biomarker, in detection of high-risk tu-
mors. This modular workflow is highly sensitive and can be ap-
plied to any pathology or clinical application.
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Introduction

RNA sequencing (RNA-seq) has revolutionized our knowledge of
human transcriptome and has been implemented as a pivot
technique in clinical applications for discovery of RNA-based
biomarkers allowing disease diagnosis, prognosis and therapy
follow-up. However, most biomarker discovery pipelines are blind

to uncharacterized RNA molecules because they rely on the
alignment of uniquely mapped reads to annotated references of
the human transcriptome, which are far from complete (Deveson
et al, 2018; Uszczynska-Ratajczak et al, 2018; Morillon & Gautheret,
2019). Indeed, unspliced variants, rare mRNA isoforms, RNA hybrids
originating from trans-splicing or genome rearrangements,
unannotated intergenic or antisense noncoding RNAs, mobile
elements, or viral genome insertions would be systematically
missed. A recent approach to RNA-seq data analysis, DE-kupl,
combines k-mer decomposition and differential expression
analysis to discover transcript variations yet unreferenced in the
human transcriptome (Audoux et al, 2017). Applied to poly(A)+
RNA-seq datasets of in vitro cell system, DE-kupl unveiled a large
number of RNA subsequences embedded into novel long non-
coding (lnc)RNAs. These transcripts of more than 200 nucleotides
in length transcribed by RNA polymerase II from intergenic,
intronic, or antisense noncoding genomic locations constitute a
prevalent class of human genes. Some lncRNAs are now rec-
ognized as precisely regulated stand-alone molecules partici-
pating in the control of fundamental cellular processes (Quinn &
Chang, 2015; Jarroux et al, 2017). They show aberrant and specific
expression in various cancers and other diseases promoting them
as biomarkers, therapeutic molecules and drug targets (Van
Grembergen et al, 2016; Leucci, 2018). Importantly, some lncRNAs
can be robustly detected in biological fluids (blood and urine) as
circulating molecules or encapsulated into extracellular vesicles,
hence, raising an attractive possibility of their usage as biomarkers in
non-invasive clinical tests (Wang et al, 2014; Silva et al, 2015; Deng
et al, 2017; Wang et al, 2018; Zhao et al, 2018). The only example of a
lncRNA-based biomarker so far introduced in clinical practice of
prostate cancer (PCa) is the PCA3 lncRNA (de Kok et al, 2002). PCA3 is
transcribed antisense to the tumor suppressor PRUNE2 gene and
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7, Créteil, France 6Translational Research Department, Genomics Platform, Institut Curie, Université PSL, Paris, France 7 Assistance Publique – Hôpitaux de Paris, Hôpital
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promotes its pre-mRNA editing and degradation (Salameh et al,
2015). Being overexpressed in 95% of PCa cases, PCA3 is detected
in urine and helps diagnosis providing, in addition to other
clinical tests, more accurate metrics regarding repeated biopsies
(Groskopf et al, 2006; Galasso et al, 2010). However, it remains
inaccurate in discrimination between low- and high-risk tumors
because its expression may dramatically decrease in aggressive
PCa cases tempering its systematic usage (Loeb & Partin, 2011;
Alshalalfa et al, 2017).

Since PCA3 discovery and the development of RNA-seq tech-
nologies, the PCa transcriptome has been extensively explored by
The Cancer Genome Atlas (TCGA) consortium and others to identify
numerous PCa-associated lncRNAs (PCAT family) such as PCAT1,
PCAT7, or PCAT114/SChLAP1 (Prensner et al, 2014; Iyer et al, 2015).
However, none of them has been yet introduced into clinical
practice because of the variable expression incidence, as for
SChLAP1 detected in 25% of PCa cases presenting metastatic traits
(Prensner et al, 2013), or low specificity, as PCAT1 or PCAT7, thus
infringing their clinical value. Additional efforts are required for
more accurate and exhaustive RNA identification, as well as more
rigorous validations of clinical potency through independent RNA
measurement technologies and clinical cohorts. Regardless a large
number of transcriptomic studies and variety of clinical samples
analyzed, discovery of RNA-based biomarkers from publicly
available RNA-seq datasets is still limited at two levels: (i) most
experimental setups are based on poly(A) selected, unstranded
cDNA sequencing, and (ii) computational analyses are generally
focused on annotated genes and full-length RNA assemblies. This
impedes the detection of low and poorly polyadenylated RNAs but
also partially degradedRNAs from formalin-fixed paraffin-embedded
tissues or other clinical samples (Zhao et al, 2014; Zhao et al, 2018).
In addition, non-stranded RNA-seq reads counting is less accurate
at 59 RNA ends or even impossible for co-expressed paired sense/
antisense transcripts and for yet unannotated RNAs among non-
coding, fusion, repeat-derived transcripts (Davila et al, 2016; Audoux
et al, 2017).

Here, we propose a conceptually novel exploratory framework
combining the total stranded RNA-seq of clinical samples and the
reference-free DE-kupl algorithm for discovery of novel tumor-
specific transcript variations. As a proof-of-concept, we focused
on the least explored, noncoding portion of the genome devoid of
annotated protein-coding sequences to build an exhaustive cat-
alog of PCa associated subsequences (contigs) embedded into
lncRNA genes. The catalog was further refined through minimal
filtering to isolate the subset of contigs with best differential ex-
pression features and validate 21 of them by a custom NanoString
assay in the extended cohort of 144 prostate specimens. From this, a
predictive modeling derived a panel of nine yet unannotated
lncRNAs validated for robust expression in an independent TCGA
cohort. Importantly, its clinical performance surpassed the PCA3
lncRNA specifically in discrimination of high-risk tumors. The
proposed probe-set can be further used for development of a PCa
diagnostic test. Moving beyond this point, the proposed compu-
tational and experimental platform may serve as a tool for bio-
markers discovery of any disease and any clinical task aiming at
improved medical care and development of precision medicine
approaches.

Results

Identification of PCa-specific RNA variants in the Discovery Set by
DE-kupl

The biomarker discovery workflow included three major phases:
discovery, selection, and validation (Fig 1). First, for discovery, we
performed a deep total stranded RNA-seq of ribosomal RNA-
depleted RNA samples isolated from prostate tissues after rad-
ical prostatectomy (Discovery Set, PAIR cohort, Table S1). This
Discovery Set was processed by DE-kupl to identify tumor-specific
transcripts. DE-kupl directly queries FASTQ files for subsequences
(k-mers) with differential counts/expression (DE) between two
conditions (Fig 2A) (Audoux et al, 2017). Overlapping k-mers are
then assembled into contigs and, in a final step, mapped to the
human genome for annotation. In the aim to focus exclusively on
novel, yet unannotated RNA elements, k-mers exactly matching
GENCODE-annotated transcripts weremasked. We eventually retained
contigs within the noncoding regions (antisense to protein-coding
or noncoding genes, intergenic) longer than 200 nucleotides and
showing adjusted P-values below 0.01 to capture the most sig-
nificant expression changes linked either to new transcriptional or
processing events within known or putative lncRNA loci.

With these criteria, we identified 1,179 tumor up-regulated
contigs assigned to four main categories according to their map-
ping features: contiguous (uniquely mapped) contigs (N = 935),
splice variants (N = 54), repeats (N = 167), and unmapped contigs (N =
23) (Figs 2B and S1, and Table S2). Among them, 586 contigs were

Figure 1. Experimental and computational workflow for discovery and
validation of RNA-based clinical biomarkers.
Raw total stranded RNA-seq data of a small clinical cohort is processed by DE-
kupl to allow comparison of 8 normal against 16 tumor specimens (in this case,
formaldehyde-fixed paraffin-embedded tissues from radical prostatectomy)
and cataloguing of all differentially expressed RNA variations (contigs). The
whole set is filtered according to desired criteria and the top ranked contigs are
selected for an independent experimental validation by NanoString in the
extended clinical cohort. Finally, predictive modeling infers the best panel of
candidate RNAs for validation of its clinical potency in an independent cohort (in
this case TCGA).
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embedded into already referenced GENCODE lncRNA genes, but
represented new sequence variations or RNA processing events, as
PCAT7 (ctg_111158, P6) or CTBP1-AS (ctg_25348, P10). The restmapped to
intergenic noncoding locations (370 contigs) or antisense to refer-
enced protein-coding or noncoding genes (221 contigs) (Fig 2C). In-
tersection with existing annotations revealed 50% sequence overlap
of contigs with 400 (33.93%) GENCODE and 75 (6.36%) MiTranscriptome
lncRNA genes (Fig 2B). An unsupervised clustering of prostate spec-
imens based on contigs expression counts allowed proper discrimi-
nation of tumor from normal tissues of the Discovery Set (Fig 2D).

In conclusion, DE-kupl identified a thousand of PCa-associated
RNA variants for the majority embedded into yet unreferenced
transcripts which may represent putative novel lncRNAs. This de-
pository was further explored for clinical relevance.

Naı̈ve assembly of transcription units identifies novel prostate
cancer associated lncRNAs

To complement the reference-free protocol, we applied a reference-
based protocol to build a catalog of lncRNAs from the sameDiscovery
Set. Total RNA-seq produces much more intronic and exon–exon
junction reads than poly(A)–selected RNA-seq. This complexity
renders laborious in time and machine memory the data analysis by
splice graph–based assemblers such as Cufflinks (Hayer et al, 2015;
Kukurba&Montgomery, 2015). To bypass this difficulty, we developed
a more straightforward lncRNA annotation pipeline, HoLdUp, which
identifies transcription units (TUs) based on coverage analysis (Fig
3A). In this workflow, uniquely mapped reads were assembled into
TUs and mapped to the GENCODE annotation to extract intergenic

and antisense lncRNAs (see the Materials and Methods section for
details). They were further ranked according to their expression level,
presence of splice junctions, and existence of matched ESTs. In total,
we retained 168,163 TUs with above-threshold expression of 0.2
quartile ofmRNA expression (Class 2) and, within this group, themost
robust 2,972 TUs with at least one splice junction and one EST (Class 1)
(Fig 3B). Globally, newly detected transcripts were as much expressed
as GENCODE-annotated lncRNAs but lower thanmRNAs (Fig S2A). Only
0.33% of Class 1 lncRNAs were present with at least 50% nucleotide
sequence overlap in the recent GENCODE v27 catalog and 43.37% of
TUs in the MiTranscriptome lncRNA repertoire; the rest represented
putative novel lncRNA genes (Figs 3B andS2B). Of 2,972 TUs, DE analysis
retrieved 127 of Class 1 TUs significantly up-regulated in tumor
specimens (adjusted P-value below 0.01, DESeq), including multiple
intergenic transcripts and transcripts antisense to protein-coding
genes, such as HDAC9, TPO, and FBXL7 (Table S3 and Fig S2B).

Intersection of DE-kupl contigs with PCa up-regulated HoLdUp
TUs (N = 127) and the recent GENCODE lncRNA annotation (N = 206)
showed that 687 DE-kupl contigs of 1,179 make part of the stand-
alone transcripts. Moreover, up to 85.5% and 96.8% DE-kupl contigs
embedded into GENCODE and HoLdUp Class 1 lncRNA genes, re-
spectively, were also detected by DESeq as significantly up-
regulated transcripts in the same dataset, when the RNA-seq
reads were counted within the entire TU (Figs 3C and S2C). One
such example is the contig ctg_23999 (P22) embedded into a novel
HoLdUp assembled Class 1 TU antisense to the protein-coding
FBXL7 gene (Fig 3D).

In conclusion, the reference-based assembly protocol HoLdUp
is complementary to DE-kupl and allows attributing short RNA

Figure 2. K-mer decomposition protocol for
detection of differentially expressed RNA variants
in PCa.
(A) DE-kupl workflow with principle steps of contigs
counting, DE-test and filtering, assembly and
annotation. (B) Catalog of DE-kupl contigs of different
subgroups: contiguous—contigs mapped as unique
fragments; spliced—contigs mapped as spliced
fragments; repeat—multiply mapped contigs;
Inter—contigs mapping into intergenic regions; OL—at
least one nucleotide overlapping of GENCODE lncRNA
annotations; and AS—antisense to a protein-coding or
a noncoding gene. Contigs of each subgroup showing
50% sequence overlap with GENCODE v27 (GC)– and
MiTranscriptome v2 (MiT)–annotated genes are
counted. (C) Pie chart of 1,179 contigs distribution across
GENCODE-annotated features. (D) Unsupervised
hierarchical cluster heat map of Log10(normalized
counts) of 1,179 contigs assessed in 8 normal and 16
tumor specimens by total stranded RNA-seq of the
Discovery Set. NA stands for non-annotated in human
genome.
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subsequences towhole TUs. Nevertheless, DE-kupl wasmore powerful
illuminating much more transcriptomic variations not only within the
annotated genes but also within putative new noncoding regions in
highly complex and heterogeneous total RNA-seq datasets of clinical
origin.

Selection of a restricted set of 23 PCa RNA contigs showing the
highest differential expression

We further leveraged the DE-kupl contig catalog to define a robust
PCa signature among putative new lncRNAs using several filters (Fig
S3A). Hereafter, we will use the term signature to describe the set of
contigs or genes selected for their ability to predict a sample status.
First, contigs were sorted according to their adjusted P-value and,
second, were visually selected using the Integrative Genomic
Viewer applying the following criteria: (i) when several contigs were
present within the same genomic region (5 kb window) the contig
with the lowest adjusted P-value was retained, (ii) contigs antisense
to expressed exons, bidirectional or positioned in close vicinity to
other transcribed protein-coding genes were filtered out. We
retained several contigs embedded into already annotated PCa
associated lncRNA genes, such as CTBP1-AS (ctg_25348, P10), PCAT7
(ctg_111158, P6), and PCAT1 (ctg_105149, P18), or lncRNAs referenced
elsewhere as ctg_104447 (P11) mapped into LOC283177, ctg_123090
(P5) into AC004066.3, and ctg_73782 (P8) into LINC01006. It should be
noted that the GENCODE referenced genes enclosing these new
subsequences also showed differential expression when counting

on the whole gene annotation (Fig S3B). However, in contrast to DE-
kupl ranking, they were not among the strongest hits in the DESeq
analysis with exception of PCAT7 (Table S4). This observation points
to the fact that through expression counting within the small
subsequences, DE-kupl is more resolutive and hence sensitive in
the discovery of DE sequences. Visualization of RNA-seq reads and
junctions of a region embedding FBP2 and its antisense PCAT7
genes revealed a new contig ctg_28650 (P2) downstream of the
PCAT7 annotation and antisense to FBP2. The continuous coverage
and absence of splice junctions in reads profiling suggest that P2 is
enclosed into an extension of the last PCAT7 exon (Fig S3C and D).
This contig was retained in the restricted list as the strongest
candidate antisense to FBP2, overcoming ctg_111158 (P6) assigned
to the PCAT7 gene itself. Still, additional experiments are required to
validate this lncRNA variant, yet absent from the existing PCAT7
annotation.

In total, 23 candidates belonging to contiguous (N = 21), spliced
(N = 1), or repeat (N = 1) subgroups of contigs were selected for further
validation, all being expressed at least six times more in tumor
tissues than innormal prostate (Fig S3E and Tables S2 and S5). Among
them, 12 candidates mapped antisense to annotated protein-coding
or lncRNA genes and 11 located to intergenic regions. To facilitate
further reading, contigs’ identity are replaced by probes’ identity
fromP1 to P23 according to increasing P-values of DE of the Discovery
Set (Table S5).

After the manual filtering, we aimed to validate the expression of
selected 23 contigs in the extended PAIR cohort of nine normal and

Figure 3. Reference-based lncRNA discovery from
total stranded RNA-seq.
(A) HoLdUp protocol for the ab initio assembly of TUs
constituting putative lncRNA genes and their
classification into Class 2 and Class 1 TUs according to
robustness of detection. (B) HoLdUp catalog and TUs
overlap with GENCODE v27– (GC) and MiTranscriptome
(MiT)–annotated lncRNAs. DE stands for differentially
expressed transcripts (DESeq adj. P-value < 0.01).
(C) Pie chart representation of non-exclusive
distribution of DE-kupl contigs across different
lncRNA annotations: MiTranscriptome (violet), Class 1
(yellow), Class 2 (brown), GENCODE (red), and novel
(blue); number of contigs is marked in each section.
Proportion of DE-kupl contigs embedded into
up-regulated (UP) GENCODE (red) and Class 1 (yellow)
lncRNAs is expressed as a histogram. (D) VING-
generated RNA-seq profiling along plus (+) and minus
(−) strands of chr5:15,500,295-15,939,910 in tumor and
normal prostate specimens: the GENCODE-annotated
protein-coding gene FBXL7 (blue), antisense DE-kupl
contig ctg_23999 (P22), and antisense HoLdUp Class 1-TU
(orange). Arrow-lines and rectangles represent
introns and exons, respectively. DE, differentially
expressed; RPKM, reads per kilo base per million
mapped reads; and TU, transcription unit.
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135 tumor specimens (Selection Set) (Table S6). This cohort contained
one additional specimen for normal tissue and 119 additional tumor
specimens. To measure contigs expression, an alternative RNA
quantification procedure based on the NanoString nCounter platform
for direct enzyme-free multiplex digital RNA measurements was
carried out (Fig 4A). In addition to DE-kupl contigs, a probe for PCA3
was usedas a benchmark lncRNA.We alsomeasured the expression of
six housekeeping genes and selected three lowly expressed mRNAs
(GPATCH3, ZNF2, and ZNF346) as custom internal controls for relative
quantifications (Table S7 and Fig S4).

The NanoString assay revealed that all DE-kupl contigs were
expressed at a lower level than PCA3, but still 21 of 23 contigs were
significantly overexpressed (Wilcoxon P-value < 0.01) in tumor speci-
mens (Fig 4A and Table S8). Two contigs, intergenic P22 (ctg_119680)
and repeat P17 (ctg_36195), did not show significant difference in
expression between normal and tumor specimens. Ranking according
to P-values revealed 12 contigs better than PCA3. Among the top DE
contigs were those embedded into PCAT1 (ctg_105149, P18), CTBP1-AS
(ctg_25348, P10), and PCAT7 (ctg_111158, P6) genes, whereas the rest
were assigned to novel lncRNAs. Notably, apart from P17 (ctg_36195)
and P22 (ctg_119680), expression measurements were consistent be-
tween the two technologies, total stranded RNA-seq and NanoString,
although the P-value ordering was different (Fig S5 and Table S9).

Thus, 21 of 23 contigs were validated in the extended set of RNA
specimens using the independent single-molecule measurement
technology.

Validation of contig-based RNA candidates in an independent
clinical cohort

Independent validation of DE-kupl contigs was performed using the
biggest PCa clinical resource of 557 poly(A)+ RNA-seq datasets,
including 52 normal and 505 tumor tissues from radical prosta-
tectomy (TCGA-prostate adenocarcinoma [PRAD] cohort, Validation
Set) (Fig 1 and Table S10).

The occurrence of sequences representing 23 DE-kupl contigs
was measured and compared with PCA3. In total, 16 of 23 DE-kupl
contigs had significant support for overexpression in tumor speci-
mens in the TCGA-PRAD cohort (Wilcoxon P-value < 0.01, Fold Change
[FC] > 2) (Fig 4B and Table S11). Among the best scored candidates, the
two novel DE-kupl contigs, P16 (ctg_111348) antisense to DLX1 and
intergenic P1 (ctg_17297), surpassed PCA3 that ranked third. How-
ever, important discrepancies were observed between expres-
sion counts in poly(A)+ RNA-seq TCGA datasets and NanoString or
total RNA-seq PAIR datasets. First, P22 (ctg_119680) was detected as
DE in TCGA-PRAD but failed the DE test whenmeasured by NanoString
(Figs 4 and S5). Second, the expression of nine DE-kupl contigs were
near the base line in the TCGA dataset, including those showing
relatively high expression and low P-values in the PAIR cohort, such
as P14 (ctg_61528) antisense to TPO or the intergenic P9 (ctg_9446).
Detection of these contigs in TCGA-PRAD was compromised inde-
pendently of their genomic location (intergenic or antisense) or of
the expression level of a sense-paired gene. We hypothesized that
it is most likely due to a relatively low RNA-seq coverage and/or to a
loss of poorly or non-polyadenylated transcripts during cDNA li-
brary preparation in the TCGA experimental setup. Finally, ranking
of contigs according to increasing P-values was very different
between Selection and Validation Sets highlighting discrepancies
between technologies, clinical origins, and cohort sizes.

Regardless all experimental biases, 16 of 23 DE-kupl contigs were
validated in the independent clinical cohort as significantly overex-
pressed in tumors. This cohort was further used for validation of
clinical potency of contigs.

Expression of DE-kupl contigs is independent of tumor risk and
recurrence metrics

Several clinical studies have revealed high heterogeneity of ex-
pression and low efficiency of the PCA3 biomarker in detection of
high-risk tumors, questioning its robustness and reliability in PCa

Figure 4. Expression of lncRNA subsequences in PAIR
and TCGA-PRAD cohorts.
(A) Box-plot of Log10(norm.counts) of PCA3 and 23 DE-
kupl contigs in 144 PAIR specimens of the Selection Set
by NanoString. (B) Box-plot of Log10(norm.counts) of
PCA3 and 23 DE-kupl contigs in 557 TCGA-PRAD
specimens of the Validation Set by poly(A)+ unstranded
RNA-seq. Normal tissues: in blue, tumor tissues: in
red.
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diagnostics (Alshalalfa et al, 2017; Fenstermaker et al, 2017). We
assessed contig expression in tumors of different clinical metrics.
For risk prognosis, the most common metric is a three-group risk
stratification system established by D’Amico et al (1998), which
takes into account preoperative PSA level, biopsy Gleason Score,
and clinical TNM stage. As mentioned above, this scheme is highly
debated because of disagreements on the PSA score in relation to
PCa over-diagnosis (Carlsson et al, 2012; Loeb et al, 2014). To define a
molecular signature independent of PSA, we excluded this criterion
and categorized tumor specimens into low-, intermediate-, and
high-risk groups uniquely on the basis of Gleason and TNM fea-
tures, below referred to as naı̈ve indexing (Fig S6A and B). In ad-
dition to risk assessment, we also separated specimens in two
subgroups depending on the tumor recurrence status (Fig S6B).
Then, expression of PCA3 and the 23 DE-kupl contigs were com-
pared for each subgroup of the Selection Set.

To evaluate the robustness of contig expression, we ranked
probes by decreasing FC for high-risk against low-risk tumors and
positive against negative recurrence status (Fig 5). Most contigs
showed robust expression independently of the tumor classification.
In contrast, the PCA3 level was more disperse with the lower median
andmean expression and higher P-values in high-risk and recurrence
positive specimens (Table S12). While considering only 21 significantly
overexpressed contigs, 17 of them outperformed PCA3 in both con-
trasts (Table S12). Notably, among the best performe were contigs P6
(ctg_111158) and P2 (ctg_28650) both antisense to FBP2, P10 (ctg_25348)
embedded into CTBP1-AS, as well as the novel P16 (ctg_111348) an-
tisense to DLX1 and the intergenic P1 (ctg_17297).

In conclusion, most DE-kupl contigs showed robust expression
independent of tumor metrics. Hence, even if used alone, they may
offer a better clinical potency for PCa diagnosis than PCA3.

Inferring a multiplex RNA-probe panel and evaluation of its
performance in PCa diagnosis

To extract parsimonious probe signature predicting the tumor
status, we applied Least Absolute Shrinkage and Selection Operator

(LASSO) logistic regression on the Selection Set of 144 PAIR spec-
imens (Ghosh & Chinnaiyan, 2005). First, the initial 21 DE-kupl
contigs and PCA3 validated for expression by NanoString were
submitted to LASSO to define the best mixed signature comprised
of already known and yet unannotated lncRNA probes for dis-
crimination of tumor from normal tissues (Fig S7A). Then, LASSOwas
performed with the probe subset composed uniquely of contigs
assigned to putative novel lncRNAs (N = 15) to infer the best new-
lncRNA signature. It resulted in two panels of nine mixed and nine
new-lncRNA candidates (Figs 6A and S7B). Retrieved signatures
were then used to predict a tumor status in the Validation Set of the
TCGA-PRAD cohort using a leave-one-out cross-validated boosted
logistic regression. To assess the sensitivity of DE-kupl contigs in
PCa diagnosis, a predictive accuracy index, area under curve (AUC)
of the receiver-operating characteristic (ROC), was calculated for
each signature and PCA3 alone in the PAIR (Selection Set) and TCGA-
PRAD (Validation Set) datasets (Figs 6B and S7B). Remarkably, all
signatures still hold their predictive capacity in the independent
TCGA-PRAD cohort in spite of the important differences in exper-
imental setups between the two studies. Both markedly out-
performed PCA3 for tumor detection with AUC of 0.92 for mixed and
of 0.91 for new-lncRNA signatures against AUC of 0.73 for PCA3 (Fig
6B and C). In addition, these signatures were much better in
predicting high-risk tumors where PCA3 is particularly inaccurate
(Fig 6C). Remarkably, the new-lncRNA signature composed uniquely
of yet unannotated lncRNA subsequences predicted the tumor
status with the same performance as the mixed signature. Logistic
regression did not retain PCA3 within the mixed signature set,
instead contigs embedded into the well characterized PCAT1
lncRNA and into two already annotated but yet functionally
uncharacterized lncRNAs LOC283177 and LINC01006 were present.

We also compared predictive performances of signatures re-
trieved by the k-mer–based classifier to the one inferred using
conventional gene expression counting. Differential expression
analysis for GENCODE-annotated genes of the Discovery Set re-
trieved 520 up-regulated genes, protein-coding and noncoding,
with adjusted P-values lower than 0.05 and a logFC higher than 2

Figure 5. Expression of lncRNA subsequences in
prostate specimens of different clinical metrics in
the PAIR cohort (Selection Set).
(A, B) Box-plot of Log10(norm.counts) of PCA3 and 23 DE-
kupl contigs depending on tumor risk (A) and
recurrence status (B) assessed by NanoString. PCA3 is
marked in orange, and the contigs showing insignificant
expression change between normal and tumor
specimens are in blue. Contigs are ordered by the
decreasing FC of mean expression in high-risk versus
low-risk specimens in the (A) panel and in Yes versus
NO recurrence specimens in the (B) panel. HR, high-
risk; IR, intermediate-risk; LR, low-risk.
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(Table S4). These genes were then selected on the Discovery Set
using LASSO penalized logistic regression to extract a GENCODE
whole gene counting based (WGC) signature for further validation
(Fig S7B). Given the high dimensional setting (more variables than
observations available), we performed the stability selection
(Meinshausen & Bühlmann, 2010) and kept the five genes that had a
probability of being selected higher than 0.5 on 2,000 samplings of
the original dataset. Remarkably, the retrieved subset was com-
posedmajorly of noncoding transcripts (four of five), although PCA3
did not pass the selection. Of them, the protein-coding HPN mRNA,
the PCAT7 lncRNA, and the GLYATL1P4 pseudogene have been al-
ready associated with PCa in other studies (Willard & Koochekpour,
2012; Du et al, 2013; Kim et al, 2019). Notably, the GLYATL1P4 tran-
script makes part, together with 21 other RNAs, of the Decipher test
proposed in clinics to guide timing of radiation therapy after radical
prostatectomy in men with high-risk cancer (Alford et al, 2017). The
predictive performance in discrimination between normal and
tumor specimens of the WGC signature was tested by the ROC
analysis on the Validation Set and resulted in the mean AUC of 0.91
(Fig S7B). Hence, k-mer based signature discovery method re-
trieving yet unreferenced RNA subsequence was as powerful as the
signature derived from GENCODE-annotated genes. Although the
predictive modeling enabled to reach the same performance only
from 23 contig probes instead of 520 DE-genes and, remarkably, this
was achieved in TCGA-PRAD datasets where contigs expression
counting is most likely disfavored considering all aforementioned
drawbacks of poly(A)–selected datasets of low coverage.

Discovery of novel RNA signatures with high tumor predictive
potential also highlights both the incompleteness of current cancer
transcriptome datasets and the biological value of transcript in-
formation that can be extracted through different experimental (total
stranded RNA-seq and NanoString quantification) and computational
(DE-kupl) tools. De-kupl–derived novel signature demonstrated a
sensitivity and robustness towards tumor risk prediction surpassing
the state of the art for discrimination of prostate cancer. Furthermore,
established nine-probe RNA signature was performed not only in-
dependently of tumor origin and its clinicopathological characteristics
but also of the technology used for RNA measurements.

Discussion

Molecular biomarker assays are invaluable tools in cancer di-
agnosis, prognosis and treatment follow-up. Within this scope,
sequencing technologies unveiled the pervasiveness and diversity
of the human transcriptome, promoting lncRNAs as important
cancer signatures (Schmitt & Chang, 2016). These molecules are
highly dynamic and reflect cellular states in a sensitive and specific
way because of their involvement in genetic and regulatory flows of
information. However, the variety of RNA species and high het-
erogeneity of expression present a challenge for their detection
andproper quantification in clinical samples. Predominantmicroarray
and unstranded poly(A)+ RNA-seq–based approaches allowed iden-
tification of numerous lncRNAs with tumorigenic function. However,
their clinical performance as biomarkers stays rather poor because of
the aforementioned RNA features hindering RNA detection, quanti-
fication, and clinical validation under conventional experimental
setups. Here, we presented an innovative experimental and com-
putational platform that permits discovery of RNA biomarkers of high
clinical potency from total stranded RNA-seq datasets of clinical
origin.

As a proof-of-concept, we focused on PCa as the only type of
cancer using, so far, a lncRNA-based diagnostic test (Progensa). The
Discovery Set based on comparison of 8 normal with 16 tumor
specimens from total RNA-seq datasets was processed by DE-kupl
to extract themost significant differentially expressed subsequences
in the form of k-mer contigs. Further filtering based on contig length,
genomic position, and expression levels powered the pipeline to-
wards the discovery of putative lncRNAs, for the majority, yet
unreferenced in the human transcriptome. Then, the catalog of
contigs was manually refined and tested for expression using the
NanoString single-molecule RNA counting technology in the ex-
tended cohort of 144 specimens. Contig expression was next
assessed in the independent, publicly available TCGA-PRAD dataset
generated by the poly(A)+ unstranded RNA-seq technology. The
expression of contigs was systematically compared with that of the
benchmark biomarker lncRNA, PCA3. In total, 16 of 23 contigs were
validated in both setups but with important differences. Primarily,

Figure 6. Predictive performance of PCA3 and
multiplex mixed and new-lncRNA signatures
inferred from the LASSO penalized logistic
regression.
(A) Multiplex biomarker signatures composed of
either known and unannotated RNAs (mixed) or of only
unannotated RNAs (new-lnc). (B) ROC for the PCa
prediction in the TCGA dataset (Validation Set) using
two signatures and PCA3 alone. (C)Mean and SD of AUC
computed over 100 samplings of the Validation Set for
PCA3 and two signatures to classify samples
according to their tumor status. AS, antisense; AUC,
area under the curve; HR, high-risk; IR, intermediate-risk;
LR, low-risk tumors.
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RNA measurements were consistent between two different tech-
nologies: NanoString and total stranded RNA-seq. In contrast, the
TCGA poly(A)+ unstranded datasets revealed weakness and high
heterogeneity of contig counts over the selected regions, resulting
in unexpectedly low signals even for PCA3, considered as a highly
expressed lncRNA. Hence, our results promote the total stranded
RNA-seq as a first-choice strategy for discovery of RNA biomarkers
from clinical samples and when searching for transcripts others
than highly abundant mRNAs. It reflects far more precisely the
transcriptomic landscape of clinical samples and, hence, is more
advantageous as a Discovery Set for development of clinical tests.
At the same time, full-length transcript assembly from short-read
sequencing is inaccurate, time and computer memory consuming,
and this is aggravated by the added complexity of total (ribo-
depleted) RNA-seq libraries (Hayer et al, 2015). DE-kupl bypasses
this issue by directly extracting from raw data RNA subsequences
significantly overexpressed in a defined condition. In PCa tissues,
this allowed identification of 1,179 lncRNA-hosted candidates.
Further analysis isolated a restrained set of nine contigs either
within putative new lncRNAs or mixed annotated and novel lncRNAs
allowing PCa diagnosis independently of tumor risk classifications
with higher accuracy than the actual PCA3. Remarkably, the best
performingmixed signature did not include PCA3, consistent with the
low potency of this biomarker in detection of aggressive tumors.
Instead, both mixed and new-lncRNA signatures contained contigs
embedded into putative novel lncRNA genes. We strongly believe
that these signatures can complement the existing clinical tests
as lncRNA-based PCA3 (Progensa) or mostly mRNA-based De-
cipher to improve the accuracy of tumor stratification and
clinical decisions for better patient care (Alford et al, 2017). Still,
in this study, to compute signature coefficients, sample in-
formation (normal or tumor) was used because the extended
Selection and independent Validation Sets used two different
technologies for RNA measurements. This precluded us from
calculating an objective signature performance. An additional
cohort using the same NanoString technology as the Selection
Set should now be tested to explore the clinical potential of the
obtained signature.

In addition to the clinical value, functions of the newly dis-
covered lncRNA variants embedding DE-kupl contigs will be im-
portant to explore. Foremost, proper assignment of contigs to
stand-alone transcripts is required, and this task can be accom-
plished computationally through ab initio discovery and assembly
of novel transcripts as demonstrated here by HoLdUp or other
assemblers, and then through experimental validation at the
transcript-specific or transcriptomic level. In the latter case, high-
throughput RACE (rapid amplification of cDNA ends) or long-read
RNA-seq approaches can be useful. Among others, detailed ex-
amination of newly discovered contigs revealed a genomic locus on
chromosome 19 transcribed in PCa specimens in both directions
into the GENCODE-annotated AC011523.2 lncRNA and a novel, an-
tisense transcript embedding the P23 contig (ctg_29077). Located
between KLK15 and the PSA encoding KLK3 genes, this region makes
part of a super-enhancer annotated in several PCa cell lines (Jiang
et al, 2019). Moreover, bidirectionally produced enhancer RNAs from
this locus have been shown to regulate the expression of neigh-
boring KLK3 and KLK2 genes through Med1-dependent chromatin

looping in several PCa cell lines (Hsieh et al, 2014). Presence of the
P23 contig within the mixed and new-lncRNA signatures supports,
in addition to the clinical potency, possible regulatory functions of
the RNA contigs inferred by DE-kupl. More globally, most DE-kupl
contigs within co-transcribed sense–antisense pairs were anno-
tated as super-enhancers in prostate tissues and cell lines or other
biosamples, for example, P15 (ctg_512), P7 (ctg_117356), and P4
(ctg_63866) (Jiang et al, 2019). In most cases, their function in gene
expression regulation and chromatin configuration has not yet
been investigated and experimentally validated, but it is tempting
to speculate that defined sense-antisense transcripts may influ-
ence a super-enhancer activity and, consequently, may fine-tune
the expression of neighboring genes.

In this work, we propose DE-kupl as a tool for discovery of novel
disease-associated transcriptomic variations, which can be further
explored for biological and clinical relevance. As a pilot project, we
oriented the pipeline towards the discovery of novel lncRNAs, but
using proper masking and filtering criteria defined by the in-
vestigator, other variant transcripts, including single nucleotide
variations, novel splice events, gene fusions, circular RNAs, or
exogenous viral RNAs, could be probed. The workflow can be ap-
plied to any RNA-seq datasets of any clinical origin (tissue, blood,
and urine) to generate a probe panel that may be implemented as a
multiplex platform for simultaneous detection of RNAs in clinical
samples. Moreover, different experimental contrasts (normal ver-
sus pathology, low- versus high-risk grade, chemoresistant versus
sensitive, etc.) will define the biomarker usage in diagnosis,
prognosis, or other clinical applications, hence providing clinicians
and researchers with a simple and highly sensitive tool for genomic
and personalized medicine.

Materials and Methods

Tissue samples

Tumor and normal biopsy specimens were retrospectively col-
lected from prostate cancer patients who provided informed
consent and were approved for distribution by the Henri Mondor
institutional board (PAIR cohort). Tumor classification in low-,
intermediate-, and high-risk prognosis was performed according
to Gleason and TNM scores and regardless PSA values (Table S1
and Fig S6B).

RNA extraction, quantification, and cDNA library production

Total RNA was extracted using the TRizol reagent (Thermo Fisher
Scientific), according to the manufacturer’s procedure, quantified,
and quality-controlled using a 2100 Bioanalyzer (Agilent). RNA
samples with RNA Integrity Number (RIN) above six were depleted
for ribosomal RNA and converted into cDNA library using a TruSeq
Stranded Total Library Preparation kit (Illumina). cDNA libraries
were normalized using an Illumina duplex-specific Nuclease pro-
tocol before a paired-end sequencing on HiSeq 2500 (Illumina). At
least 20× coverage per sample was considered as minimum of
unique sequences for further data analysis.
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RNA-seq data

Raw paired-end strand-specific RNA-seq data were generated by
our laboratory from ribo-depleted total RNA samples of prostate
tissues (8 normal and 16 tumor specimens, Table S1) and can be
retrieved from the gene omnibus portal, accession number GSE115414.
TCGA prostate cancer poly(A)–selected RNA-seq and corresponding
clinical data were obtained from publicly available TCGA dataset
(http://cancergenome.nih.gov), 557 inputs in total (52 normal and 505
tumors of high- [N = 240], intermediate- [N = 128], and low-risk [N = 132]
groups). Among them, 369 patients showed no tumor recurrence, 108
presented a new tumor event (Table S10).

Computational workflow for k-mer contigs discovery from total
stranded RNA-seq dataset

DE-kupl run was performed from (June 2017) with parameters
ctg_length 31, min_recurrence 6, min_recurrence_abundance 5,
pvalue_threshold 0.05, lib_type stranded, diff_method DESeq2.
K-mer masking was performed against the GENCODE v24 annota-
tion. DE-kupl analysis of the 8 against 16 PAIR RNA-seq prostate
libraries yielded 124,809 DE contigs, in total. Contigs were annotated
by alignment on the hg19 human genome assembly using the DE-
kupl annotate procedure. We further selected contigs of size above
200 nucleotides and classified them into four categories (contig-
uous, repeat, spliced, and unmapped) based on their location and
mapping features (Table S2).

Computational workflow for reference-based ab initio transcripts
assembly from total stranded RNA-seq dataset (HoLdUP)

The human genome version hg19 and the GENCODE v14 annotation
were used in this study. First, we performed a quality control of all
sequencing data by FastQC Babraham Bioinformatics software.
Reads were mapped using TopHat 2.0.4, allowing three mismatches
and requesting uniquely mapped reads, which were further as-
sembled using the BedTools suite. Overlapping contigs from all
libraries were merged, and only contigs supported by at least 10
reads in either library were further assembled in segments if mapped
in the same strand and separated by less than 100 nucleotides. We
compared the segments with the GENCODE v14 annotation to extract
antisense and intergenic TUs longer than 200 nucleotides. To classify
lncRNAs, we applied the following criteria: (i) an expression level
above 0.2 quartile of mRNA expression in at least one condition per
tissue (Class 2); (ii) within this class, all TUs containing at least one
TopHat-identified exon–exon junction and at least one spliced EST
from UCSC mapped contigs were assigned to Class 1. The whole
catalog, the R code, and Data Tables can be downloaded from https://
github.com/MorillonLab/HoLDuP_pipeline.

Overlap between GENCODE, MiTranscriptome, DE-kupl, and
HoLdUp catalogues

Intersection between transcripts was counted only in the case of
50% overlap of nucleotide sequence between genomic coordinates
of each fragment.

Differential expression analysis

Read counting was performed on the compiled annotation (GENCODE
v27, HoLdUp Class 1 and Class 2) for each sample, using featureCounts
1.6.0 with the following parameters: -F “SAF” -p -s 2 -O and theDESeq R
package (Liao et al, 2014; Love et al, 2014). Only RNAs with adjusted
P-value below 0.01 were retained as differentially expressed to
constitute the prostate tumor signature (Tables S3 and S4). Gene
expression counts were normalized using the DESeq2 median of
ratio (Anders & Huber, 2010). Scripts are available at https://
github.com/MorillonLab/Prostate_additional_scripts.

NanoString nCounter expression assay

100 ng of total RNA was used for direct digital detection of 29 target
transcripts: six housekeeping genes (RPL11, GAPDH, NOL7, GPATCH3,
ZNF2, and ZNF346), 23 contigs and the one known PCa-associated
lncRNA, PCA3. Each target gene of interest was detected in RNA
samples of 144 specimens (9 normal and 135 tumor) of the PAIR cohort
(Table S6) on NanoString nCounter V2 using reporter and capture
probes of 35- to 50-nucleotide targeting sequences listed in Table S4.
Data was normalized through the use of NanoString’s intrinsic neg-
ative and positive controls according to the normalization approach
of the nSolver analysis software (https://www.nanostring.com/
products/analysis-software/nsolver) and then contig expression
was calculated relative to the average signal of three housekeeping
genes (GPATCH3, ZNF2, and ZNF346). Raw and normalized data for
each specimen, and mean and fold change expression in normal
against tumor samples are presented in Tables S7 and S8.

Contig expression measurements in TCGA-PRAD datasets

DE-kuplprovides representative k-mers for eachdifferentially expressed
contig. We converted the TCGA-PRAD FASTQ files to k-mer counts using
Jellyfish count and counted representative k-mers in each Jellyfish count
file using the Jellyfish query command (Marçais & Kingsford, 2011).
Counts were normalized by total number of reads in corresponding
libraries. To determine whether counts of DE-kupl derived represen-
tative k-mer were a reliable proxy for evaluating contig expression, we
compared representative k-mer counts to average counts from k-mers
sampled along each contig. All individual counts were obtained using
Jellyfish Dump files produced for each TCGA-PRAD library. Sampling was
performed as follows: (i) we extracted all k-mers from the contig that
were unique in the Ensembl human v91 transcript reference, and (ii)
from this list, we sampled 10 regularly spaced k-mers, starting from the
first 10% and ending in the last 10% of the list. This sampling procedure
was repeated four times for each contig. For the whole TCGA library and
each contig, the 10 k-mer counts obtained by Jellyfish were averaged,
yielding one average count per sample per library Table S13. Pearson
correlation analysis for two DE-kupl contigs P1 and P16 are shown in
Fig S8A and B. Jellyfish commands can be retrieved from https://
github.com/MorillonLab/Prostate-kmer-signatures.

RNA-seq data visualization

RNA-seq reads profiling along a locus of interest was performed
using our in-house R script VING using one “normal” and one
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“tumor” RNA-seq subsets build by random sampling of 10% of reads
from each raw data sample (Descrimes et al, 2015). The normal
samples were assigned to the group “controls” and the tumor
specimens–to the group “cases,” with the assumption that the
“cases” should have higher values than “controls.”

Unsupervised clustering of prostate specimens

Specimens were ranked based on the Log10(norm.counts) levels of
contigs assessed by the NanoString nCounter assay using a Com-
plexHeatmap R-package (Gu et al, 2016). Scripts are available from
GitHub: https://github.com/MorillonLab/Prostate_additional_scripts.

Variable selection using the LASSO penalized logistic regression
and external validation of signatures

Signature inference was performed in R using the normalized
Selection Set (23 probes in 144 observations) as a variable selection
dataset and contigs counts table of the Validation Set (23 probes in
557 observations) as an external validation dataset (R Core Team).
First, we performed penalized logistic regression using the glmnet R
package to select probes predicting the tumor status on the Se-
lection Set upsampled to correct the imbalance class distribution (9
normal versus 135 tumor specimens) (Friedman et al, 2010). Se-
lection was performed using all probes (signature_mixed including
PCA3) or using only new-lncRNA contigs only (signature_new-lnc)
(Fig S7). Second, we built predictors using the boosted logistic
regression from the caTools and caret packages (Kuhn, 2008;
Tuszynski, 2008). Note that the final gene subsets (signatures) do
not have coefficients computed on the Selection Set over the
Validation Set because in contrast to NanoString, the TCGA-PRAD
RNA-seq datasets are poly(A)–selected and unstranded. To build
the ROC curves, we sampled 100 datasets in two, for training (70%)
and testing (30%) preserving the relative ratio of labels in each. We
used boosted logistic regression with upsampling, setting the
number of boosting iterations to 100 and using leave-one-out cross
validation scheme on the training set. After training, we evaluated
the predictor on the testing set and repeated the procedure for
each one of the 100 training and testing sets described above to
obtain an average ROC curve, mean and SD for AUC scores. Contig
expression counts in the Validation Set (TCGA-PRAD) were obtained
as described above using the DE-kupl derived representative k-mer
for each contig. Quantifications based on 10 randomly sampled
k-mers per contig did not alter predictive performance (Fig S8C). To
build a classifier based on the conventional WGC procedure, we
used DESeq2 across the GENCODE annotation on the Discovery Set
and kept only up-regulated genes with adjusted P-value lower than
0.05 and Log2FC higher than 2. To perform gene selection on the
Discovery Set, we used LASSO penalized logistic regression com-
bined with stability selection. Only genes with probability above 0.5
on 2,000 up-regulated samples from the initial dataset were retained.
The remaining geneswere thenused to build ROC curves and compute
the mean and SD of the AUC on the Validation Set as described above
for the DE-kupl-derived representative k-mers. The results file, R
codes, and data tables are provided through the GitHub repository:
https://github.com/MorillonLab/Prostate-kmer-signatures.

Data access

Raw paired-end strand-specific RNA-seq data can be retrieved from
the gene omnibus portal, accession number GSE115414. TCGA prostate
cancer poly(A)–selected RNA-seq and corresponding clinical data can
be obtained from TCGA portal (https://www.cancer.gov/tcga).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900449.
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