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At least under some conditions, plaid stimuli are
processed by combining information first extracted in
orientation and scale-selective channels. The rules that
govern this combination across channels are only
partially understood. Although the available data
suggests that only components having similar spatial
frequency and contrast are combined, the extent to
which this holds has not been firmly established. To
address this question, we measured, in human subjects,
the short-latency reflexive vergence eye movements
induced by stereo plaids in which spatial frequency and
contrast of the components are independently varied.
We found that, although similarity in component spatial
frequency and contrast matter, they interact in a
nonseparable way. One way in which this relationship
might arise is if the internal estimate of contrast is not a
faithful representation of stimulus contrast but is instead
spatial frequency–dependent (with higher spatial
frequencies being boosted). We propose that such
weighting might have been put in place by a mechanism
that, in an effort of achieve contrast constancy and/or
coding efficiency, regulates the gain of detectors in early
visual cortex to equalize their long-term average
response to natural images.

Introduction

It has long been established that visual information
is initially processed in scale-selective channels (N.
Graham, 1989). As early as the retina, neurons are only
sensitive to signals that fall within a limited spatial
frequency (SF) bandwidth. In striate cortex, neurons
also become selective for stimulus orientation, further
partitioning the input into orientation channels (R. De

Valois & De Valois, 1988). This decomposition of the
visual input, akin to a localized Fourier (or wavelet)
decomposition, gives rise to an efficient coding scheme
(Field, 1999). However, because information from
separate channels often needs to be selectively com-
bined, it also poses a challenge for subsequent
processing.

Moving ‘‘plaids,’’ obtained by summing two drifting
one-dimensional (1-D) sinusoidal gratings having
different orientations, are the stimuli most often used to
study this process: With plaids, the speed and direction
of motion of the pattern is extracted by appropriately
combining information across different channels. A
similar process is required to compute the depth of
stereo plaids, which are obtained by summing two
static 1-D sinusoidal gratings with different binocular
disparity (Farell, 1998). In both cases, if the two 1-D
components are sufficiently different in spatial fre-
quency or contrast, a single coherent percept no longer
results, and two separate gratings are perceived
(transparency) as if information from the two channels
is no longer combined (Adelson & Movshon, 1982;
Farell, 1998).

We recently showed (Quaia, Sheliga, Optican, &
Cumming, 2013) that the reflexive, short-latency,
disparity vergence mechanism discovered by Busettini,
Masson, and Miles (1996) responds to the 2-D pattern
disparity of stereo plaids, sometimes even when the
plaid is not perceptually coherent (e.g., with square-
wave plaids). Importantly, our findings supported
Farell’s (1998) proposal that the 2-D pattern disparity
signal is computed by combining 1-D disparities, first
extracted within orientation-selective channels in area
V1 (Hubel & Wiesel, 1968), according to the intersec-
tion-of-constraints (IOC) rule (Adelson & Movshon,
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1982; Fennema & Thompson, 1979): Disparity-selective
2-D feature detectors are neither necessary nor
sufficient. Therefore, these eye movements provide a
powerful tool to explore the rules governing the
combination of components over a wide range of
stimuli.

Paralleling findings on the perceptual coherence of
stereo plaids, we previously reported that when the two
components have similar contrast they induce stronger
eye movements than when their contrast is different. We
argued that a mechanism of cross-orientation inhibition
(DeAngelis, Robson, Ohzawa, & Freeman, 1992; Mor-
rone, Burr, & Maffei, 1982), which would precede the
stage at which the two 1-D disparity signals are combined
to extract pattern disparity, could be responsible for this
behavior. We also observed that a robust vergence
response requires the two gratings to have similar SF as if
only 1-D signals of similar SF are combined. The full-
width-at-half-height (FWHH) bandwidth of this opera-
tion was approximately two octaves, which is within the
range of SF bandwidth observed in monkeys in V1 (R.
De Valois & De Valois, 1988) and in middle temporal
(MT) cortex (Priebe, Lisberger, &Movshon, 2006; Wang
& Movshon, 2016). We argued that these data are
compatible with a second model stage, replicated at all
scales, in which only oriented filters having the same
spatial scale are combined.

Because this two-stage model predicts that the effects
of frequency and contrast are separable, stimuli that
differ in both contrast and spatial frequency provide a
stronger test of our hypothesis. We measured the
disparity vergence responses (DVRs) to such stimuli in
three human subjects and found that separability does
not hold: When the contrast of one component is
increased, the pattern computation breaks down unless
the SF of this component is lowered. This interaction
between stimulus contrast and SF implies that our
proposed model needs to be considerably revised. We
show that our results can be reproduced if (a) the
internal estimates of component contrast do not
faithfully encode actual contrast but are instead biased
in a SF-dependent manner (with high SFs being
boosted relative to low SFs at least within the range of
SFs tested in our experiment) and (b) the combination
spans multiple channels. We suggest that this SF-
dependent weighting might result from a mechanism
that regulates the gain of each SF channel in an effort
to achieve contrast constancy (i.e., to correctly estimate
stimulus contrast irrespective of SF; Blakemore,
Muncey, & Ridley, 1973; Bowker, 1983; Bryngdahl,
1966; Georgeson & Sullivan, 1975; Kulikowski, 1976;
Stephens & Banks, 1985; Swanson, Georgeson, &
Wilson, 1988; Watanabe, Mori, Nagata, & Hiwatashi,
1968) and/or to whiten the spectral representation of
natural images (Atick & Redlich, 1992; Barlow, 2001;
Brady & Field, 1995, 2000; Field, 1987; Field & Brady,

1997; Simoncelli & Olshausen, 2001) but fails to do so
uniformly across the entire SF spectrum.

Whether the processing of moving plaids is based on
similar computations remains to be seen. We have
recently reported (Quaia, Optican, & Cumming, 2016)
that, at least as far as the eye movement responses to
unikinetic plaids are concerned, the mechanisms used
for extracting pattern velocity from moving plaids
might be quite different from those used for extracting
pattern disparity from stereo plaids. Nevertheless, if the
nonseparability reported here reflects processes occur-
ring in V1, as we suggest, it should presumably affect
all later computations based on these signals, thus
including the extraction of pattern motion from moving
plaids.

Methods

The methodology used to acquire the data presented
here is identical to that used in our previously published
study (Quaia et al., 2013). Accordingly, it will only be
described briefly here.

We used the eye search coil technique (Collewijn,
van der Mark, & Jansen, 1975) to record binocular
horizontal and vertical eye position from three male
subjects (one author). All subjects had normal or
corrected-to-normal visual acuity and normal stereo-
acuity. All protocols were approved by the Institutional
Review Board concerned with the use of human
subjects. Our research was carried out in accordance
with the Code of Ethics of the World Medical
Association (Declaration of Helsinki), and informed
consent was obtained for experimentation with human
subjects.

Experiments were carried out in a dark room, and
the subject’s head was stabilized using chin and head
rests. In each trial, the subject fixated a central cross
superimposed on a gray background (20.8 cd/m2).
After 800–1100 ms, a stimulus suddenly appeared and
remained visible for 200 ms. Subsequently, the screen
turned gray (20.8 cd/m2), signaling the end of the trial.
Stimuli were unidisparity plaids formed by summing a
vertical sinusoidal grating having 6908 of phase
disparity and an oblique (6458) sinusoidal grating
having zero disparity. The stimuli were static although
we have no reason to believe that dynamic stimuli (i.e.,
stimuli in which the monocular phase of the gratings is
changed randomly in each frame while keeping the
binocular phase difference constant) would have
resulted in different responses. All stimuli spanned 428
horizontally and 328 vertically and were presented
dichoptically on two CRT monitors (part of a Wheat-
stone mirror stereoscope). They had a mean luminance
of 20.8 cd/m2; the contrast and spatial frequency of
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each of the two gratings were manipulated indepen-
dently.

All measures reported here are based on vergence
velocity, which was obtained by differentiating eye
position traces to obtain velocity signals for each eye
and by subtracting the velocity from the two eyes.
Trials with saccadic intrusions or poor fixation were
discarded using an automatic procedure for the
detection of outliers. Average vergence velocity traces,
time-locked to stimulus onset, were then computed
from the remaining trials. To quantify the strength of
the response, we computed the mean vertical vergence
velocity in a time window (75–120 ms for CQ, 80–120
ms for the other two subjects) that extended from the
shortest onset latency of the vertical vergence response
to twice the shortest onset latency of the horizontal
vergence response (which determines the end of the
open-loop period). We call this measure the pattern
disparity response (PDR). All results and analyses
reported are quite insensitive to 10- to 20-ms changes to
window beginning and/or duration. Idiosyncratic
components of the response related to fixation disen-
gagement were removed by computing the difference
between the vergence response to stimuli having
opposite disparity (i.e., stimuli in which the images seen
by the two eyes are swapped). Nonparametric boot-
strap methods were used for all statistical analyses.

Two descriptive models were developed (see Results)
and were fit to the data using a multiobjective genetic
algorithm (Goldberg, 1989; van Soest & Casius, 2003)
under the optimization software package mode-
FRONTIER (Esteco, Trieste, Italy). The algorithm was
initialized using a Sobol quasirandom sequence; each
generation had 400 individuals, and evolution spanned
50 generations. The model had nine parameters, and
nine error measures were defined, which were then
consolidated into two objectives to be minimized (see
Results). Each error measure was computed as the
mean of the deviation between model prediction and
each data point, divided by the standard error of the
mean (SEM) of the data point (i.e., the mean Z score)
across the data points that contributed to the error
measures. Next, we divided these measures into two
groups: one with the six error measures capturing
deviations for location or magnitude of a peak and the
other with the error measures related to tuning
bandwidth. We then defined two optimization objec-
tives, Opeak and Obw, as the maximum value within each
group of error measures. The algorithm thus sought to
minimize simultaneously the worse error within each
group. The outcome of the optimization was then a set
of designs (i.e., parameter sets) on the Pareto front (i.e.,
designs for which no other design could be found with a
lower value for both objectives). Finally, we selected as
the ‘‘best’’ design the one with the lowest value for the
weighted sum of the two objectives with a weight of 0.7

for Opeak and a weight of 0.3 for Obw (thus weighting
more the peak measures).

Results

Unidisparity plaids (Quaia et al., 2013) are ideal
stimuli to study pattern disparity computations. They
are obtained by summing two gratings (typically
sinusoidal or 1-D noise): one vertical with near or far
disparity and one oblique (6458) with zero disparity
(i.e., in the plane of fixation). We previously showed
that when a unidisparity plaid is suddenly presented to
a human subject, a very short latency (,65 ms)
vergence response is elicited. Initially, the response is
purely horizontal with a sign that is determined by the
disparity of the vertical grating (near disparities induce
convergence, far disparities induce divergence). After
10–15 ms, a vertical vergence component of the
response also emerges. The sign of this delayed
component is a function of the sign of the disparity of
the vertical grating and the orientation of the oblique
grating in accordance with the IOC rule (Adelson &
Movshon, 1982; Fennema & Thompson, 1979). This
late component is the signature of the pattern disparity
computation and the focus of our study. We quantify
this component by computing the average vertical
vergence velocity in a time window (see Methods for
details); we call this measure the PDR. We found that
when the two gratings have the same contrast, the PDR
is maximal when the two gratings have similar SF and
decreases as their difference increases (Quaia et al.,
2013). The relationship between PDR and relative SF is
well captured by a log-Gaussian curve with a FWHH
bandwidth of approximately two octaves. However, we
now report that this relationship varies as a function of
the relative contrast of the two gratings.

In the experiments presented here, the SF of the
vertical sinusoidal grating, which had a phase disparity
of 6908, was always 0.354 c/8, and its Michelson
contrast was always 20%. The SF of the zero-disparity
oblique sinusoidal grating was varied between 0.088 c/8
and 1.414 c/8 in half-octave steps; its Michelson
contrast was varied between 7.07% and 56.6%, again in
half-octave steps.

In Figure 1A, we show seven tuning curves, one for
each contrast of the oblique grating (see legend) as a
function of the SF of the oblique grating. The location
of the peak (peak SF) of each tuning curve varies as a
function of the contrast of the oblique grating:
Decreasing (increasing) the contrast of the oblique
grating results in an increase (decrease) of the peak SF.
The relationship between contrast and peak SF is
captured quite well by a linear fit on a log–log scale
(Figure 1B). In all three subjects, the slope is

Journal of Vision (2017) 17(3):21, 1–13 Quaia, Optican, & Cumming 3



significantly (p , 0.001) smaller than zero: JH:�0.37 6
0.04, BMS: �0.32 6 0.02, CQ: �0.32 6 0.04.

Modeling the PDR

Across our previously described (Quaia et al., 2013)
and current experiments, there are several factors that

consistently contribute to determining the strength of
the PDR induced by unidisparity plaids. The major
factors are the relative SF and the relative contrast of
the two gratings, which, as we have shown here,
interact. However, a role is also played by the absolute
contrast of the two gratings as responses generally
increase with overall contrast. Furthermore, the abso-
lute SF of the grating also matters as only a limited

Figure 1. PDR to unidisparity plaids with unequal SF and contrast. The SF of the oblique grating associated with the strongest response

varies as a function of the contrast of the oblique component. (A) PDR in each of the three subjects. Each curve (log-Gaussian fit to

the data) shows the magnitude of the PDR (6SEM) for different values of the SF of the oblique grating for one contrast of the oblique

grating (see legend). SF and contrast of the vertical grating are always the same. Dashed line indicates SF of the vertical grating.

Horizontal line indicates zero response. The scale is different in the three subjects so that the axis top corresponds to 0.9 8/s for BMS,

0.32 8/s for CQ, and 0.58 8/s for JH. (B) The peak of each curve fit in panel A shifts to lower SFs as the contrast of the oblique grating

increases. Linear fit in log–log coordinates is shown. Dashed lines indicate SF and contrast of vertical grating.
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range of SFs is effective in inducing PDRs—and DVRs
in general (Miura et al., 2008; Sheliga, FitzGibbon, &
Miles, 2006).

To capture all of these effects, we developed a
descriptive model, which uses as input the contrast and
SF of each of the two gratings and produces as output
the PDR. First, the Michelson contrast cO of the
oblique grating (the one with zero disparity) is
converted into an effective contrast eO, using the
following Naka-Rushton equation:

eO ¼
cnO

cnO þ cn50
: ð1Þ

The Michelson contrast cV of the vertical grating (the
one with disparity) is similarly converted into an
effective contrast eV, using the following equation:

eV ¼
ðcV þ cbÞn

ðcV þ cbÞn þ cn50
: ð2Þ

The parameter cb (where b stands for boost) is used
here to account for the observation that when the two
gratings have the same SF, the strongest PDR is
measured not when they have the same contrast but
rather when the oblique grating has a somewhat larger
contrast (Quaia et al., 2013). We tentatively attributed
this phenomenon to an internal boost of the vertical
grating signal, applied by the brain to compensate for
the fact that, because this grating has a fairly large
disparity (18), presumably it would not be in focus in
natural viewing, reducing its apparent contrast. Mul-
tiplying cV, or directly the entire function, by a number
slightly larger than one would most likely be similarly
effective (the few data points sensitive to this parameter
poorly constrain the mechanism involved). Note that in
our experiments all stimuli are physically presented in
the plane of fixation and are thus in focus; disparity is
artificially introduced using a mirror stereoscope.

Our previous results could then be accounted for by
simply taking the sum of the two effective contrasts and
multiplying it by four Gaussian functions:

PDR ¼ eV þ eOð Þ e�
ðeV�eOÞ2

2a2 e
�ðlog10ðSFVÞ�log10ðSFOÞÞ2

2b2

e
�ðlog10ðSFVÞ�log10ðlÞÞ2

2c2 e
�ðlog10ðSFOÞ�log10ðlÞÞ2

2c2 ; ð3Þ
where SFV is the SF of the vertical grating, and SFO is
the SF of the oblique grating. The dispersion param-
eters a and b determine how rapidly the PDR decreases
as differences in contrast and SF (respectively) are
introduced between the two gratings. l is the SF
associated with the strongest pattern vergence response
when the two gratings have the same SF and effective
contrast, and the dispersion parameter c accounts for
how the PDR decreases as the SF of either grating
deviates from this value.

Because Equation 3 is separable in SF and contrast,
this model does not account for the dependency of the
PDR on the joint value of SF and contrast and thus
needs to be modified to reproduce the data reported
here. As noted above, the pattern computation
mechanism does not have access to the actual contrast
of the components (cV and cO) but must instead rely on
an internal estimate of it (eV and eO). In Equations 1
and 2, we assumed that this estimate is not dependent
on SF, but this is not necessarily true. For example, it is
well known that at detection threshold this internal
estimate of contrast is far from faithful as demon-
strated by the strong dependency of the contrast
sensitivity function on SF, luminance, and spatial
location (Campbell & Green, 1965; Daitch & Green,
1969; Georgeson & Sullivan, 1975; Hilz & Cavonius,
1974). At higher contrast, this estimate becomes less
dependent on SF, but absolute contrast constancy is
not achieved (Georgeson & Sullivan, 1975). It is thus
conceivable that the internal estimate of contrast is
biased in a SF-dependent manner, and this might
account for our results. We present here two different
ways to introduce this bias in internal contrast
estimation. In the first one, which we dub model E (for
early), we simply scale the effective contrast of each
component by a factor k that increases with its SF
separately for each component (i.e., high SFs are
boosted relative to low SFs). Assuming that the scaling
factor k increases linearly, in a log–log scale, with SF,
we thus defined

xVE ¼ eV ek logðSFV=2:0Þ

xOE ¼ eO ek logðSFO=2:0Þ

In this formulation, the scaling factor is unitary
when the SF is 2 c/8; because all the SFs used in our
experiment are lower, in our simulations, the scaling
factor is always smaller than one. The PDR in the
overall model E is then estimated by replacing eV and
eO with xVE and xOE in Equation 3.

In the second one, which we call model L (for late),
we instead introduced reciprocal inhibition between the
two effective contrasts and modulated the strength of
this inhibition using the difference in SF between the
two gratings so that the grating with the higher SF
inhibits the one with the lower SF more strongly than
vice versa. Assuming that the strength of inhibition
varies linearly with the difference in log10 (SF), we thus
defined

xVL ¼ eV � eO Tþ k log10ðSFVÞ � log10ðSFOÞð Þ½ �b c
xOL ¼ eO � eV Tþ k log10ðSFOÞ � log10ðSFVÞð Þ½ �b c

where b c indicates that negative values are set to zero.
The PDR in model L is then estimated by replacing eV
and eO with xVL and xOL in Equation 3. There is one
final parameter, present in both models, to scale the
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output of the model to best match the amplitude of the
eye movements. This can be seen as a visuomotor gain
and is not part of the optimization (for each set of
parameters, the scaling value that results in the best fit
to the data is computed through regression).

The models thus have either eight (model E) or nine
(model L) parameters, many of which are well
constrained only if the models are also fit to the data
from our previous experiments. Two data sets are
particularly useful: how the PDR varies as a function of
SFO for different values of SFV (Figure 2A) and how
the PDR varies as a function of cO for different values
of cV (Figure 2B). Note that these data are available
only for two of the three subjects as a different third
subject participated in our previous study.

Running an optimization algorithm with eight or
nine parameters to directly minimize a single error
function on such a large number of data points (111 for

BMS and CQ, 63 for JH) is almost guaranteed to result
in a poor outcome (because of the large number of local
minima across the design space). Instead, we extracted
the parameters of the fits showed in Figures 1A and 2
and optimized the model parameters to reproduce
those fits. The data in Figure 1A are well fit by log-
Gaussian functions, from which we extracted the
location of the peak (already showed in Figure 1B), the
dispersion (measured in octaves), and the height of the
peak. The dependence of these parameters on the
contrast of the oblique grating is shown in the top row
in Figures 3 and 4 and in Figure 5. The data in Figure
2A were also well fit by log-Gaussian functions from
which we extracted the same parameters. Their
dependency on the SF of the vertical grating is shown
in Figures 3 and 4, middle rows. The contrast data
(Figure 2B) is more difficult to handle. Because of the
limited range tested, well-constrained log-Gaussian fits

Figure 2. PDR to unidisparity plaids with unequal SF or contrast. (A) PDR in two subjects when the SF of the two gratings is varied and

the contrast is the same (32%). Each curve shows the magnitude of the PDR (6SEM) for different values of the SF of the oblique

grating, for one SF of the vertical grating (see legend). Horizontal line indicates zero response. The scale is different in the two

subjects so that the axis top corresponds to 0.8 8/s for BMS and 0.4 8/s for CQ. (B) PDR in two subjects when the contrast of the two

gratings is varied and the SF is the same (0.25 c/8). Each curve shows the magnitude of the PDR (6SEM) for different values of the

contrast of the oblique grating for one contrast of the vertical grating (see legend). Horizontal line indicates zero response. The scale is

different in the two subjects so that the axis top corresponds to 0.9 8/s for BMS and 0.35 8/s for CQ.
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are only available for two of the curves (cV of 10% and
20%, yellow and gray curves), and thus, we extracted
location of the peak and width from those fits. Their
dependency on the contrast of the vertical grating is
shown in the bottom row, left and center columns, in
Figures 3 and 4. To cover a wider range of contrasts,
instead of fitting the maximum response for those two
fits, we simply fit the model directly to the PDR
produced when the two gratings have the same contrast
(four data points, shown in the bottom row, right
column, in Figures 3 and 4).

By relying on these summary data, we considerably
reduced the number of data points to be fit (41 for BMS
and CQ, 21 for JH). Furthermore, we could now easily
extract nine error measures, one for each panel in
Figures 3 and 4, which were then used as minimization
targets in a multiobjective algorithm (see Methods).
Because of the more limited data available, in subject
JH the optimization was further constrained by setting
the values of cb, a, and c to the average values obtained
for the other two subjects (these parameters are only

minimally constrained by the data available for this
subject).

The colored lines (orange: model E; blue: model L)
in Figures 3 through 5 show the results of the
optimization for our three subjects (model parameters
used can be found in Tables 1 and 2 for models E and
L, respectively). The models performed remarkably
well for all subjects and in most conditions with only
very few conditions in which the discrepancy between
model and data was larger than 1 SEM of the data
(indicated by the error bars in the figures). The late
model generally performed better than the early model,
but this model also has one more parameter and so it
might be expected to do so (even though this is not
strictly necessary because the two models are not
nested). There are ways to quantify which might be the
‘‘better’’ model (e.g., by computing Akaike’s informa-
tion criterion or other goodness-of-fit measures that
account for the number of parameters in the model),
but our goal here is only to highlight that the same

Figure 3. Model fits for subject BMS. Data (black circles, mean 6 SEM) and model fits (orange lines for model E, blue lines for model

L) to the experimental results presented in Figure 1A (top row), Figure 2A (middle row), and Figure 2B (bottom row). The numbers in

each panel indicate, for each model, the error (average z score) on that data set, a measure of goodness of fit (lower is better).
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overall result can be obtained invoking quite different
mechanisms. Trends in tuning width (central column in
the figures) were the least well captured, but they were
also the least consistent across subjects, and hence, we
did not feel that it was warranted to add additional
parameters to the models to better account for them.
Note that with any multiobjective optimization algo-
rithm there is not a single way to identify an overall
best design. We used a procedure that less heavily

weighted tuning width (see Methods). In general, we
found that all designs producing good fits had very
narrowly clustered values for most parameters (c50, n,
cb, a, b, l, and c). However, in model L, parameters k
and T were more variable and generally negatively
correlated (i.e., to some extent, they could be traded off
against each other). This might explain, at least in part,
the relatively large scatter for these parameters across
subjects.

Figure 4. Model fits for subject CQ. Same format as in Figure 3.

Figure 5. Model fits for subject JH. Data (black circles) and model fits (orange lines for model E, blue lines for model L) to the

experimental results presented in Figure 1.

Journal of Vision (2017) 17(3):21, 1–13 Quaia, Optican, & Cumming 8



Discussion

We recorded vergence eye movements in humans to
further refine our understanding of how components
are combined to extract pattern disparity from stereo
plaids. We found that the SF and contrast of the two
gratings jointly determine the magnitude of the
vergence responses in a nonseparable manner and
presented two simple mathematical models that well
describe these findings (as well as our previous results).
These nonseparable responses further reveal that the
pattern disparity mechanism combines filters spanning
a broader range of SFs than we had previously
reported. We had concluded, based on the data shown
in Figure 2A and in the central panel of Figures 3 and
4, that the range of SFs over which components are
effectively combined (i.e., the relative FWHH SF
bandwidth of the mechanism) spanned approximately
two octaves. When combinations across different
values of contrast (i.e., different tuning curves in Figure
1) are considered, it becomes clear that we underesti-
mated this measure. The FWHH bandwidth can thus
be estimated from the data in Figure 1 by taking the
ratio between the outside half-height points of the
tuning functions associated with the lowest and highest
contrast of the oblique grating. The relative bandwidth
is then significantly larger than we previously reported:
three octaves in BMS, 3.87 octaves in CQ, and 3.3
octaves in JH. This appears to be broader than the
average width of a SF channel (Anderson & Burr, 1989;
R. De Valois & De Valois, 1988), but it is certainly not
outside the range normally observed in monkey striate
cortex neurons (Wang & Movshon, 2016). Neverthe-
less, the nonseparability of the effects of contrast and
SF implies that, in extracting pattern disparity,
information must be pooled across different scale
channels (somehow weighted according to their pre-
ferred SF). This is because the output of any single
channel is a separable function of SF and contrast, so
changes in peak frequency as a function of SF, like
those shown in Figure 1, cannot arise from combining
two single channels (one for each orientation). For each
orientation, neurons tuned to multiple SFs must
participate in the extraction of plaid disparity.

The nonseparable interaction of SF and contrast
could emerge in many different ways. We explored two

descriptive models although other formulations are
certainly possible. Both models assume that compo-
nents are combined based on the similarity of their SFs
and the internal estimate of their contrasts. The
combination is itself separable, but the internal contrast
estimates vary with SF, thus bringing about the
nonseparable interaction between SF and physical
contrast. Combining components based on their
similarity makes sense because, obviously, components
should be combined (according to the IOC rule) only if
they belong to the same object, and it is unlikely that
components with very different contrasts or SF belong
to the same object. This argument is not original: It has
been used before to explain why differences in contrast
or SF result in a breakdown in perceptual coherence for
drifting plaids (Adelson & Movshon, 1982). Under
these hypotheses, a strong sensitivity of the PDR to
differences between the brain’s estimates of the SF and
contrast of the 1-D components is to be expected.

We had previously reported that when the two
components have the same SF, the strongest response is
observed when the zero-disparity grating has a higher
contrast (Figure 2B). We argued that this might result
from an internal boosting of the response of the filter
that responds to the grating with disparity. Such
boosting may in fact produce a more accurate estimate
of the contrast of that component because, under
natural conditions, a grating with such a large disparity
would be out of focus. We thus suggested that, as a
result of the optical properties of the eye, stimulus
disparity might be taken into account when estimating
contrast. With the two models that we present here, we
now consider another factor that might play a part in
how the brain computes its internal estimate of
component contrast: SF. In the two models, the
dependency of the internal estimate of contrast on SF
arises in different ways. If we were to interpret the
models in the context of a multichannel scheme, in the
first (‘‘early’’) model the contrast gain varies with the
preferred SF of the channel (channels tuned to lower
SF having lower gain) independently for the two
gratings (i.e., orientations). In the second (‘‘late’’)
model, mutual inhibition between the 1-D filters that
detect the two gratings—with stronger inhibition from
channels tuned to high SFs to those tuned to low SFs—
is responsible for the nonseparability. Both models fit
the data well but do not speak to the reason for

Subject c50 n cb a b l c k T

BMS 16 1.3 3.0 0.27 0.32 0.39 0.53 0.45 0.10

CQ 22 1.2 3.0 0.28 0.40 0.31 0.54 0.32 0.25

JH 16 0.8 3.0* 0.275* 0.43 0.20 0.535* 0.50 0.50

Table 2. Model L fits parameters. Notes: Parameters with an
asterisk were not optimized but set to the mean value for the
other subjects.

Subject c50 n cb a b l c k

BMS 17 1.2 3.0 0.14 0.32 0.34 0.54 0.24

CQ 21 1.2 3.0 0.14 0.39 0.26 0.58 0.26

JH 12 1.2 3.0* 0.14* 0.45 0.2 0.56* 0.28

Table 1. Model E fits parameters. Notes: Parameters with an
asterisk were not optimized but set to the mean value for the
other subjects.
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introducing a SF dependency in computing the internal
estimate of contrast.

One possible explanation, given the properties of
early visual processes and of visual stimuli in nature, is
that the interaction between SF and contrast may be a
by-product of a mechanism that equalizes the long-
term average response of neurons tuned to different
spatial frequencies, the so-called response equalization
hypothesis (D. Graham, Chandler, & Field, 2006). The
idea that such a mechanism might operate at the level
of cortical (or even subcortical) visual neurons has been
put forward both as a means of achieving contrast
constancy (i.e., to correctly estimate stimulus contrast
irrespective of SF) and as a way of guaranteeing that
neuronal resources are efficiently used given the
properties of the stimuli to which we are naturally
exposed.

It is well known that, because of optical and neural
constraints, the sensitivity of the visual system (i.e., the
inverse of the contrast at detection threshold) varies
widely with SF, luminance, and spatial location
(Campbell & Green, 1965; Daitch & Green, 1969;
Georgeson & Sullivan, 1975; Hilz & Cavonius, 1974).
Because sensitivity depends on the ratio between signal
and noise, not much can be done to remove these
dependencies. At higher contrast, when the noise
becomes a small fraction of the signal, contrast
estimates can, however, be made less dependent on
these nuisance parameters (i.e., contrast constancy can
be achieved) by simply appropriately adjusting the
gain. At moderate-to-high contrasts, human vision
comes close to achieving this property (Blakemore et
al., 1973; Bowker, 1983; Bryngdahl, 1966; Georgeson &
Sullivan, 1975; Swanson et al., 1988; Watanabe et al.,
1968) although not before the 12th week of life
(Stephens & Banks, 1985). Georgeson and Sullivan
(1975) proposed that, to achieve contrast constancy,
the gain of each channel could simply be adjusted so
that, over a long period of time, each channel is equally
active on average. Based on additional findings, they
further suggested that this gain regulation would be
applied to orientation-sensitive channels and thus at the
cortical level.

However, the extent to which contrast constancy is
achieved varies across the SF spectrum, being better
for high (above 2 c/8) than for low SFs (Georgeson &
Sullivan, 1975). We suggest that this partial failure at
low SFs might be responsible for the interaction
between SF and contrast that we unveiled in our
experiments (in which, notably, all the stimuli had a
SF lower than 2 c/8). To understand why this might
happen, one needs to consider the biological substrate
of the SF channels considered by the contrast
constancy theory and the distribution of contrast
across SFs in natural images—factors that are the
basis for the coding efficiency theory of response

equalization. It is well known (R. De Valois & De
Valois, 1988) that V1 neurons respond well only to a
limited band of SFs and that their SF tuning curve is
generally well described as a log-Gaussian function
(i.e., symmetric in log-SF space, not in linear SF
space). Assuming a constant bandwidth (in log-SF
space), if stimulated with a white noise pattern (i.e., a
stimulus with a flat spectrum in linear SF space),
neurons tuned to high SFs would be stimulated much
more strongly than neurons tuned to low SFs.
However, in the natural world, the spectrum of SFs is
not flat and follows a 1/f distribution: On average,
contrast energy decreases as SF increases. Neurons
with a log-Gaussian tuning function and fixed
bandwidth for SF are a good match for this type of
energy distribution: If presented with natural images,
neurons of this type tuned to different SFs would, on
average, be equally stimulated (Brady & Field, 1995;
Field, 1987). Put another way, such neurons effec-
tively boost high SFs, which are relatively under-
represented in natural images, resulting in a whitening
of the spectrum and an efficient use of resources
(Atick & Redlich, 1992; Barlow, 2001; Brady & Field,
1995, 2000; Field, 1987; Field & Brady, 1997; D.
Graham et al., 2006; Simoncelli & Olshausen, 2001).
The log-Gaussian tuning of early visual neurons can
then be seen as a developmental adaptation to the
statistics of the visual environment, one of the many
that have been proposed (Boots, Nundy, & Purves,
2007), which can be brought about by a mechanism of
response equalization (easily implemented neurally as
an unsupervised learning rule).

To see why this scheme might fail at low SFs, one
needs to consider that the SF bandwidth of cortical
neurons is constant only in channels tuned to high SFs.
For channels tuned to less than about 2 c/8, bandwidth
increases as the preferred SF decreases (Anderson &
Burr, 1985, 1987, 1989; R. De Valois, Albrecht, &
Thorell, 1982; Fiorentini, Pirchio, & Spinelli, 1983;
Furchner, Thomas, & Campbell, 1977; Kulikowski &
Bishop, 1981; Stromeyer, Klein, Dawson, & Spillmann,
1982; Wilson, McFarlane, & Phillips, 1983). This
probably reflects a physical limitation: To keep the
bandwidth constant, the size of the detectors would
have to keep increasing as the preferred SF is reduced,
which would require unrealistically large receptive
fields for low SFs. Accordingly, when presented with
natural images, low SF channels would be stimulated
(on average) more strongly than high SF channels. A
learning rule that adjusted gain based on long-term
average activity would then reduce the gain of low SF
channels with the gain inversely proportional to the
bandwidth of the channel. We propose that the
stronger weight given to high SF components (relative
to low SF components) in our models reflect these
unequal gains.
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This hypothesis maps naturally into one of the two
models we proposed above (the early model). Fur-
thermore, with this model it is straightforward to test
this hypothesis quantitatively: The scaling factor k in
our model should match the dependency of bandwidth
on SF when expressed as a slope in log–log coordinates,
and indeed it does. In our model, the best fitting values
for this parameter (see Table 1) are 0.24 (BMS), 0.26
(CQ), and 0.28 (JH); Anderson and Burr (1989) have
reported that, in their two subjects, the bandwidth
decreases at a rate of 0.26 octaves per octave of spatial
frequency for SFs up to 2 c/8 and is constant for higher
SFs. This quantitative agreement makes it tempting to
interpret our experiments as a confirmation of the
response equalization rule proposed by Georgeson and
Sullivan (1975) for achieving contrast constancy.
However, because we obtain equally good fits with an
alternative model, this is not a strong test of their
hypothesis.

Even the interactions between spatial frequencies
present in our ‘‘late’’ model can be interpreted within
the same framework. In that model, it is mutual
inhibition between different scales that accounts for the
nonseparability we observed, but the overall effect on
contrast gain control is similar. There is considerable
evidence to support such cross-scale reciprocal inhibi-
tion in both humans and experimental animals
(Albrecht & De Valois, 1981; K. De Valois & Tootell,
1983; McCourt & Foley, 1985; Movshon, Thompson,
& Tolhurst, 1978; Tolhurst, 1972). Notably, an
asymmetry, with high SFs exerting stronger suppres-
sion than low SFs, has been reported (Albrecht & De
Valois, 1981; K. De Valois & Tootell, 1983) just as
required by the model. Importantly, achieving contrast
constancy has been proposed as a potential role for
such asymmetric high-on-low SF inhibition (McCourt
& Foley, 1985).

Regardless of the exact mechanism, the joint
dependency on SF and contrast that we reported here
might reflect the brain’s attempt to correctly infer the
contrast of stimuli in the visual world across the entire
SF spectrum despite the limited size of neuronal
receptive fields.

Conclusions

The idea that the components of sinusoidal plaid
stimuli are simply combined according to their
similarity in SF and physical contrast holds only as a
first order approximation. When the effects of SF
variations are measured at different contrasts, it
becomes apparent that the pattern response component
of the DVRs is a nonseparable function of contrast and
SF. We show that this can be explained if the brain’s

internal estimate of physical contrast is affected by SF.
Although puzzling at first sight, such a dependency
between contrast and SF might be simply the side effect
of a mechanism tasked with correctly and efficiently
inferring contrast energy in natural images given the
constraints on wiring in the early stages of the visual
system.

Keywords: pattern disparity, vergence eye movements,
contrast constancy, natural images, whitening
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