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Muscle-driven simulations have been widely adopted to study muscle-tendon

behavior; several generic musculoskeletal models have been developed, and

their biofidelity improved based on available experimental data and

computational feasibility. It is, however, not clear which, if any, of these

models accurately estimate muscle-tendon dynamics over a range of

walking speeds. In addition, the interaction between model selection,

performance criteria to solve muscle redundancy, and approaches for

scaling muscle-tendon properties remain unclear. This study aims to

compare estimated muscle excitations and muscle fiber lengths, qualitatively

and quantitatively, from several model combinations to experimental

observations. We tested three generic models proposed by Hamner et al.,

Rajagopal et al., and Lai-Arnold et al. in combination with performance criteria

based on minimization of muscle effort to the power of 2, 3, 5, and 10, and four

approaches to scale the muscle-tendon unit properties of maximum isometric

force, optimal fiber length, and tendon slack length. We collected motion

analysis and electromyography data in eight able-bodied subjects walking at

seven speeds and compared agreement between estimated/modelled muscle

excitations and observed muscle excitations from electromyography and

computed normalized fiber lengths to values reported in the literature. We

found that best agreement in on/off timing in vastus lateralis, vastus medialis,

tibialis anterior, gastrocnemius lateralis, gastrocnemiusmedialis, and soleus was

estimated with minimum squared muscle effort than to higher exponents,

regardless of model and scaling approach. Also, minimum squared or cubed

muscle effort with only a subset of muscle-tendon unit scaling approaches

produced the best time-series agreement and best estimates of the increment

of muscle excitation magnitude across walking speeds. There were

discrepancies in estimated fiber lengths and muscle excitations among the

models, with the largest discrepancy in the Hamner et al. model. The model

proposed by Lai-Arnold et al. best estimated muscle excitation estimates
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overall, but failed to estimate realistic muscle fiber lengths, which were better

estimated with the model proposed by Rajagopal et al. No single model

combination estimated the most accurate muscle excitations for all muscles;

commonly observed disagreements include onset delay, underestimated co-

activation, and failure to estimate muscle excitation increments across walking

speeds.

KEYWORDS

musculoskeletal modeling, optimal control, muscle-tendon parameter, performance
criteria, EMG, fiber length

Introduction

Neuromusculoskeletal modeling enables the study of

individual muscle-tendon unit (MTU) behavior, joint

kinematics, dynamics, and neuromuscular control strategies by

non-invasive means. Simulation studies have provided insights

into the MTU mechanics in able-bodied individuals (Heintz and

Gutierrez-Farewik, 2007; Hamner et al., 2010; Arnold et al., 2013;

Swinnen et al., 2019; Delabastita et al., 2020), and in individuals

with disabilities in unassisted motions (Krogt et al., 2016) and

with the support of assistive devices (Lotti et al., 2020). A realistic

representation of MTU behavior depends on adequately

modeling skeletal anatomy and muscle architecture and

decoding neuromuscular control. The most challenging aspect

is to perform in vivo measurements, i.e., muscle and ligaments

properties (Charles et al., 2019a), anatomical degrees of freedom

(Zandbergen et al., 2020), or muscle dynamics, and to validate

them with experimental observations (Hicks et al., 2015). As

such, simplifications of the neuromusculoskeletal system are

necessary. Consequently, it is critical to review and refine

these methods to gain confidence in their use.

Neuromusculoskeletal modeling integrates musculoskeletal

modeling, which describes the mechanics of the human

biological system, and neuromuscular control, which

synthesizes the principles for controlling such a system.

Musculoskeletal models incorporate a description of the bone

geometry, degrees of freedom, and body-segment physical

properties: mass, inertia, and center of mass, and muscle

geometry, architecture, and dynamics. Muscle dynamics is

subdivided into activation and contraction dynamics (Zajac,

1989). Activation dynamics describes the relationship between

the motor unit discharges from the nerve to the muscle, muscle

excitation, and the concentration of calcium ions within the

intracellular space, muscle activation. Contraction dynamics

describes the force-generating capacity of the muscle and the

behavior of connective tissue: tendon and aponeurosis and is

commonly represented by a Hill-type model. This model

includes parameters such as maximum isometric force (MIF),

maximum contraction velocity (MCV), optimal fiber length

(OFL), pennation angle (PA) at OFL, and tendon slack length

(TSL). Muscles’ contractions are mainly responsible for the

development of skeletal motion. However, their coordination

pattern is not trivial as human movement is highly redundant;

there are more muscles than degrees of freedom. To address this

redundancy in neuromuscular control, it is typically assumed

that human movement control is governed through optimizing

some performance criterion. Therefore, muscle controls are

estimated by solving an optimization problem. Different

performance criteria, e.g., minimal muscle activation, joint

force, metabolic demand, etc., have been proposed to solve for

individual muscle forces (Heintz and Gutierrez-Farewik, 2007).

The combination of musculoskeletal models and optimal control

provides a framework for investigating MTU behavior

underlying an observed movement pattern.

A series of generic musculoskeletal models have been

proposed in previous decades, but a comprehensive

comparison of how model choice influences the estimation of

underlying muscle excitations involved in movement is lacking.

Musculoskeletal models have progressively increased their

physiological fidelity, initially developed from cadaveric

databases, and currently integrating in vivo observation of

MTU characteristics through biomedical imaging and

computational optimization techniques. Several generic

musculoskeletal models have been revised, updated, and

implemented in biomechanical modeling and simulation

software, such as OpenSim. Frequently used models include

those by Delp et al. (Delp et al., 1990), Hamner et al.

(Hamner et al., 2010), Arnold et al. (Arnold et al., 2010),

Rajagopal et al. (Rajagopal et al., 2016), and Lai et al. (Lai

et al., 2018). In pioneering work, Delp et al. (Delp et al.,

1990) formulated a lower limb model with MTU parameter

values mainly obtained from five cadavers and TSL estimation

from the model itself. Hamner et al. (Hamner et al., 2010)

incorporated torso and arm segments in the Delp et al. model

to study muscle contributions during running. Arnold et al.

(Arnold et al., 2010) further developed the model by updating

bone geometry (Arnold et al., 2000) and by implementing muscle

architecture from a more comprehensive dataset from

21 cadavers (Ward et al., 2009). This model allowed a detailed

description of the operating range of multiple muscles (Arnold

et al., 2013), for instance, the soleus, which was aligned with

experimental findings (Rubenson et al., 2012). Rajagopal et al.

(Rajagopal et al., 2016) further updated the model of Arnold et al.

by incorporating the relationship between individual muscle
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volume and leg volume in able-bodied young adults (Handsfield

et al., 2014) and included torso and arm segments. Rajagopal

et al. reported that this model overestimated fiber length change

and passive fiber force due to the limitation of modeling theMTU

with only a one-dimensional path, and that the excessive passive

forces led to anomalous compensatory muscle excitations at the

knee (Rajagopal et al., 2016) and hip extensors (Lai et al., 2018).

Lai et al. refined the Rajagopal model by increasing knee range of

motion and updating the tibiofemoral kinematics, as well as

attachment points, wrapping surfaces, and TSL and OFL of

gastrocnemius lateralis, gastrocnemius medialis, gluteus

maximus, rectus femoris, semimembranosus, soleus, vastus

intermedius, vastus medialis, and vastus lateralis. Lai et al.

reported that their model estimated lower muscle co-

activation and muscle excitations that overall agreed better

with recorded EMGs in walking, running, and pedalling (Lai

et al., 2018) than the model by Rajagopal et al. This succession of

models has incorporated more information about MTU

geometry and parameters that are likely to estimate with

increasing accuracy MTU time-dependent behavior, such as

muscle excitation. However, validation has only been

performed in a few physical activities. To the best of our

knowledge, a quantitative evaluation and comparison of their

biofidelity over a range of walking speeds, compared with

experimental data, has not been performed.

A generic musculoskeletal model must be scaled to a subject’s

anthropometry to be suitable for analyzing muscle behavior

during measured movement patterns, though how to scale

MTU parameters is not fully known. In OpenSim, scaling is

performed based on a calibration trial, wherein dimensions of

model segments are modified to fit the subject’s anthropometry.

Muscle-tendon attachment points are scaled linearly,

proportionally to generic and scaled model segment lengths,

as are OFL and TSL, by maintaining the same OFL/TSL ratio.

However, this procedure has questionable validity, as OFL has

been reported to not correlate linearly to leg length (Charles et al.,

2020). In addition, MIF is generally not scaled, which is also

questionable as muscle volume (and indirectly physiological

cross-sectional area) has been reported to vary with height

and weight (Handsfield et al., 2014; Charles et al., 2019b), age,

gender, among other factors (Thelen et al., 2003). Computational

methods have been proposed to scale MTU parameters (Winby

et al., 2008; Krogt et al., 2016; Modenese et al., 2016). Modenese

et al. implemented an algorithm to estimate OFL and TSL based

on mapping a muscle’s operating range of a generic model onto a

scaled model (Modenese et al., 2016). Rajagopal et al. scaled the

MIF based on individual muscle volume, which was in turn

estimated based on a regression equation from a study using

magnetic resonance imaging (Rajagopal et al., 2016), and van der

Krogt et al. scaled MIF by taking into account the generic and

scaled models’ mass ratio (Krogt et al., 2016). Despite the

introduction of numerous scaling methods, studies that

evaluate their effect in the estimation of the muscle-tendon

dynamics are scarce. Recently Charles et al. reported a better

estimation of joint torque during maximum voluntary

contraction trials in a model that scaled MIF as per van der

Krogt et al. and OFL/TSL as per Modenese et al., compared to

generic MTU parameters (Charles et al., 2020). This finding

provided evidence that supports MTU parameter scaling.

However, it is unknown whether scaling methods can

improve estimation of MTU mechanics in different

musculoskeletal models.

Simulation studies examining performance criteria are

also numerous. Ackermann and van den Bogert simulated

motion pattern and foot-ground contact forces with a two-

dimensional musculoskeletal model walking at 1.1 m/s and

solved the redundancy using performance criteria of

minimum sum of muscle activations to the powers of 1, 2,

3, and 10, and with or without scaling muscle volume, with an

aim to identify which combination provide the best estimation

of muscle excitation, joint kinematics, and ground reaction

force (Ackermann and van den Bogert, 2010). The best

agreement was obtained using minimum sum of muscle

activation to the power of 10. Zargham et al. investigated

the effect of multiple performance criteria on estimated

muscle excitation in simulation with prescribed kinematics

and dynamics obtained from subjects with instrumented knee

prostheses at a self-selected speed (1 m/s) (Zargham et al.,

2019). They found that performance criteria of minimum sum

of muscle activations to a power of 3 or 4, with and without

scaled muscle volumes, resulted in better agreement with

experimental EMGs than other criteria such as minimizing

muscle force or contact force. In addition, both studies were

only performed at one walking speed, so it is unclear whereas

performance criteria based on minimal muscle effort allow to

estimate muscle activation trends across walking speed and

which power better performs.

In summary, although multiple generic musculoskeletal have

been developed, they have not been quantitatively examined to

determine which most accurately estimates underlying muscle

excitation in observed movements. It is also unclear how muscle

model parameter scaling, and different performance criteria

based on muscle effort influence MTU mechanics estimations.

As such, the goals of this study were to compute muscle

excitations with three different generic open-source models,

using four different performance criteria based on muscle

effort, and four different methods to scale MIF, OFL, and

TSL, of walking at 7 different speeds, and to qualitatively and

quantitively evaluate which combination(s) of model, scaling

method, and performance criterion yields muscle excitations that

agree best with experimentally observed EMGs in eight muscles.

Another goal was to evaluate indicators of validity of prescribed

musculoskeletal simulations by studying whether MTU actuators

were capable of reproducing the inverse dynamic joint torques

(Hicks et al., 2015). Subsequent goals were to compare estimated

fiber lengths of vastus lateralis, tibialis anterior, gastrocnemius
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medialis and lateralis, and soleus with those reported in

literature.

Materials and methods

Musculoskeletal models, MTU-scaled
parameters, and performance criteria

Three generic models available on the SimTK website were

examined, referred to as Hamner (Hamner et al., 2010),

Rajagopal (Rajagopal et al., 2016), and Lai-Arnold (Lai et al.,

2018) models. Each model was anisotropically scaled: muscle

attachments, skeletal geometry, and segment inertial properties

were scaled to anthropometric dimensions obtained from a static

calibration trial from 3D motion capture. Model segments were

scaled using themarker positions based on the Conventional Gait

Model with the extended foot model (CGM 2.4).

MTU parameters of the Hill-type muscle models were scaled

in 4 different ways. OFL and TSL were scaled in two ways -

linearly by the ratio between MTU lengths in the scaled and

generic model (anatomic position, OpenSim’s Scale Tool) or

non-linearly to preserve the operating range of the muscles

(Modenese et al. (Modenese et al., 2016)). For each of these,

MIF was either unscaled (generic MIF) or scaled based onmuscle

volumes derived from a regression equation that relates MRI-

based muscle volumes to the subject’s height and weight

(Handsfield et al., 2014). Thus, for each individual, each of

the 3 models was scaled in 4 scaling variants:

S1: Linear scaling of OFL and TSL, generic MIF.

S2: Non-linear scaling of OFL and TSL, generic MIF.

S3: Linear scaling of OFL and TSL, scaled MIF.

S4: Non-linear scaling of OFL and TSL, scaled MIF.

Scaled MIFs were computed based on the assumption that

MIF is proportional to the physiological cross-sectional area

(PCSA) and specific tension, as shown in Eq. 1

F0
Mi � Aiσ � VMiVT

l0Mi

σ (1)

Where F0
Mi is the maximum isometric force, Ai is the

physiological cross-sectional area, l0Mi is the optimal fiber

length, VT is the total leg volume, and VMi is the percentage

of muscle volume with respect to the total leg volume of the

muscle i, both estimated from Handsfield et al. (Handsfield et al.,

2014), and σ is the specific tension, which has a value of 60 N/cm2

for each muscle (Rajagopal et al., 2016). All models assume the

same MCV (10 OFL/s), activation time constant (10 ms), and

deactivation time constant (40 ms) for all muscles, and PA was as

per the original models. In addition, the non-linear tendon

stiffness of gastrocnemius medialis, gastrocnemius lateralis,

and soleus were set to 15 (nondimensionalized), according to

ultrasound studies (Swinnen et al., 2019; Delabastita et al., 2020)

that describe the Achilles tendon as highly compliant. Similarly,

the non-linear tendon stiffness of vastus lateralis, vastus medialis,

vastus intermedius, and rectus femoris was set to 20

(nondimensionalized), according to findings that modelling

the Patellar tendon as highly compliant agrees better with

experimental observations (Chleboun et al., 2007; Bohm et al.,

2018), including muscle fiber operating range (Son et al., 2018).

In addition, for each model and scaling variant,

4 performance criteria based on minimum muscle effort,

defined as the sum of muscle activations and excitations to

powers (p) of 2, 3, 5, and 10, were examined as shown in Eq. 2

Jp � ∫tf

ti

⎛⎝∑N
i�1

(epi (t) + api (t))
2

⎞⎠ dt (2)

Where ti is the initial time of the gait cycle, tf is the final time of

the gait cycle, ei is muscle excitation of the muscle i, ai is muscle

activation of the muscle i, and N the total number of muscles in

one leg of each model. These performance criteria are referred to

as J2, J3, J5, and J10

Subjects

Eight able-bodied adults (5 males, 3 females, mean [SD] age:

37.8 [9.6] years, height: 1.76 [0.10] m, mass: 76.6 [14.4] kg)

participated in this experiment as part of a more comprehensive

study to characterize energetics in locomotion.

Experimental setup and protocols

Subjects walked at different speeds based on the expected

preferred walking speed (PWS), based on each subject’s

gender, age, and height (Bohannon, 1997). The subjects

walked on a treadmill at 55%, 70%, 85%, 100%, 115%,

130%, and 145% of the PWS in randomized order, and

each subject’s cadence at each speed was recorded. Then,

for overground walking along a walkway, each of the

7 walking speeds was estimated by matching the cadence of

treadmill walking. Reflective marker positions (100 Hz) and

ground reaction forces (1,000 Hz) were measured during

overground walking using optical motion capture (Vicon

V16, Oxford, United Kingdom) and strain gauge force

platforms (AMTI, Watertown, MA, United States). Full-

body marker placement was implemented based on the

Conventional Gait Model with the extended foot model

(CGM 2.4). EMGs from eight muscles in one leg were

recorded (1,000 Hz): biceps femoris long head (BF),

semitendinosus (ST), vastus lateralis (VL), vastus medialis

(VM), tibialis anterior (TA), gastrocnemius lateralis (GL),

gastrocnemius medialis (GM) and soleus (SO), using

bipolar surface wireless electrodes (Myon aktos/Cometa

systems, Milan, Italy). The selection of the leg side for each
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subject was randomized. Skin preparation and electrode

placement followed Electromyography for the Non-Invasive

Assessment of Muscles guidelines (SENIAM) (Hermens et al.,

2000). Subjects were asked to perform functional tests, such as

standing heel raise, standing toe raises, squat, knee flexion,

and hip flexion/extension, to corroborate the placement of

the EMGs.

Data and statistical analysis

Generic models were scaled to each subject’s dimensions

as described above. Marker trajectories and ground reaction

forces during 21 gait cycles per subject (3 gait cycles at each

of 7 walking speeds) were used in 3D inverse kinematics (IK)

and inverse dynamics (ID) using OpenSim 4.1. IK tracking

weights were selected to minimize the error between

experimental markers and virtual markers placed on

the model. For each subject, the same weights were used

for each model, scaling variant and performance criteria.

Subtalar and metatarsal joints were fixed at anatomically

neutral positions. Muscle excitations and corresponding

fiber lengths were estimated using a direct collocation

dynamic optimization algorithm that incorporates

activation and contraction dynamics (De Groote

et al., 2016). IK and ID solutions were prescribed, and

the objective function consisted of three terms: the first

term refers to the muscle effort, as described above,

the second term to the torque produced by reserve

actuators, i.e., ideal actuators at each joint that served

to generate the joint torques that the MTU actuators are

not able to reproduce, and the third term, to the fiber

velocity to improve the numerical computation. The

mathematical expression of the objective function is

shown in Eq. 3

J � weJp + wr ∫tf

ti

⎛⎝∑J
j�1
e2Rj(t)⎞⎠dt + wv ∫tf

ti

⎛⎝∑N
i�1
v2i (t)⎞⎠dt (3)

Where eRj is the reserve actuator of the joint j, vi is the

muscle velocity of the muscle i, J the total number of joints in

one leg of each model, and we, wr, and wv are the weight of the

terms related to muscle effort, reserve actuators, and fiber

velocities, respectively. The value of we is 1, the value of wr is

1,000, and wv is 0.01. As such, the use of the reserve actuators

was highly penalized in the objective function, and the

influence of the fiber velocity was relatively small. MTU

parameters MIF, OFL, TSL, and tendon compliance,

defined as OFL/TFL, as well as muscle excitations were

computed for each gait cycle for each of the

3 musculoskeletal models, the 4 scaling variants (S1, S2,

S3, and S4), and the 4 performance criteria (J2, J3, J5, and

J10), which resulted in 48 estimates per gait cycle.

Recorded EMGs were processed using a fourth order

zero-lag Butterworth band-pass filter (20–400 Hz), full-

wave rectification, and a fourth order zero-lag Butterworth

low-pass filter (6 Hz). Experimental muscle excitations were

processed throughout the same 21 gait cycles per subject

described above.

Scaled values of OFL, and TSL of each model and scaling

variant were compared to experimental values reported by Ward

et al. (Ward et al., 2009). Also, excessive reliance on reserve

actuators to reproduce inverse dynamic joint torque was reported

for each model combination.

Qualitative evaluation of estimated muscle excitation was

performed by examining on/off timing agreement, defined as

the period during which muscles are active, i.e., when EMGs

or computed muscle excitations exceed a threshold, in this

case 50% of the maximum value during each gait cycle.

Quantitative evaluation was performed by examining the

agreement between excitation patterns and average excitation

increments across walking speeds between EMGs and estimated

muscle excitations. Time-series agreement was evaluated by

computing correlation coefficients (r) and root-mean-squared

error (RMSE) between normalized EMGs and estimated muscle

excitations. Both EMGs and estimated excitations were

normalized to the maximum value during that gait cycle. As

such, we only evaluated correspondence of the pattern (Zargham

et al., 2019) but not of the magnitude.

We also computed excitation/speed increment rate m as

the rate at which the average muscle excitation increased

with walking speed via a linear regression between the

average excitation magnitude and walking speed. Thus, m

was computed from average EMG values (m exp) and from

the simulations (msim) for each model combination. Both

observed and estimated muscle excitations were normalized

to their average value observed during walking at PWS; thus

m exp≈1 and msim≈1 at PWS. Increment rate disagreement

md between m exp and msim was evaluated as their difference,

proportional to m exp and as a percent, shown in Eq. 4

md � (msim −mexp

mexp
) · 100[%] (4)

Therefore, md>0 indicates that the model overestimated

excitation/speed increments,md = 0 indicates that the model’s

excitation/speed increments were identical to those from

EMGs, and md<0 indicates that the underestimated

excitation/speed increments.

Finally, the fiber lengths were estimated for each model

combination and compared to reported values; estimated

normalized fiber lengths of VL, TA, and GL at PWS, as well as

GM and SO at low, normal, and fast walking speeds, were

compared to experimental values reported available in the

literature. To facilitate the comparison, the normalized fiber

length was divided into four categories based on muscle fiber
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TABLE 1 Average and SD of MIF [N], OFL [cm], TSL [cm], andMTU compliance, defined as TSL/OFL, among all subjects scaling variants: linear scaling of OFL and TSL and generic MIF (S1), non-linear scaling
of OFL and TSL and generic MIF (S2), linear scaling of OFL and TSL and scaledMIF (S3), and non-linear scaling of OFL and TSL and scaledMIF (S4), in Hamner (H), Rajagopal (R), and Lai-Arnold (L)models
in 8 muscles.

S1 S2 S3 S4

MIF OFL TSL TSL/
OFL

MIF OFL TSL TSL/
OFL

MIF OFL TSL TSL/
OFL

MIF OFL TSL TSL/
OFL

BF H 896.0 [0.0] 10.6 [0.6] 31.7 [1.9] 3.0 [0.0] 896.0 [0.0] 11.6 [0.8] 30.6 [1.8] 2.6 [0.2] 1,207.7 [212.3] 10.6 [0.6] 31.7 [1.9] 3.0 [0.0] 1,096.9 [146.6] 11.6 [0.8] 30.6 [1.8] 2.6 [0.2]

R 1,313.2 [0.0] 9.4 [0.4] 31.4 [1.4] 3.3 [0.0] 1,313.2 [0.0] 10.0 [0.7] 31.0 [1.3] 3.1 [0.2] 1,357.6 [251.3] 9.4 [0.4] 31.4 [1.4] 3.3 [0.0] 1,274.5 [174.4] 10.0 [0.7] 31.0 [1.3] 3.1 [0.2]

L 1,313.2 [0.0] 9.4 [0.4] 32.2 [1.4] 3.4 [0.0] 1,313.2 [0.0] 10.0 [0.7] 31.7 [1.3] 3.2 [0.2] 1,356.4 [250.1] 9.4 [0.4] 32.2 [1.4] 3.4 [0.0] 1,273.7 [173.6] 10.0 [0.7] 31.7 [1.3] 3.2 [0.2]

ST H 410.0 [0.0] 19.7 [1.2] 25.0 [1.5] 1.3 [0.0] 410.0 [0.0] 21.2 [1.6] 23.2 [1.5] 1.1 [0.1] 579.2 [101.1] 19.7 [1.2] 25.0 [1.5] 1.3 [0.0] 535.2 [71.2] 21.2 [1.6] 23.2 [1.5] 1.1 [0.1]

R 591.3 [0.0] 18.8 [0.9] 24.1 [1.1] 1.3 [0.0] 591.3 [0.0] 19.8 [1.4] 23.1 [1.2] 1.2 [0.1] 607.4 [111.3] 18.8 [0.9] 24.1 [1.1] 1.3 [0.0] 574.7 [79.1] 19.8 [1.4] 23.1 [1.2] 1.2 [0.1]

L 591.3 [0.0] 18.8 [0.9] 24.0 [1.1] 1.3 [0.0] 591.3 [0.0] 19.8 [1.4] 23.0 [1.2] 1.2 [0.1] 607.6 [111.3] 18.8 [0.9] 24.0 [1.1] 1.3 [0.0] 574.1 [78.4] 19.8 [1.4] 23.0 [1.2] 1.2 [0.1]

VL H 1871.0 [0.0] 8.2 [0.4] 15.4 [0.8] 1.9 [0.0] 1871.0 [0.0] 8.1 [0.5] 15.5 [0.8] 1.9 [0.0] 6,217.2 [1,089.6] 8.2 [0.4] 15.4 [0.8] 1.9 [0.0] 6,319.3 [1,072.8] 8.1 [0.5] 15.5 [0.8] 1.9 [0.0]

R 5,148.8 [0.0] 9.8 [0.4] 21.7 [0.9] 2.2 [0.0] 5,148.8 [0.0] 9.5 [0.3] 21.8 [1.1] 2.3 [0.1] 5,235.3 [923.8] 9.8 [0.4] 21.7 [0.9] 2.2 [0.0] 5,387.7 [1,034.2] 9.5 [0.3] 21.8 [1.1] 2.3 [0.1]

L 5,148.8 [0.0] 11.5 [0.5] 21.7 [0.9] 1.9 [0.0] 5,148.8 [0.0] 11.6 [0.3] 21.6 [1.1] 1.8 [0.1] 4,446.5 [783.0] 11.5 [0.5] 21.7 [0.9] 1.9 [0.0] 4,392.6 [823.4] 11.6 [0.3] 21.6 [1.1] 1.8 [0.1]

VM H 1,294.0 [0.0] 8.6 [0.5] 12.2 [0.6] 1.4 [0.0] 1,294.0 [0.0] 8.8 [0.5] 12.1 [0.7] 1.4 [0.0] 3,089.2 [540.7] 8.6 [0.5] 12.2 [0.6] 1.4 [0.0] 3,006.2 [514.5] 8.8 [0.5] 12.1 [0.7] 1.4 [0.0]

R 2,747.8 [0.0] 9.5 [0.4] 19.5 [0.9] 2.1 [0.0] 2,747.8 [0.0] 9.4 [0.3] 19.6 [1.0] 2.1 [0.1] 2,808.4 [496.6] 9.5 [0.4] 19.5 [0.9] 2.1 [0.0] 2,835.1 [531.8] 9.4 [0.3] 19.6 [1.0] 2.1 [0.1]

L 2,747.8 [0.0] 10.8 [0.5] 20.3 [0.9] 1.9 [0.0] 2,747.8 [0.0] 11.1 [0.3] 20.1 [1.0] 1.8 [0.0] 2,470.2 [436.0] 10.8 [0.5] 20.3 [0.9] 1.9 [0.0] 2,390.4 [437.8] 11.1 [0.3] 20.1 [1.0] 1.8 [0.0]

TA H 905.0 [0.0] 10.1 [0.7] 23.1 [1.7] 2.3 [0.0] 905.0 [0.0] 10.0 [0.8] 23.2 [1.6] 2.3 [0.1] 824.5 [126.9] 10.1 [0.7] 23.1 [1.7] 2.3 [0.0] 839.6 [125.7] 10.0 [0.8] 23.2 [1.6] 2.3 [0.1]

R 1,227.5 [0.0] 7.0 [0.5] 24.7 [1.7] 3.5 [0.0] 1,227.5 [0.0] 6.9 [0.5] 24.7 [1.6] 3.6 [0.1] 1,193.9 [189.4] 7.0 [0.5] 24.7 [1.7] 3.5 [0.0] 1,203.0 [181.2] 6.9 [0.5] 24.7 [1.6] 3.6 [0.1]

L 1,227.5 [0.0] 7.0 [0.5] 24.6 [1.6] 3.5 [0.0] 1,227.5 [0.0] 6.9 [0.5] 24.7 [1.6] 3.6 [0.1] 1,195.4 [190.0] 7.0 [0.5] 24.6 [1.6] 3.5 [0.0] 1,204.6 [181.7] 6.9 [0.5] 24.7 [1.6] 3.6 [0.1]

GL H 683.0 [0.0] 6.6 [0.5] 39.2 [2.9] 5.9 [0.0] 683.0 [0.0] 6.2 [0.5] 39.6 [3.1] 6.4 [0.4] 1,397.9 [212.7] 6.6 [0.5] 39.2 [2.9] 5.9 [0.0] 1,487.2 [241.9] 6.2 [0.5] 39.6 [3.1] 6.4 [0.4]

R 1,575.1 [0.0] 6.0 [0.4] 38.3 [2.6] 6.4 [0.0] 1,575.1 [0.0] 5.9 [0.4] 38.4 [2.7] 6.5 [0.3] 1,541.7 [239.4] 6.0 [0.4] 38.3 [2.6] 6.4 [0.0] 1,564.4 [266.3] 5.9 [0.4] 38.4 [2.7] 6.5 [0.3]

L 1,575.1 [0.0] 7.0 [0.5] 38.0 [2.6] 5.4 [0.0] 1,575.1 [0.0] 6.8 [0.5] 38.2 [2.7] 5.6 [0.3] 1,315.8 [204.7] 7.0 [0.5] 38.0 [2.6] 5.4 [0.0] 1360.1 [233.7] 6.8 [0.5] 38.2 [2.7] 5.6 [0.3]

GM H 1,558.0 [0.0] 6.2 [0.5] 40.2 [3.0] 6.5 [0.0] 1,558.0 [0.0] 5.9 [0.5] 40.5 [3.1] 6.9 [0.4] 2,558.9 [389.7] 6.2 [0.5] 40.2 [3.0] 6.5 [0.0] 2,710.8 [440.7] 5.9 [0.5] 40.5 [3.1] 6.9 [0.4]

R 3,115.5 [0.0] 5.2 [0.4] 40.6 [2.7] 7.8 [0.0] 3,115.5 [0.0] 5.1 [0.4] 40.7 [2.8] 7.9 [0.4] 3,047.9 [474.5] 5.2 [0.4] 40.6 [2.7] 7.8 [0.0] 3,097.4 [533.9] 5.1 [0.4] 40.7 [2.8] 7.9 [0.4]

L 3,115.5 [0.0] 6.0 [0.4] 39.4 [2.6] 6.6 [0.0] 3,115.5 [0.0] 5.8 [0.4] 39.6 [2.7] 6.8 [0.4] 2,635.5 [409.9] 6.0 [0.4] 39.4 [2.6] 6.6 [0.0] 2,731.9 [479.6] 5.8 [0.4] 39.6 [2.7] 6.8 [0.4]

SO H 3,549.0 [0.0] 5.2 [0.4] 25.8 [1.9] 5.0 [0.0] 3,549.0 [0.0] 4.9 [0.5] 26.0 [2.0] 5.3 [0.5] 5,262.4 [802.3] 5.2 [0.4] 25.8 [1.9] 5.0 [0.0] 5,537.9 [875.6] 4.9 [0.5] 26.0 [2.0] 5.3 [0.5]

R 6,194.8 [0.0] 4.5 [0.3] 28.3 [2.0] 6.3 [0.0] 6,194.8 [0.0] 4.4 [0.4] 28.4 [2.0] 6.5 [0.5] 6,032.5 [935.0] 4.5 [0.3] 28.3 [2.0] 6.3 [0.0] 6,172.5 [1,047.2] 4.4 [0.4] 28.4 [2.0] 6.5 [0.5]

L 6,194.8 [0.0] 4.5 [0.3] 28.8 [2.0] 6.4 [0.0] 6,194.8 [0.0] 4.4 [0.4] 28.8 [2.0] 6.6 [0.6] 6,041.8 [938.1] 4.5 [0.3] 28.8 [2.0] 6.4 [0.0] 6,192.7 [1,050.8] 4.4 [0.4] 28.8 [2.0] 6.6 [0.6]
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length (LM) relative to optimal fiber length (OFL): steep

ascending limb (LM/OFL< 0.75), shallow ascending limb

(0.75 ≤LM/OFL < 0.95), plateau (0.95 ≤LM/OFL < 1.05),

and descending limb (1.05< LM/OFL) (Arnold and Delp,

2011).

Results

We found that muscle parameters estimated with scaled

OFL and TSL were similar to those reported by Ward et al.

(Ward et al., 2009) in most muscles and in all models. Scaling

MIF had a larger effect on estimated muscle parameters in the

Hamner model than in the other models (Table 1). Estimated

OFLs with OFL and TSL linearly (S1) and non-linearly (S2)

scaled in the Rajagopal model were within the expected values

reported by Ward et al. (Ward et al., 2009), whereas VL, TA,

and GM in the Hamner model, and GL in the Lai-Arnold

model were not (Supplementary Table S1). OFL tended to be

smaller with non-linearly scaled OFL and TSL in TA, GL, GM,

and SO, but larger in BF and ST than linearly scaled OFL and

TSL in all models. MTU compliance tended to be higher with

non-linearly scaled in TA, GL, GM, and SO and lower in BF

and ST than with linearly scaled OFL and TSL in all models.

The Rajagopal and Lai-Arnold models estimated higher MIF

than the Hamner model, with or without scaled MIF, for most

muscles, except GL, VL, and VM.

As an indicator of simulation validity, the number of gait

cycles that required excessive reserve actuators, defined

as >2.5 N·m, were computed (Supplementary Table S2). This

threshold represented approximately 5% of the average peak

values of all the joint torques at the slowest walking speed.

Acceptable reserve actuators were achieved in most muscles

with most of the model combinations. The Hamner model

required higher reserve actuators when MIF was not scaled

(S1 and S2), compared to the Rajagopal and Lai-Arnold

model using any scaling variant. Notably, higher reserve

actuator magnitudes were found in the Hamner model at the

ankle and hip joint in the sagittal plane, particularly at high

walking speeds (not reported).

Estimated on/off timing in most muscles was similar for all

model combinations. Estimated muscle excitations from all

model combinations presented some similar discrepancies to

EMGs, including lower co-activation and an excitation delay.

FIGURE 1
EMGs and estimated/modelled muscle excitations (average +/- 1 SD of all subjects) in 8 muscles with performance criterion J2 and scaling
variant S1 at walking speeds of 55%, 100% and 145% PWS. EMGs were normalized to the maximum value at 145% PWS. Horizontal lines above each
time series indicate on/off timing for EMG and each model, defined as >50% excitation.
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FIGURE 2
On/off timing of EMGs, averaged over all subjects, and estimatedmuscle excitations of 8muscles at 3walking speeds, with performance criteria
based on minimization of muscle effort to the power of 2 (J2), 3 (J3), 5 (J5) and 10 (J10), and scaling variants with linear scaling of OFL and TSL and
generic MIF (S1), non-linear scaling of OFL and TSL and generic MIF (S2), linear scaling of OFL and TSL and scaled MIF (S3), and non-linear scaling of
OFL and TSL and scaled MIF (S4).
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Estimated on/off timing agreed well with EMGs for most

models and across walking speeds in ankle plantar- and

dorsiflexors TA, GL, GM, and SO, and to a lesser degree, in

knee extensors VL and VM, with performance criterion J2 and

with any scaling variant (Figures 1, 2). Estimated on/off

timing in GL, GM, and SO for all models agreed well with

EMGs and did not substantially change among speeds, nor

were they substantially influenced by performance criterion or

scaling variant. Estimated on/off timing in VL, VM, and TA

agreed least with EMGs with J10 compared to other

performance criteria (Supplementary Figure S1),

particularly in the Hamner model (Figure 2). All model

combinations failed to capture VL and VM excitation in

late swing at high speeds. Estimated ST excitation with all

model combinations agreed poorly with EMGs across speeds,

wherein on/off timing varied throughout the gait cycle among

models, particularly in the Hamner model. Similar

disagreements with EMGs can be observed for a few

muscles in all models. For instance, all model combinations

estimated very low or no excitation within certain periods of

the gait cycle, whereas average EMG values never reached zero

excitation. Thus, all model combinations estimated less co-

activation than were observed in EMGs. In addition, for all

model combinations, VL, VM, GL, GM, and SO estimates

closely resembled EMG patterns, but with a delayed onset

across all speeds.

For all models and scaling variants, excitation patterns

estimated with performance criterion J2 agreed better with

EMG, demonstrated by lower RMSE and higher correlation

coefficients, than excitation patterns estimated by with

performance criteria with higher powers (Figure 3). Muscle

excitations estimated with Hamner, and Lai-Arnold models

agreed better with EMG than those with the Rajagopal model

when combined with performance criterion J2. Among the

models, performance criterion had the largest influence on

estimated muscle excitations with the Hamner model.

Estimated muscle activation with the Lai-Arnold model agreed

better with EMG than with Rajagopal model for all performance

criteria.

The scaling variant had a smaller influence on agreement

between estimated muscle excitations and EMG than the model

or performance criterion. With Hamner model, regardless of

performance criterion, the agreement between estimated muscle

excitations and EMG was better when MIF was not scaled

(Supplementary Figure S1). With the Lai-Arnold model, the

agreement between estimated muscle excitations and EMG

was best with non-linearly scaled OFL and TSL and scaled

MIF (S4). With the Rajagopal model, the scaling variant had

little influence on the agreement between estimated muscle

excitations and EMG.

While muscle excitation time-series agreement with

EMG was higher with Hamner and Lai-Arnold models

than with the Rajagopal model, no single model estimated

excitation time-series with highest agreement for all muscles

(Figures 1, 4, Supplementary Tables S3, S4). The best time-

series agreement of TA and SO are obtained with the Hamner

FIGURE 3
RMSE versus correlation coefficient (r) between normalized EMGs and estimated muscle excitations, averaged values among all subjects,
speeds, and muscles, with performance criteria based on minimization of muscle effort to the power of 2 (J2), 3 (J3), 5 (J5), and 10 (J10), illustrated
with darkening colors, and scaling variants of linear scaling of OFL and TSL and generic MIF (S1), non-linear scaling of OFL and TSL and generic MIF
(S2), linear scaling of OFL and TSL and scaled MIF (S3), and non-linear scaling of OFL and TSL and scaled MIF (S4).
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FIGURE 4
RMSE versus correlation coefficient (r) between normalized EMGs and estimated muscle excitations in 8 muscles, averaged values among all
subjects and speeds, with performance criteria based on minimization of muscle effort to the power of 2 (J2), 3 (J3), 5 (J5), and 10 (J10), illustrated
with darkening colors, and scaling variants of linear scaling of OFL and TSL and generic MIF (S1), non-linear scaling of OFL and TSL and generic MIF
(S2), linear scaling of OFL and TSL and scaled MIF (S3), and non-linear scaling of OFL and TSL and scaled MIF (S4).

FIGURE 5
Increment rate disagreement between experimental and estimated excitations versus the coefficient of determination, averaged values among
all subjects, speeds and muscles, with performance criteria based on minimization of muscle effort to the power of 2 (J2), 3 (J3), 5 (J5), and 10 (J10),
and scaling variants with linear scaling of OFL and TSL and generic MIF (S1), non-linear scaling of OFL and TSL and generic MIF (S2), linear scaling of
OFL and TSL and scaled MIF (S3), and non-linear scaling of OFL and TSL and scaled MIF (S4). The best estimates can be considered to lie
approximately +/- 20%.
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model and scaling variants without scaled MIF (S1 and S2)

and the Lai-Arnold model with scaling method. Time-series

agreement in GM and GL were similar in all models with any

scaling variant. Time-series agreement in VL and VM were

similar with Rajagopal and Lai-Arnold models and any

scaling variant, and with the Hamner model and scaling

variants without scaled MIF (S1 and S2). Time-series

agreement in ST and BF was poor in all models (Figures 1, 4).

Average EMG increased approximately linearly with

increasing walking speed (Supplementary Figure S2), as did

estimated muscle excitation in all models, scaling variants and

performance criteria (Supplementary Figure S3). The

performance criterion had the largest influence on the

agreement between the predicted and observed excitation/

speed increments, with performance criteria J2 and

J3 resulting in the best agreement (lowest increment rate

disagreement and highest coefficient of determination with

EMG increment rate) in all models (Figure 5). Increment rate

agreement with the Hamner model was more influenced with

MIF scaling (S3 and S4) than with OFL and TSL scaling (S1 and

S2), but agreement was not notably better in any model with any

specific scaling variant.

In estimated excitation/speed increments in individual

muscles from all models, the lowest increment rate

disagreement was observed with performance criterion J2,

followed by J3. Increment rate agreement varied among model

combinations and muscles; no single model combination best

estimated increment rate for all muscles (Supplementary Table

S5). The increment rates in SO were best estimated with the

Rajagopal model, in GM and VM with the Lai-Arnold model,

and in GL and TA with the Hamner model using scaling variants

without scaled MIF (S1 and S2). The increment rate of VL was

highly influenced by scaling variant. Increment rates in ST and

BF were not estimated accurately with any model or scaling

variant. The Hamner model with scaling variants without scaled

MIF (S1 and S2) tended to overestimate increment rates in GM,

VM, and VL and to underestimate them in SO. The Rajagopal

model tended to underestimate increment rates in GM, GL, and

TA and to overestimate them in VL. The Lai-Arnold model

tended to underestimate increment rates in SO, GL, and TA.

FIGURE 6
Estimated normalized fiber length (average +/- 1 SD of all subjects) in 8 muscles with performance criterion J2 and scaling variant S1 at walking
speeds of 55%, 100% and 145% PWS. Reported experimental normalized fiber lengths of SO (Lai et al., 2015), GM (Farris and Sawicki, 2012), GL (Farris
and Raiteri, 2017), and VL (Chleboun et al., 2007; Bohm et al., 2018) are shown. Experimental fiber lengths were normalized based on average values
reported from a muscle architecture data set (Ward et al., 2009) if experimental studies did not provide normalized values. Horizontal lines
above time series indicate on/off timing for EMG and each model. Dashed horizontal lines indicate operating ranges between steep and shallow
ascending limb (lower), shallow ascending limb and plateau (middle), and plateau and descending limb (upper).

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Luis et al. 10.3389/fbioe.2022.1002731

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1002731


Computed muscle fiber lengths varied among the different

models and scaling variants. All models with linearly scaled OFL

and TSL (S1) estimated different fiber lengths, largely visible as

length offsets but similar length changes. Fiber lengths estimated

by the Rajagopal model agreed best with reported experimental

findings in VL, GL, GM, and SO (Figure 6). MTU actuators of VL

and GM were active during shallow ascending limb region, and

SO, during shallow ascending limb and plateau regions, which

coincided with reported values in the literature. Fiber lengths of

BF, ST and TA estimated by Rajagopal, and Lai-Arnold models

operated at similar regions. The Hamner model estimated

shorter muscle fibers than the other models in all muscles.

The most notable fiber length differences between models

were observed in the VL, VM, and SO, where the muscles

contracted at distinct operating ranges within the gait cycle.

All models overestimated the excursion of the fiber lengths in GL

and GM (especially the Rajagopal model), none of them

estimated an isometric contraction in the VL during stance

(Chleboun et al., 2007; Bohm et al., 2018), and none of them

estimated the TA fiber length nor length changes well. In

addition, slight differences were observed when OFL and TSL

were linearly (S1) and non-linearly (S2) scaled (Supplementary

Figure S4). For example, larger GL an GM fiber excursion was

estimated with non-linear vs. linear OFL and TSL scaling,

associated with higher MTU compliance (Table 1).

Discussion

We have performed an extensive sensitivity analysis to

investigate the influence of musculoskeletal models, scaling

variants and optimization criteria for solving muscle

redundancy, as well on the interactions between them, on

estimation of muscle excitation as time series and over a

range of walking speed, specifically how well they agree with

experimentally observed EMG signals from a group of able-

bodied adults. For each gait cycle, 48 different model

combinations were computed and analyzed. We have

illustrated which combination(s) of musculoskeletal model,

MTU scaling variant, and performance criterion estimates 1)

muscle excitations as time series and as excitation/speed

increments that agree best with observed EMGs, and 2)

muscle fiber lengths that best agree with reported

experimentally-measured fiber lengths. We found that the best

excitation on/off timing agreement was estimated with

performance criterion J2 in all models The best time-series

agreement was estimated using a performance criterion

J2 with the Lai-Arnold model and any scaling variant, and

with the Hamner model and scaling variant without scaled

MIF (S1 and S2). The best excitation/speed increment rate

agreement was estimated with performance criterion J2,

followed by, J3 in all models. No single models best estimated

muscle excitation time series or increment rates for all muscles;

the agreement varied amongmodel combinations. The Rajagopal

model predicted fiber lengths and length change patterns that

most closely resembled those reported in literature, though some

discrepancies were observed in all models.

Among performance criteria, muscle excitations across

walking speeds were estimated best when minimizing muscle

effort to a power of 2 (J2) than to higher powers, which

corroborates findings in a recent study evaluating the effect of

performance criterion for walking at a self-selected speed

(Zargham et al., 2019). Ackermann and van den Bogert

proposed that neural commands were estimated better by

minimizing muscle effort to the power of 10 (Ackermann and

van den Bogert, 2010), which is practically equivalent to a min/

max criterion (Rasmussen et al., 2001). The results in the present

study contradict these findings to some degree; for instance, we

observed that a higher exponent produced higher excitations

during the swing phase, which did not correspond to observed

EMGs time-series profiles (Supplementary Figure S1). This

contradiction might be due in part to model sophistication;

Ackermann and van den Bogert used a simplified 2D

musculoskeletal model with eight muscles and estimated

ground reaction force and kinematics, whereas we used 3D

musculoskeletal models with a large number of muscles and

prescribed inverse kinematics and inverse dynamics solutions,

similar to Zargham et al. (Zargham et al., 2019). In addition, a

simulation study from Arnold et al. (Arnold et al., 2013) reported

good on/off timing estimations using computed muscle control

(Thelen et al., 2003), with performance criterion of minimization

of muscle effort to the power of 2. Our findings therefore support

a recommendation to optimize for muscle redundancy base on a

minimization of muscle effort to a power of 2 or perhaps 3 to

estimate muscle excitations over walking speeds when kinematics

and reaction forces are known.

Our findings do not clearly support any single MTUs

scaling variant. It is unlikely that simple methods to scale

MTUs accurately represent muscle architecture since muscle

properties do not correlate well with anthropometric

measurements, but scaling may improve muscle excitation

estimation. Medical imaging studies using MRI have shown

that muscle volume correlates reasonably well with height,

and with body mass in young, healthy adults (Handsfield

et al., 2014; Charles et al., 2019b). However, OFL did not

correlate well with leg length (Ward et al., 2009; Charles

et al., 2019b). It is hard to scale based on anthropometric

measurements, and its accuracy will affect MIF estimation

(Eq. 1). Specific tension at each muscle (Maganaris et al.,

2001) is not well known. In this regard, we found that no

single scaling method improved estimated muscle

excitations, i.e., agreement with EMGs, for all muscles and

all models, though some degree of personalization could

result in better estimations of muscle excitation. Using

non-linear scaling of OFL and TSL and scaled MIF (S4),

the Lai-Arnold model had better time-series estimations
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(Figure 3), and the Rajagopal model had better increment

rate agreement (Figure 5), than without scaling. Despite this

improvement, MIF scaling was based on estimating

observations in young adults (Handsfield et al., 2014).

Thus, these findings should not be extrapolated to other

populations, such as children or persons with neuromuscular

disorders.

Estimations of muscle excitations with the Hamner model

were not improved with non-linear vs. linear OFL and TSL

scaling and were even worse when MIF was scaled. Good

estimations of on/off timing were achieved at different speeds

in most muscles, but the magnitudes (Figure 1) were

considerably higher than those estimated by other models,

and normalized fiber lengths were shorter than those from

reported experimental observations (Figure 6). Substantially

high muscle excitations can be attributable to low MIF values

and shorter normalized fiber lengths, which also disagreed with

their corresponding values derived from experimental

observations. The Hamner model adopted MIF values from

the model developed by Delp et al. (Delp et al., 1990) with

some modifications. MIF was computed based on physiological

cross-sectional area from both cadavers (Delp et al., 1990) as in

the Delp model and also healthy individuals (Carhart, 2000), and

incorporated scaling factors that varied between muscles. These

tuned values were substantially lower than MIF values derived

from a single dataset based on muscle volume in healthy adults

(Handsfield et al., 2014), which the Rajagopal and Lai-Arnold

model incorporate. The scaled MIF values in the Hamner model

were slightly smaller than those in the Rajagopal and Lai-Arnold

models, except in VL and VM, where incidentally the lowest

time-series and excitation/speed increment agreement were

found. The scaled MIF in VL from the Hamner model was

even higher than those reported from maximal isometric knee

extension (Bohm et al., 2018). Also, normalized fiber lengths

estimated from musculoskeletal modelling are typically lower

than those measured experimentally with ultrasound (Figure 6).

The combination of low MIF values and short normalized fiber

lengths produced a low force-generation capacity, which, for

instance, resulted in an estimation that the SO reaches full

excitation at high walking speeds (Figure 1).

Some disagreements between estimated muscle excitations

and EMGs were common across models, scaling methods, and

performance criteria, which indicates that other modeling

simplifications or experimental limitations might underlie

these discrepancies. Estimated plantarflexor excitation was

delayed with respect to EMG, which may be attributable to

inaccuracies in representing MTU parameters and activation

dynamics. Delabastita et al. demonstrated better temporal

agreement with observed excitations when OFL, TSL, PA, and

tendon stiffness parameters were personalized using ultrasound

information and recorded EMGs (Delabastita et al., 2020). Also,

activation dynamics, rate encoding, and motor unit recruitment

were simplified into a first-order differential model with the same

activation and deactivation time constants for all muscles and all

subjects, whereas these parameters have been reported as

functions of muscle fiber-type composition (Winters, 1995)

and age (Thelen, 2003). The electromechanical delays, i.e. the

duration between muscle twitch and force production, also

depends on several factors such as muscle fiber-type

composition, firing rate dynamics, and viscoelastic properties

of the muscle and connective tissue (De Luca, 1997), none of

which were modeled in the current study.

All simulations estimated lower co-activation compared to

observed EMGs, which might be related to the optimization and

performance criteria. MTU controls generally minimize overall

muscle effort, whereas co-activation is a likely response to

increase stability in dynamics tasks (Oomen et al., 2015). A

high exponent in the performance criterion increased co-

activation (Supplementary Figure S1) but resulted in

excitation estimates that agreed poorly for all models and

scaling variants (Figures 3, 5). Modeling approaches in which

MTU controls are solved by minimizing muscle effort and

including feedforward and feedback control to account for

sensory and motor noise (Van Wouwe et al., 2022) or by

regulating mechanical impedance at the joints (Shourijeh and

Fregly, 2020), better represent intrinsic motor coordination

characteristics; these approaches are more likely to better

estimate co-activation than minimizing muscle effort with a

high exponent.

Some disagreements between estimated fiber lengths and

reported experimentally-measured fiber lengths in literature

are also common across models, scaling variants, and

performance criteria, and are related to the models’ simplified

muscle geometry. The Rajagopal model best estimated fiber

lengths in VL, GL, GM, and SO, though the estimated fiber

excursions were larger than those reported in the literature. A

major reason for this is that modelling a muscle as

unidimensional actuators does not provide a sufficient

representation to capture muscle contraction throughout the

volume; Aeles et al. report variations in fiber length and

length changes in different fascicles of the same muscle (Aeles

et al., 2022). Similarly, muscle attachments are modelled as

points, whereas they in reality are surface areas. A study

compared a three-dimensional fiber geometry and a lumped

parameter model and showed that lumped parameter models

overestimated fiber excursion (Blemker and Delp, 2006).

Another factor involved in overestimating muscle excursion

might be the tendon stiffness value. Modeling tendon as

compliance seems a critical assumption as its influences fiber

length excursion during walking (Lichtwark and Wilson, 2007;

Lai et al., 2015). This study adopted the value of the Achilles

tendon’s stiffness from a previous study (Delabastita et al., 2020)

which allowed us to estimate similar fiber length patterns in GL,

GM, and SO similar to reported with experimental observations.

Nonetheless, it was assumed that triceps surae muscles shared the

same normalized stiffness (equal to 15), which affected each
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model differently as its absolute (non-normalized) value

depended upon MIF and TSL and, therefore, varied among

muscles.

Also, other modeling simplifications have likely influenced

fiber length estimations. For instance, patellar and quadriceps

tendons were not modeled independently in any of the models,

whereas they have been demonstrated to have different functions

and mechanical properties (Sprague et al., 2019). In addition,

measuring skeletal motion in the foot requires multi-segmental

foot models, which in turn influence fiber lengths in triceps surae

muscles (Zandbergen et al., 2020). By incorporating a more

detailed description of patellar and quadriceps tendons, and

bone foot geometry, it would be expected to capture muscle

paths better and improve the representativeness of MTU

mechanics in generic models.

Further limitations in studying the validity of

musculoskeletal models should be noted. First, evaluation of

estimated muscle excitations as time series largely consisted of

comparing them to observed surface EMGs, but surface EMG

signals in turn are sensitive to electrode placement, muscle

fatigue, crosstalk from nearby muscles, and data post-

processing methods. Furthermore, surface EMGs were

measured with one bipolar sensor per muscle. It has been

reported that EMG signals may vary among different regions

of the same muscle (Vigotsky et al., 2018). In addition, modelled

MTU time-dependent behavior will change if a different

simulation approach is adopted, for instance, in dynamically

consistent or in EMG-informed simulations. Thus, the results of

these studies should be interpreted in the context of the

modelling approach.

In terms of the generalizability of the results, the evaluation

was performed using a direct collocation dynamic optimization

which represents some advantages with respect to other

algorithms used to solve muscle redundancies such as static

optimization and computed muscle control (Thelen et al.,

2003). For instance, the tendon deformation is neglected in

static optimization, which might not be an appropriate

assumption in large tendons such as the Achilles tendon (Lai

et al., 2015) and patellar tendon (Bohm et al., 2018), and

computed muscle control is sensitive to mass and inertia

properties, as well as the initial time of the simulation

(Wesseling et al., 2014). In contrast, the algorithm developed

by DeGroote et al. incorporates tendon compliance and has a

more robust formulation of the dynamic optimization than using

direct shooting methods (De Groote et al., 2016). In addition, the

software toolkit OpenSim Moco has been recently implemented

in OpenSim, and uses direct collocation methods similar to the

algorithm used in this study (Dembia et al., 2020). In this regard,

our results should be compatible with the ones provided by

OpenSimMoco when the inverse kinematic and inverse dynamic

solutions are prescribed.

Future work to improve biofidelity of estimated muscle

excitations from generic musculoskeletal models may include

more detailed descriptions of muscle and bone geometry and

paths and incorporate more experimental observations for their

validation. We also conclude that evaluating biofidelity with on/

off timing agreement and reliance on reserve actuators is

insufficient to characterize MTU mechanics, as different

musculoskeletal models, scaling methods, and optimization

criteria estimate different fiber length patterns with good on/

off timing agreement and no dependency in reserve actuators. As

such, caution must be taken in interpreting estimations across

different load conditions, for instance, the prediction of

metabolic energetics within different walking speeds, as

estimates might be misleading if MTU time-dependent

behavior such as muscle excitations or fiber lengths are not

adequately validated.

Finally, the Lai-Arnold model using non-linear scaling of

OFL and TSL and scaled MIF with a performance criterion based

on muscle effort squared better captured muscle excitations

among all the variants evaluated in this study. Interestedly,

the Rajagopal model, using either linear or non-linear scaling

of OFL and TSL and scaled MIF with a performance criterion

based on muscle effort squared, better captured fiber lengths

compared to reported data in the literature. The Lai-Arnold

model was derived from the Rajagopal model, and similarities

were therefore expected. However, the modifications performed

by Lai et al. (Lai et al., 2018) in the original formulation of the

Rajagopal model improved muscle excitation estimations across

walking speeds, particularly in the BF, and ST (Figures 1, 4), but

yielded a higher disagreement of fiber lengths, especially in the

VL. Thus, it is suggested that, among all the variants evaluated in

this study, the Lai-Arnold model using non-linear scaling of OFL

and TSL and scaled MIF with performance criterion based on

muscle effort squared might be preferred if muscle excitation

estimates are the outcomes of interest, but caution is advised in

interpreting fiber length estimations. On the other hand, the

Hamner model had the lowest biofidelity, which also led to the

low force-generation capacity of the MTU actuators compared to

other models. Therefore, the accuracy of the estimations of the

muscle-tendon dynamics, particularly at high walking speeds,

should be considered in the context of its application.

Conclusion

In this study, three generic musculoskeletal models, four

scaling variants, and four performance criteria based on

muscle effort minimization were performed to examine

how they influence estimated muscle excitations as time

series, based on experimental data at different walking

speeds. Interactions between them were analyzed to

determine which modelling combination estimated muscle

excitations and fiber lengths that best agreed with observed

EMGs at different walking speeds. We found best on/off

timing and excitation/speed increment rates agreement
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with the performance criterion of minimized muscle effort to

the power of 2 in all models and scaling methods, compared to

criteria with higher powers. Among models and scaling

variants, we found best time-series agreements with the

Hamner model without scaled MIF and with the Lai-

Arnold model with non-linearly scaled OFL and TSL and

scaled MIF. Overall, muscle excitations were best estimated

with the Lai-Arnold model, but fiber lengths best agreed with

previously reported experimentally-measured fiber lengths

with the Rajagopal model. Despite moderately good

estimated excitations in most muscles, the Hamner model

required higher reserve actuators and estimated fiber lengths

that agreed least with those reported in the literature.

Common disagreements with EMG were observed in all

model combinations, such as excitation delays and

underestimated co-activation, which point to both model

simplifications and to human motor behavior complexity.
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