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Heat shock protein 90 (Hsp90) is a molecular chaperone that
is involved in the activation of disparate client proteins. This
implicates Hsp90 in diverse biological processes that require
a variety of co-ordinated regulatory mechanisms to control its
activity. Perhaps the most important regulator is heat shock factor
1 (HSF1), which is primarily responsible for upregulating Hsp90
by binding heat shock elements (HSEs) within Hsp90 promoters.
HSF1 is itself subject to a variety of regulatory processes and
can directly respond to stress. HSF1 also interacts with a variety
of transcriptional factors that help integrate biological signals,
which in turn regulate Hsp90 appropriately. Because of the

diverse clientele of Hsp90 a whole variety of co-chaperones
also regulate its activity and some are directly responsible
for delivery of client protein. Consequently, co-chaperones
themselves, like Hsp90, are also subject to regulatory mechanisms
such as post translational modification. This review, looks at
the many different levels by which Hsp90 activity is ultimately
regulated.

Key words: chaperones, co-chaperones, heat-shock response,
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INTRODUCTION

Hsp90 (heat-shock protein 90) accounts for 1–2% of the
cellular protein and rises to 4–6% in stressed cells [1–4].
Levels of Hsp90 in cells are dependent on the master HSR
(heat-shock response) regulator HSF1 (heat-shock factor 1),
which is subject to a complex set of regulatory processes.
Additionally, Hsp90 is regulated by other mechanisms that have
an impact on its transcription, and is subject to post-translational
modification and regulation by co-chaperones. Human cells
contain a constitutively expressed Hsp90β (HSP90AB1) and a
heat-inducible Hsp90α (HSP90AA1) [5], that were separated
∼500 million years ago, but still maintain 86 % amino acid
sequence identity [6]. Despite high conservation the proteins
display different functions [7]. Interestingly, Hsp90α is not
essential in mammals, whereas Hsp90β is, suggesting that
Hsp90β is involved in processes that maintain viability, whereas
Hsp90α is involved in more adaptive roles [8,9]. Hsp90 is
responsible for the maturation of key signalling proteins including
regulatory kinases [10–12], steroid hormone receptors [13] and
transcription factors [14]. Hsp90 has been implicated in the
assembly and disassembly of protein complexes [15] and can
suppress phenotypic variation [16–19]. Collectively, Hsp90α and
Hsp90β interact with approximately 10% of the eukaryotic
proteome [20], representing ∼2000 proteins [21], of which, to
date, ∼725 experimentally determined interactions have been
confirmed by direct protein–protein interaction experiments.
This implicates Hsp90 in diverse biological processes [3]
that necessitate a wide range of mechanisms to regulate its
function. The present review examines the major mechanisms,
from HSF1 to co-chaperones, which regulate cytoplasmic
Hsp90s.

STRUCTURE OF Hsp90

The structure and chaperone cycle of Hsp90 has been extensively
reviewed elsewhere [22,23] and, consequently, only a basic
description is provided in the present review. Hsp90 consists of
three domains: an N-terminal dimerization domain, responsible
for binding ATP, which is connected to a middle domain via an
unstructured charged linker, and the C-terminal domain, which is
responsible for the inherent dimerization of the protein, while the
N-terminal domains undergo transient dimerization by binding
ATP [24] (Figure 1). Binding of ATP promotes the movement of
a lid segment within each N-terminal domain that locates over
the bound ATP [25]. The movement of the lids exposes surface
residues that are subsequently involved in transient dimerization
of the N-terminal domains of Hsp90 (Figures 1B and 1C). ATPase
activity of Hsp90 is achieved when the middle domain catalytic
loop of Hsp90 moves to an open active state [26] (Figure 2). This
loop possesses a conserved arginine residue (Arg380 in yeast),
which interacts with the γ -phosphate of ATP, and thus promotes
ATP hydrolysis by Hsp90. The active conformation of the catalytic
loop is modulated by the binding of the co-chaperone Aha1, which
consequently stimulates the ATPase activity of Hsp90 [27]. The
conformational changes, including lid closure and modulation of
the catalytic loop, represent the rate-limiting step of the chaperone
cycle of Hsp90 (Figure 3). Currently, the molecular detail by
which the Hsp90 chaperone cycle brings about the activation and
maturation of client proteins remains elusive.

ACTIVATION OF HSF1 AND THE HEAT-SHOCK RESPONSE

HSF proteins are responsible for regulating the HSR [28–31],
which is induced by a variety of stimuli including elevated
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Figure 1 Structure and conformational change in Hsp90

(A) The Hsp90 dimer in a closed conformation involving transient dimerization of the N-terminal
domains. N-terminal domains, yellow and green; middle domains, blue and cyan;
C-terminal domains, orange and magenta; charged linker, red. (B) Conformation of the lid
and N-terminal segment of the N-terminal domains of Hsp90 in the open undimerized state
(left-hand panel, yellow) and the closed dimerized state (right-hand panel, green). Lids, red;
N-terminal segment, blue. (C) The closed transient N-terminal dimerized state of Hsp90 (yellow
and green). Lids, red; N-terminal segment, blue. N-terminal dimerization involves movement of
the N-terminal segments of the N-terminal domains and association with the closed lid segments
and with the neighbouring N-terminal domains.

temperature, bacterial or viral infection and oxidative stress [32].
As a master regulator of the HSR and a client protein of Hsp90,
understanding HSF1 function is central to understanding the
regulation of Hsp90.

All HSF proteins consist of a DBD (DNA-binding domain), a
trimerization domain consisting of three leucine zipper repeats
(HR-A/B), an HR-C region, which negatively regulates the HR-
A/B domain, and a CTA (C-terminal transactivation) domain,
which is negatively controlled by the central RD (regulatory
domain) (reviewed in [30,33–35]) (Figure 4A). Yeast also

Figure 2 Conformation of the catalytic loop of Hsp90

The N-terminal domain of Hsp90 is shown in yellow. The middle domain is represented by two
superimposed molecules of Hsp90 (cyan and green), one with a closed inactive catalytic loop
(blue) and the other with an open active state (red) that interacts with the bound ATP, which is
shown as a stick model. Arg380 of the catalytic loop is either interacting with the ATP (active
state) or is held in an inactive state. Broken blue lines represent hydrogen bonds.

possesses a novel NTA (N-terminal transactivation) domain
[36]. The DBD of HSFs bind HSEs (heat-shock elements) that
consist of a variable number of nGAAn units (reviewed in [37])
and the precise arrangement of these units can promote co-
operativity between binding HSF trimers. The typical types of
HSE approximate to three or more contiguous 5 bp repeat motifs
(i.e. nTTCnnGAAnnTTCn).

The trimerization domain of HSF consists of two heptad
repeats (HR-A and HR-B) that form a triple-stranded α-helical
coiled coil [38]. In both Drosophila and mammalian HSF1 a
third heptad repeat (HR-C) is responsible for intramolecular
interactions with HR-A and HR-B, which maintain HSF1 in a
monomeric state (Figure 4A), but is readily reversed by stress
[39–41]. Trimerization is also stimulated by DBD intermolecular
aromatic interactions between a tryptophan and a phenylalanine
residue [42], and in mammals by two cysteine residues that form
a disulfide bond in response to stress [42,43].

The CTA domain is predominantly unfolded, but its α-helical
content increases due to elevated temperature resulting in the
hyperphosphorylation of the protein. This is required for sustained
increases in transcriptional activation when a single HSF trimer
is bound to three nGGAn units [44,45], but dispensable when
HSF1 trimers bind co-operatively to HSEs consisting of four or
more nGAAn units [46–48], where each HSF1 molecule binds
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Figure 3 The Hsp90 chaperone cycle

ATP binding triggers transient N-terminal dimerization, through conformational changes in the
N-terminal domain of Hsp90 including those of the lid and N-terminal segment, and association
with the catalytic loop of the middle domain. These motions act co-operatively to form the
catalytically active closed state of Hsp90. Aha1, can accelerate the formation of this closed state
by modulating the catalytic loop to an active open state. Once ATP is hydrolysed the N-terminal
domains separate, the open inactive state of Hsp90 is formed and ADP is released. Hsp90 is
now ready to enter the next cycle.

at least two of the four nGAAn units. In yeast, the NTA domain
is unstructured [49] and appears to mediate transient activation
of HSF1, suggesting that it behaves as a negative regulator of
the CTA domain and that this domain is not wholly sufficient
for stress-mediated HSF1 activation [50,51]. The CTA domain
drives increasing levels of sustained promoter activity over normal
growth temperatures (15–33 ◦C), but transient activity, directed
by the NTA domain, is induced over a higher and narrower
temperature range (34.5–39 ◦C) [52].

During stress, denatured protein levels accumulate [28], which
triggers the conversion of the cytoplasmic non-DNA-binding
HSF1 into a homotrimer that gains DNA-binding activity. Thus
HSF1 is released from its repressed association with Hsp90
[53–55], undergoes homotrimerization [41] and translocation
to the nucleus, where it binds HSE [56–58]. However, as yet
it is incapable of enhancing transcription and has minimal
transactivation competence [59–64]. The next phase involves a
series of phosphorylations that transforms the HSF1 trimer into
an active transcription factor (reviewed in [34,35]). This leads to
a rapid up-regulation of Hsp90 as well as other chaperones and
co-chaperones, including Hsp70, Hsp40 and Hsp27 [65].

Under normal conditions, many sites in the RD of HSF1,
including Ser230, Ser303, Ser307 and Ser363 are phosphorylated.
Phosphorylations at Ser303, Ser307 and Ser363 are actually repressive
to transcriptional activity, but, significantly, these can be
overridden by stress [66,67] and appear to represent a stress-
sensitive repressive system [34]. In contrast, phosphorylation at

Figure 4 Domain structure of mammalian HSF1 and the promoter and
upstream control elements of Hsp90-encoding genes

(A) The domain structure of HSF1. The N-terminal DBD consists of the first 110 amino acids
and is followed by the HR-A/B trimerization domain consisting of amino acids 130–203. The RD
is encompassed by residues 221–383 and is followed by the HR-C region, residues 384–409,
which negatively regulate the HR-A/B trimerization domain. The CTA domain consists of residues
410–529 and is negatively regulated by the RD (green arrow). Activation of HSF1 involves
trimerization through the HR-A/B domains. Yeast HSF1 differs in that it also possesses an
N-terminal transactivation domain that negatively regulates the RD. (B) Promoter and regulatory
regions of human Hsp90-encoding genes. Sequences start from 5′ upstream regions, − 1757
for HSP90AA1 and − 1039 for HSP90AB1, and end at the second exon. The approximate
locations of various control elements are indicated and can be identified from the key. E1 and
E2 are exons 1 and 2. The UPE ( − 125 to − 37 bp) region of HSP90AA1 confers a 10-fold
up-regulation of the core promoter. The core promoter ( − 36 to + 37 bp) of HSP90AB1 confers
constitutive expression, and the two typical HSE are responsible for maintaining a high level of
constitutive expression.

Ser230 appears to promote transcriptional activity of HSF1 and
the basal phosphorylation state at Ser230 increases upon heat
shock. However, the S230A mutation does not wholly repress
heat-shock-induced transcriptional activity [68]. Another, very
important stimulatory phosphorylation occurs at Ser326, which
promotes the association of the co-activator Daxx, which appears
to be an important mediator of HSF1 activation [69]. However,
there are numerous kinases that are responsible for HSF1
phosphorylation events (reviewed in [34,35]), and these probably
help to integrate signals from different signalling pathways.
Although such phosphorylation events appear to be critical for
HSF1 activation, recent evidence suggests that it is possible to
uncouple the stress-inducible phosphorylation of HSF1 from its
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activation, suggesting that the phosphorylation signature of HSF1
alone is not an appropriate marker for HSF1 activity [70]. HSF1
has also been reported to be regulated by SUMOylation [71–74]
and acetylation [75–77].

In addition to post-translational modifications, a number
of other mechanisms exist that regulate HSF1. The RD of
HSF1 carries an intrinsic ability to sense heat stress [78] and
Hsp90 might play a role in repressing trimeric HSF1 [53,79].
Furthermore, Hsp70 and Hsp40 appear to be able to inhibit
HSF1 transactivating activity, which might occur through the
recruitment of a Hsp70-interacting transcriptional co-repressor,
CoREST (co-repressor for element-1-silencing transcription
factor) [80,81]. A ribonucleoprotein complex consisting of the
translation elongation factor eEF1A (eukaryotic elongation factor
1A) and a constitutively expressed non-coding heat-shock RNA-1
RNA has also been reported to act as a HSF1 activator, and in vitro
can promote the trimerization of HSF1 [82,83]. HSF1 can also
associate with the molecular chaperone TriC [84], but whether
Hsp90 is chaperoning the assembly of TriC or whether TriC plays
a regulatory role in Hsp90 expression remains unknown.

In summary, HSF1 is the master regulator of Hsp90 levels in
cells. Consequently, a complex series of regulatory mechanisms
have evolved, including transcriptional, HSF1 trimerization, co-
operative binding to HSEs, post-translational modification and
the ability of HSF1 to detect stress directly. Together these
mechanisms integrate a variety of signals that bring about
appropriate changes in the level of Hsp90, as well as other heat-
shock proteins, in cells.

REGULATION OF Hsp90 GENE EXPRESSION

Once HSF1 is activated it up-regulates the HSR by binding to
HSEs upstream of heat-shock genes, such as those encoding
Hsp90, Hsp70, Hsp40 and small HSPs. In humans, the
complement strand of chromosome 14q32.33 encodes the
HSP90AA1 gene (Hsp90α), while HSP90AB1 (Hsp90β) is located
at 6p21. Unusually for molecular chaperones, the human Hsp90-
coding genes contain intron sequences and the translational
initiation of both genes is located within the beginning of the
second exon [85–87]. Within the first intron of HSP90AB1, there
are two typical HSEs that are responsible for maintaining a high
level of constitutive expression [88], in addition to two atypical
HSEs (Figure 4B). A third atypical HSE site is located upstream of
the transcriptional start site (Figure 4B). In contrast, HSP90AA1
possesses two typical HSEs immediately upstream of the TATA
box, two additional atypical sites further upstream and another
atypical site within the first intron [89] (Figure 4B).

The core promoter ( − 36 to + 37 bp) of HSP90AB1 confers
constitutive expression [89]. The promoter of HSP90AB1 contains
a CAAT box, an SP1 site, a TATA box ( − 27 bp) and a
transcriptional start. In contrast, the promoter of HSP90AA1
contains an SP1 (specificity protein 1) site, a TATA box ( − 30 bp)
and the transcriptional start. The core promoter appears not to
contain a CAAT box, although one has been located at − 1144 bp
(Figure 4B).

The UPE (upstream promoter element) ( − 125 to − 37 bp)
region of the HSP90AA1 gene confers a 10-fold up-
regulation of the core promoter. In contrast, the region
− 1377 to − 848 bp has a negative effect on expression, but
a further section, − 1756 to − 1377 bp, provides positive
regulation that overcomes this negative effect. The UPE of
HSP90AA1 ( − 125 to − 37 bp) contains an HSE at − 96
to − 60 bp, in which there is an array of 5 bp HSE motifs
(gGAgggTTCTTCcGGAagTTCaaGAggcTTCtgGAAa). The

HSEs derived approximate to gGAgggTTCt, cTTCcgGAA
and gTTCaaGAggcTTCtgGAAa, and this has been named the
proximal HSE complex and meets the criterion of a typical HSE
of at least three adjacent 5 bp motifs [89]. Within the upstream
region there are a further five motifs, two located at − 1031 to
− 1022 bp (cGAAaaTTCc) and another that matches the criterion
of a typical HSE at − 307 to − 288 bp (gGGAccTTCccGAga).
Another HSE is found within the first intron at + 238 to + 247 bp
(cTTCagGAAt). During heat shock, induction of HSP90AA1 is
dependent on the coexistence of the distal HSE at − 1031 to
− 1022 bp and the proximal HSE complex [89].

In comparison, the HSP90AB1 gene possesses a CRE (cAMP-
response element) ( − 126 bp) and a UPE that contains a CAAT
box ( − 87 to − 84 bp), an SP1 site ( − 51 bp), the TATA
box at − 27 bp and finally the transcriptional start ( + 1 bp)
(Figure 4B). The HSP90AB1 gene possesses one upstream
atypical HSE at − 684 to − 634 bp (gGAAacTgCtgGAAa) and
four HSEs in the first intron of the gene. Two of these are
typical HSEs (gTTCtgGAAgaTTCa at + 680 to + 695 bp and
gTTCtgGAAgcttct at + 733 to + 747 bp), whereas the other
two are atypical (cTTCcaGAtctTTCt at + 628 to 642 bp and
tGAAttTTCa at + 1337 to + 1346 bp). The upstream HSE
appears not to respond to heat shock, whereas the HSEs within the
first intron play a vital role [88]. The intronic HSEs of HSP90AB1,
relative to the atypical sites, are bound tightly by HSF1, and appear
to be the most important for maintaining its high constitutive and
heat-shock expression levels. Novel initiation sites within the first
intron have also been identified for both genes [88,89].

In addition to the activation by HSF1, Hsp90β is up-regulated
by the IL (interleukin)-6 transcription factors NF-IL6 (nuclear
factor for IL-6) and STAT-3 (signal transducer and activator
of transcription 3) [90]. Furthermore, IFN-γ (interferon-γ )
activation of STAT-1 also up-regulates Hsp90β [90,91]. The
binding sites for STAT-1 and STAT-3 appear to overlap with
HSEs of HSF1 [90] (Figure 5), and significantly, the DNA-binding
sites of STAT proteins (TCCN2–4GAA) are very similar to those
of HSF1 (TCCnnGAAnnTTC) [37,92]. Additionally, STAT-1
and HSF1 can interact with each other and bring about strong
transcriptional activation, whereas STAT-3 and HSF1 appear
to be unable to interact and therefore antagonize each other,
resulting in reduced expression of Hsp90β [90,91]. This leads
to a rather complicated regulatory system where STAT-1 and
STAT-3 activation leads to activation of HSP90AB1 promoters,
whereas interplay with HSF1 can modulate expression either up
or down. It is likely that STAT-1 and STAT-3 play an important
role in regulating Hsp90β under non-stressful conditions, and
their interaction with HSF1 is a means by which they are able to
integrate their responses with the stress response [90] (Figure 5).
Furthermore, NF-IL6 has a similar, but not identical, DNA-
binding consensus sequence (TTnnGnAAT) [93,94], but the
significance of this, if any, is unknown.

The expression of human Hsp90 is augmented by Strap
(stress-responsive activator of p300) [95], a transcription cofactor
responsible for the control of the DNA damage response through a
mechanism involving regulation of p53 activity [96,97] (Figure 5).
Strap was reported as a heat-shock-inducible protein that forms
a chromatin-associated complex with HSF1, and the co-activator
p300, which has a histone acetylase activity and is required for
activation by certain transcription factors [98]. It is thought that the
ability to up-regulate Hsp90 expression might involve chromatin
acetylation.

The HSP90AA1 gene is under NF-κB (nuclear factor κB)
regulatory control (Figure 5). The NF-κB family of transcription
factors regulate the expression of a large variety of genes involved
in a number of cellular processes such as inflammation, immune
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Table 1 Post-translational modifications occurring in yeast and human Hsp90 and their effects on the Hsp90 chaperone cycle and interactions with client
proteins and co-chaperones

yHsp90, yeast Hsp90.

Post-translational modification Residue Comment

Phosphorylation Hsp90α Thr5 and Thr7 In response to DNA damage
yHsp90 Thr22 Reduces interaction with Aha1 in yeast
yHsp90 Thr22 Affects more than a single class of client protein maturation
Hsp90α Thr36

Hsp90α Tyr197 Promotes the dissociation of Cdc37p50

Hsp90α Ser391 May be required for ligand-independent epidermal growth factor receptor
degradation

Hsp90α Thr725 Determines the differential binding status of HOP and CHIP
Hsp90α Ser231 Dissociation of AhR and destabilization of AhR
Hsp90β Ser226 and Ser255

Acetylation Hsp90α Lys69, Lys100, Lys292, Lys327, Lys478, Lys546 and Lys558 Glutamine mutants show dcreased binding of nucleotides to Hsp90 (except
K292Q)

Hsp90α Lys100, Lys292, Lys327, Lys478, Lys546 and Lys558 Glutamine mutants show decreased binding with co-chaperones and, to a
lesser extent, Hsp40

Hsp90α Lys69, Lys100, Lys327, Lys478, Lys546 and Lys558 Glutamine mutants show reduced binding to CHIP, disrupted binding to
Hsp70 and c-Raf (except K327Q)

Hsp90α Lys292 Glutamine mutant shows decreased association with client proteins,
including ErbB2, p60v-src, Raf-1, Hif1, mutant p53 and androgen receptor,
and with some co-chaperones, including Aha1, CHIP and FKBP52

Nitrosylation Hsp90α Cys597 Reported to inhibit Hsp90α ATPase activity
SUMOylation yHsp90 Lys178, Hsp90α Lys191 Facilitates the association of Aha1 with Hsp90

response, cell growth and development, and is activated as a
response to a variety of signals, including cytokines, pathogens,
injuries and other stressful conditions [99–106]. A single NF-κB
putative consensus sequence (GGTAGTTCCA) was identified
in the 5′-flanking region of the HSP90AA1 promoter (but not
in HSP90AB1) [5]. Binding of NF-κB to this site appears to
up-regulate the expression of Hsp90α. Evidence suggests that
HSP90α is required not only for the biosynthesis of the IKK
(inhibitor of NF-κB kinase) [107], but also for the constitutive
and inducible expression of IKK and NF-κB [107–111]. Thus NF-
κB activity influences HSP90AA1 gene expression, but reciprocal
interactions between the activities of HSP90α and NF-κB are
likely to constitute a regulatory loop that can influence cell
survival and response to stressful agents.

In summary, the core promoter and the two typical HSEs
in intron 1 are responsible for maintaining high constitutive
expression of Hsp90β. The intronic HSEs also ensure that
HSP90AB1 is able to respond to heat shock. In contrast, the
UPE, in which the proximal HSE complex is situated, confers
a 10-fold up-regulation of the core promoter of HSP90AA1. The
region at − 1377 to − 848 can promote a negative effect on
expression that is overcome by another upstream region at − 1756
to − 1377. However, during heat-shock induction, the distal HSE
at − 1031 to − 1022 bp together with the proximal HSE complex
is responsible for the up-regulation of Hsp90α. Finally, a variety
of other transcriptional regulators are used to integrate diverse
cellular signals with the HSR.

POST-TRANSLATIONAL REGULATION OF Hsp90

Because Hsp90 is involved in diverse cellular processes,
it is perhaps not surprising that a vast array of post-
translational modifications exist for both Hsp90α and Hsp90β that
regulate their chaperone cycle. These include phosphorylation,
acetylation, SUMOylation, methylation, ubiquitylation and S-
nitrosylation and have been extensively reviewed in [7,112].
Post-translational modifications discussed in the present review

are shown in Figure 6 in the context of the yeast protein and
their effects summarized in Table 1. Although most of these
modifications are common to both Hsp90α and Hsp90β, others,
such as phosphorylation at Thr5 and Thr7 of Hsp90α in response
to DNA damage [113,114], are specific. This offers a window into
understanding not only the differential regulation of cytoplasmic
Hsp90s, but also the different processes and functions that these
proteins play within cells.

Post-translational modifications have been seen to differentially
regulate Hsp90 proteins in response to heat shock within different
cellular environments [115,116]. Phosphorylation regulates not
only Hsp90 activity directly, but also its ability to interact
with chaperones, nucleotides and client proteins [113,115,117–
120]. For example, phosphorylation of yeast Hsp90 at Thr22

(human Thr31) significantly reduces its interaction with the co-
chaperone Aha1 [120,121]. Similarly, the phosphorylation of
Hsp90α at Tyr197 by the Yes kinase promotes the dissociation
of another co-chaperone, Cdc37p50, from Hsp90α [118]. Another
phosphorylation that appears to be unique to Hsp90α occurs at
Ser391, and may be required for ligand-independent epidermal
growth factor receptor degradation probably through a PNCK
(pregnancy-up-regulated non-ubiquitous calmodulin kinase)-
dependent pathway [122,123]. The phosphorylation of Thr725 of
Hsp90α determines the differential binding status of the HOP
(Hsp70/Hsp90-organizing protein) and CHIP [C-terminus of the
Hsc (heat-shock cognate) 70-interacting protein] co-chaperones.
It appears that phosphorylation prevents the binding of CHIP, but
enhances HOP interaction with Hsp90α [119]. In contrast, other
phosphorylations within Hsp90α and Hsp90β appear to have
effects only on one isoform. For example, the phosphorylation
of Thr90 appears to signal the translocation of Hsp90α to the cell
surface for secretion [124,125].

A major role played by phosphorylation of Hsp90 must
be to differentially regulate Hsp90s activity with structurally
diverse client proteins. For example, the phosphorylation of
Ser231 (Hsp90α) or Ser226 and Ser255 (Hsp90β) result in the
specific dissociation of AhR (aryl hydrocarbon receptor) and
destabilization of AhR. In support of this, alanine mutations
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Figure 5 Integration of signalling pathways in the control of Hsp90
expression

(A) Known signalling pathways that affect Hsp90 expression. The co-activator Daxx is not
shown in the scheme, but is known to promote the activation of HSF1 [69]. (B) Possible binding
scenario for transcriptional activators and cofactors that regulate Hsp90 transcription. IFN-γ ,
interferon-γ ; IL-R, interleukin receptor; JAK, Janus kinase; MAPK, mitogen-activated protein
kinase.

at these position up-regulated AhR and its association with
Hsp90 [126]. In contrast with phosphorylations that differentially
regulate Hsp90, others such as Thr22 in yeast Hsp90 and Thr36

in Hsp90α, appear to affect more than a single class of client
protein as was evident using T36A and T36E Hsp90 mutants
[120,121]. The kinases that carry out such phosphorylations
have been reviewed in [112], and include double-stranded DNA
protein kinase, B-raf, Akt, c-Src, protein kinase A, SweWee1

and casein kinase 2. Although much work has been carried
out on determining the effects of Hsp90 phosphorylation, the
phosphatases that act on Hsp90 to regulate phosphorylation
are not well characterized, although yeast Ppt1 [PP5 (protein
phosphatase 5) in humans], positively regulates Hsp90 activity
through dephosphorylation [120,125,127].

Hsp90 is also subject to acetylation by p300, whereas
deactylation occurs by a variety of HDACs (histone deacetylases)
including HDAC1, HDAC6 and HDAC10 [128–132]. In one
study seven acetylated lysine residues were identified in Hsp90α:
Lys69, Lys100, Lys292, Lys327, Lys478, Lys546 and Lys558 [133]. Using
glutamine as an acetylation mimetic, all of the mutants showed
decreased binding for nucleotide, except K292Q, which displayed
increased binding. The acetylation-mimetic mutants of Lys100,
Lys292, Lys327, Lys478, Lys546 and Lys558 also displayed decreased
binding with co-chaperones and, to a lesser extent, Hsp40. In

Figure 6 Post-translational modification of Hsp90

A single monomer of yeast Hsp90 (yellow) is shown in cartoon format. Amino acid residues
from yeast and human Hsp90 that are post-translationally modified are shown as spheres and
mapped to the correct location on yeast Hsp90. Modified amino acid residues for Hsp90α Ser5,
Ser7 and Ser234 and Thr725 and Hsp90β Ser255 that are not represented in the yeast structure are
omitted. Green spheres, amino acids that are phosphorylated; cyan spheres, amino acids that
are acetylated, magenta spheres, amino acids that are SUMOylated; gold spheres, amino acids
that are nitrosylated.

contrast, the glutamine mutants at Lys69, Lys100, Lys327,
Lys478, Lys546 and Lys558 showed reduced binding to CHIP,
whereas all of the acetylation mutants, except K327Q, disrupted
binding to Hsp70 and with c-Raf. The acetylated mimetic K292Q
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was also reported to show a decreased association with client
proteins, including ErbB2, p60v-src, Raf-1, Hif1, mutant p53,
and androgen receptor and with some co-chaperones, including
Aha1, CHIP and FKBP52 (FK506-binding protein 52) [134].
Clearly, these results suggest that acetylation has a major impact
on the regulation of human Hsp90.

Other modifications that have been reported include S-
nitrosylation, ubiquitylation and SUMOylation. S-nitrosylation
at Cys597 by nitric oxide (NO) was reported to inhibit Hsp90α
ATPase activity and may represent a negative-feedback loop
reducing the activation of eNOS (endothelial nitric oxide
synthase), which is Hsp90-dependent [135]. The mechanism by
which S-nitrosylation appears to affect Hsp90 might be through an
allosteric mechanism bringing about the inhibition of its ATPase
activity [136]. An increase in the ubiquitylation of human Hsp90
was shown to inhibit its function and cause a dissociation of client
protein, including p53, Cdk4 (cyclin-dependent kinase 4) and Plk
(Polo-like kinase 1), Akt1 and eNOS, which were subsequently
degraded by the proteasome [137,138]. Swe1 phosphorylation of
human Hsp90 signals its ubiquitylation and degradation by the
proteasome, but the underlying detailed mechanism is unknown
[139].

As with ubiquitylation of Hsp90, oxidative stress, which results
in the direct oxidation of cysteine residues, also leads to client
protein degradation, including Cdk4, cyclin D1, Raf-1, Akt and
mutant p53 [140]. Finally, the asymmetric SUMOylation of the
N-terminal domain of Hsp90 [Lys178 (yeast) and Lys191 (Hsp90α)]
appears to facilitate the association of Aha1 with Hsp90 [141].

In summary, post-translational modifications of Hsp90 offer
a means by which the chaperone cycle can be modulated. In
particular, it aids the activation of a structurally diverse clientele
by Hsp90 by allowing a means by which specific Hsp90s can
be differentially regulated. Consequently, a vast array of post-
translational modifications are involved in regulating Hsp90, but,
for the most part, the regulatory mechanisms involved in these
processes are still poorly understood.

THE ATPase ACTIVITY OF Hsp90 AND REGULATION BY
CO-CHAPERONES

Determining the exact mechanism by which Hsp90 hydrolyses
ATP [24] is critical to understanding how client protein and
co-chaperones regulate this activity. The crystal structure of
the yeast N-terminal domain of Hsp90 in complex with AMP-
PNP (adenosine 5′-[β,γ -imido]triphosphate), a non-hydrolysable
analogue of ATP, provided the first direct evidence that Hsp90 was
an ATPase [142–145]. Currently all Hsp90s are considered to be
ATPases [146–149]. The structure of full-length yeast Hsp90 in
complex with Sba1 provided the mechanistic detail by which the
catalytically active state of Hsp90 forms, following the binding
of ATP [22,25,150].

Rather than ATP hydrolysis [151], the rate-limiting step
appears to be conformational change [24], which is now
supported by recent kinetic analyses and structural data
[25,152,153]. Previously, multi-exponential kinetics using FRET
were interpreted as the formation of discrete conformational
intermediates in the catalytic cycle [22,25,150,153–155].
However, recent work using yeast Hsp90 and 1-nm fluorescence
probes based on photoinduced electron transfer, suggest a
mechanism where closure of the lids, β-strand exchange and
association of N- and M-domains share similar kinetics, and that
these conformational changes act co-operatively to produce the
catalytically active state ([156], and Andrea Schulze, Gerti Beliu,
Dominic A Helmerich, Jonathan Schubert, Laurence H Pearl,

Figure 7 Structure of Hsp90–Aha1 and Hsp90–Cdc37p50 co-chaperone
complexes

(A) Structure of the Hsp90–Aha1 complex by superimposition of the middle domain of Hsp90
(cyan) in complex with Aha1 (green) on to the full-length structure of Hsp90 (N-terminus,
yellow; C-terminus, gold). The binding of Aha1 causes the catalytic loop of Hsp90 (magenta)
to move to its open state and allows Arg380 to interact with the γ -phosphate of ATP (green stick
representation). Broken blue lines represent hydrogen bonds. (B) Structure of the N-terminal
domain of Hsp90 (green) in complex with the C-terminal domain of Cdc37p50 (cyan). Cdc37p50

binds to the lid segment (red) of the N-terminal domains of Hsp90, preventing them from
conformational movements that are required for the formation of the catalytically active state
through N-terminal dimerization.

Chrisostomos Prodromou and Hannes Neuweiler, unpublished
work) (Figure 3). Thus binding of ATP rapidly releases the
lid from its well-ordered open state to a dynamic intermediate.
Full closure of the lid over the nucleotide-binding pocket occurs
relatively slowly, but significantly in a co-operative manner with
inter- and intra-subunit associations between the NTD and M-
domains, and reciprocal exchange of the N-terminal β-strands.
Furthermore, it appears that Aha1 remodels the catalytic loop
in the M-domain of yeast Hsp90 into a conformation favouring
engagement with ATP (Figure 7A), by stabilizing N/M-domain
interactions [25,157], and by acting directly on the lid to accelerate
closure. It was concluded that these conformational changes
acting in concert limit the overall rate constant of ATP hydrolysis.
With this in mind, we can now look at the effect of co-chaperones
on the Hsp90 ATPase activity in a new light.
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The detailed biochemical and structural mechanistic effects of
co-chaperones on the ATPase activity of Hsp90 has been reviewed
in detail [22]. Consequently, I will only cover the mechanism of
Hsp90 regulation in the light of the co-operative mechanism for
N-terminal dimerization. One of the major roles played by co-
chaperones, such as HOP/Sti1, Cdc37p50 and Sgt1, is the delivery
of client protein to Hsp90 (see [22,23] for reviews). HOP, together
with Hsp70, is responsible for delivering steroid hormone receptor
to human Hsp90. In so doing, HOP, as well as the yeast orthologue
Sti1, inhibits the ATPase activity of Hsp90 [158,159]. This
probably represents a critical step that allows steroid hormone
receptor to engage with human Hsp90. The primary binding site
for HOP/Sti1 on Hsp90 is a highly conserved MEEVD motif that
occurs at the extreme C-terminus of Hsp90 [160]. Additional
contacts to the C-terminal, middle- and N-terminal domains
of Hsp90 have been revealed by biochemical and structural
studies with both the yeast and human protein [158,161,162].
Multiple interaction sites between HOP and human Hsp90 are
supported by more recent evidence [163] and also suggests that
monomeric HOP can bind to Hsp90 [163]. This supports the
previous finding that Sti1 prevents N-terminal dimerization by
interacting with the first 24 amino acid residues of yeast Hsp90,
in addition to the conserved MEEVD motif of Hsp90 [162].
In the light of a mechanism involving co-operative N-terminal
dimerization, the ability of Sti1/HOP to interact with the first 24
N-terminal amino acid residues could compromise this process
(Figure 8). Such a mechanism is compatible with the observation
that HOP, as a monomer, can inhibit Hsp90 ATPase activity, while
simultaneously allowing access for the binding of immunophilins,
which would promote progression of the chaperone cycle [159].

Cdc37p50 is involved in delivering client protein kinases to the
Hsp90 complex, and, in a similar way to HOP and Sti1, it inhibits
the ATPase activity of Hsp90 [164]. Thus Cdc37p50 binds between
the N-terminal domains of Hsp90, interacting directly with the
lids [165]. This prevents motions in the lids that would otherwise
promote co-operative N-terminal dimerization (Figures 7B and
8). Exactly how Cdc37p50 exits the complex allowing progression
of the chaperone cycle is currently unknown. However, the co-
operative mechanism for N-terminal dimerization perhaps offers
an explanation how this might occur (Andrea Schulze, Gerti Beliu,
Dominic A Helmerich, Jonathan Schubert, Laurence H Pearl,
Chrisostomos Prodromou and Hannes Neuweiler, unpublished
work). The results of this study suggested that the co-chaperone
Aha1 enhances the ATPase activity of Hsp90 by releasing the lid
early in the catalytic cycle. It is therefore conceivable that Aha1
displaces Cdc37p50 by modulating the catalytic loop of the middle
domain and by promoting the movement of the lids towards a
closed state favouring N-terminal dimerization (Figure 8).

Another co-chaperone that appears to be involved in client
protein loading, by acting as hub for the formation of a
variety of Hsp90 complexes, is Sgt1 [166–174]. Together with
another co-chaperone, Rar1, Sgt1 plays a central role in the
innate immunity response in plants. Sgt1 associates with the
CBF3 kinetochore complex, with SCF E3 ubiquitin ligases,
with plant R proteins and the related animal Nod-like receptors
[175–182]. Sgt1 consists of three domains: an N-terminal TPR
(tetratricopeptide repeat) domain, a middle CS (CHORD and
Sgt1) domain, and a C-terminal SGS (Sgt1-specific) domain.
The N-terminal TPR domain of Sgt1 is similar to other TPR
domains that bind the conserved MEEVD motif of Hsp90.
Surprisingly, however, the TPR domain of Sgt1 interacts directly
with Skp1 [182], whereas the middle CS domain binds Hsp90
[182]. Structural details showing the CS domain interacting with
the N-terminal domain of Hsp90 have been published [169].
Although the CS domain of Sgt1 is similar to that of Sba1/p23,

Figure 8 Co-chaperone pathways that modulate Hsp90 ATPase activity

Cdc37p50 binds to the lids and prevents molecular rearrangement of Hsp90. HOP appears
to interact with N-terminal segment of Hsp90 and thus may prevent N-terminal dimerization.
Aha1 is able to interact with possibly all of the structural elements that lead to co-operative
N-terminal dimerization of Hsp90. Sba1 interacts with the lid and N-terminal domains of Hsp90
and stabilizes Hsp90 in a closed state that displays a lower rate of ATP hydrolysis. Sgt1, together
with Rar1, is unusual in that it activates Hsp90 in an open state and leads to a stable ADP-bound
complex. Red and blue arrows indicate a mechanism resulting in the inhibition and activation of
ATPase activity respectively. Broken blue arrows indicate interactions that might occur. The cyan
arrow indicates a means by which the rate of ATPase activity is decreased. The green arrows
indicate the co-operative nature of N-terminal dimerization.

unlike this latter co-chaperone, it does not regulate the ATPase
activity of Hsp90 [169,182]. Instead, it recruits Rar1, a plant
co-chaperone, or Chp1 and melusin in mammals, which, in
the case of Rar1, weakly stimulates the Hsp90 ATPase activity
[170]. The structure of the CS domain of Sgt1 and the CHORD
II domain of Rar1 in complex with the N-terminal domain of
Hsp90 has been published [170] (Figure 9A). In contrast with
the activation of the ATPase activity by Aha1, the CHORD II
domain of Rar1 stimulates the ATPase activity of Hsp90 in its
open conformation. This promotes a stable ADP-bound open-
state complex (Figure 9A). It appears that the CHORD II domain
replaces the ATP lid and simultaneously modulates the middle
domain catalytic loop to achieve activation of Hsp90. It is possible
that the Rar1–Sgt1 complex might help promote N- to M-domain
association of Hsp90, but currently this is unknown. The Hsp90–
Sgt1–Rar1 complex perhaps mimics Hsp90’s catalytically active
state, without N-terminal dimerization taking place. It therefore
appears that Sgt1 and Rar1 stabilize the Hsp90 complex [178]
by converting it into a long-lived ADP–Rar1–Hsp90–Sgt1 state
[170].

Aha1 is the only co-chaperone known to strongly accelerate the
ATPase cycle of Hsp90 [149,183]. Structural studies have shown
that the N-terminal domain of Aha1 can modulate the middle
domain catalytic loop of Hsp90, stabilizing it in an open active
state (Figure 7A). Movement of the catalytic loop to its active
state is now known to be required for co-operative dimerization
by Hsp90 (Andrea Schulze, Gerti Beliu, Dominic A Helmerich,
Jonathan Schubert, Laurence H Pearl, Chrisostomos Prodromou
and Hannes Neuweiler, unpublished work), which would promote
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Figure 9 Structure of Hsp90–Rar1–Sgt1 and Hsp90–Rar1–Sba1 co-
chaperone complexes

(A) Structure of the N-terminal domains of Hsp90 (green) in complex with the CS domain of Sgt1
(magenta) and the CHORD II domain of Rar1 (cyan). Recruitment of Rar1 into the Hsp90 complex
stimulates ATP hydrolysis producing a stable ADP-bound Hsp90 complex. The lid segment is
shown in red and bound ADP in blue stick representation. Broken blue lines represent hydrogen
bonds. (B) Structure of the closed conformation of Hsp90 in complex with Sba1 (cyan). Hsp90
is represented by the lid (red), the N-terminal segment of the N-terminus (yellow) and a segment
of the middle domain (green). The bound ATP is shown as a yellow stick representation. Arg380

is seen to interact with the γ -phosphate of ATP in the catalytically active state of Hsp90. Broken
blue lines represent hydrogen bonds.

the ATPase activity of Hsp90. The observation that full-length
Aha1 promotes the release of the Hsp90 lids early in the catalytic
cycle is consistent with the co-operative nature of N-terminal
dimerization. Furthermore, the binding of the C-terminal domain
of Aha1 to the N-terminal domains of Hsp90 [184] is supportive
of the idea that Aha1 promotes release of the lids early in
the chaperone cycle (Andrea Schulze, Gerti Beliu, Dominic A
Helmerich, Jonathan Schubert, Laurence H Pearl, Chrisostomos
Prodromou and Hannes Neuweiler, unpublished work), and of
the observation that full-length Aha1 is required for maximum
stimulation of the ATPase activity of Hsp90 [149].

Sba1/p23 shows a higher affinity for the ATP-bound N-
terminally dimerized state of Hsp90, rather than the apo or ADP-
bound state [150,185]. Since Sba1 binds Hsp90 following the
co-operatively driven mechanism of N-terminal dimerization,
its role appears to be one of stabilizing the closed state of
Hsp90. Sba1/p23, unlike co-chaperones that deliver client proteins
to Hsp90 (Sti1, Cdc37p50 and Sgt1), therefore acts late in the

Hsp90 chaperone cycle, which Sba1 appears to slow down,
rather than totally inhibit [149]. In contrast, a more robust
inhibition was reported for the human orthologue p23 [185]. The
structure of the full-length yeast Hsp90 in complex with Sba1
and AMP-PNP explains the inhibitory effect of Sba1 binding
[25]. The binding of Sba1 to the closed N-terminally dimerized
domains of Hsp90 locks the N-terminal domains together, while
simultaneously stabilizing the middle domain catalytic loop in an
active conformation through a direct interaction (Figure 9B). Thus
Sba1 temporally stabilizes the closed N-terminally dimerized state
of Hsp90 by slowing its ATPase cycle [149].

In conclusion, the structural variety of Hsp90 clientele neces-
sitates a diverse array of co-chaperones that help deliver clients
to Hsp90 and so regulate their activation and maturation. Recent,
evidence suggests that Hsp90 undergoes N-terminal dimerization
involving a co-operatively driven mechanism of structural change.
In the light of this, the role played by a variety of Hsp90 co-
chaperones can now be reinterpreted and a better understanding
of their effect on the Hsp90 cycle is beginning to emerge.

REGULATION OF Hsp90 ACTIVITY THROUGH
POST-TRANSLATIONAL MODIFICATION OF CO-CHAPERONES

Post-translational modification of co-chaperones adds further
mechanisms by which Hsp90 activity can be regulated.
Phosphorylation of Hsp90 co-chaperones has not been studied
extensively, but its importance is demonstrated by a number of
examples. Ser13 of human Cdc37p50 is the target for phosphoryla-
tion by protein kinase CK2, which appears to be necessary for
kinase client chaperoning, including Cdc28Cdc2, Ste11RAF, Kin28,
Mps and CK2 itself [186–188]. The phosphorylation appears
to favour the formation of a Cdc37p50–Hsp90–kinase complex
and dephosphorylation by PP5/Ppt1 appears to weaken this
association and might act as a signal for progression of the cycle
and release of activated client kinase protein [189].

Another example involving CK2 phosphorylation is that of
Sgt1 at Ser361, which inhibits the dimerization of the co-
chaperone [190]. This in turn influences kinetochore assembly
and chromosome segregation in eukaryotes during cell division
[190]. Sgt1 acts as an adaptor in several other processes such as the
regulation of innate immunity systems in plants and animals and
in SCF E3 ubiquitin ligase-directed protein degradation [169].
Whether this phosphorylation has a negative impact on these
processes is currently unknown.

CK2 is responsible for the phosphorylation of p23 (also known
as cytoplasmic prostaglandin E synthase 3) on Ser113 and Ser118,
and promotes the synthesis of prostaglandin E2 [191]. p23 is
involved in a variety of other client protein complexes including
telomerase and steroid hormone receptors [192,193]. The details
of how it affects their activation are currently unknown. Ser113

and Ser118 are not conserved in Sba1, the yeast orthologue of p23.
In yeast, the equivalent residues are upstream of Trp124, which
interacts with the long helix of the middle domain of Hsp90 and
is thought to modulate the catalytic loop of this domain. Whether
phosphorylation of human Ser113 and Ser118 affects the ability of
p23 to modulate the catalytic loop of Hsp90 is unknown.

Yet another CK2-mediated phosphorylation has been seen in
murine mSti1HOP at Thr189. In contrast, Cdc2 phosphorylates
mSti1HOP at Thr198. It has therefore been suggested that mSti1HOP

plays a role in the cell cycle [194]. Finally, CK2 directed
phosphorylation of FKBP52 is seen at Thr143 and is thought
to play a role in steroid hormone activation [186,195]. FKBP
phosphorylation at an unspecified site influences the efficiency of
adeno-associated virus type-2 transduction [196–198].

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY).

http://creativecommons.org/licenses/by/4.0/


2448 C. Prodromou

For kinases, the progression of the chaperone cycle requires
both Cdc37p50 and Aha1. The phosphorylation of Cdc37p50 at Tyr4

and Tyr298 was reported to disrupt client–Cdc37p50 association
and provided directionality to the cycle [118]. In contrast,
phosphorylation of Hsp90 at Tyr197 by the Yes kinase, was reported
to cause dissociation of Cdc37p50 from Hsp90 [118], whereas
phosphorylation on Tyr313 promotes recruitment of Aha1, both
of which further the chaperoning process by stimulating Hsp90
ATPase activity. The phosphorylation of human Aha1 at Tyr223

by c-Abl kinase has been reported [199] and appears to promote
its interaction with Hsp90. The increased binding of Aha1 is
thought to translate into an enhanced activation of Hsp90 ATPase
activity, which in turn promotes Hsp90 interaction with kinase
clients. In contrast, glucocorticoid receptor and CFTR (cystic
fibrosis transmembrane receptor) interactions with Hsp90 were
compromised. Unexpectedly, it was reported by the same authors
that Tyr223 phosphorylation led to ubiquitination and proteasome
degradation of Aha1. Finally, Hsp90α phosphorylation at Tyr627

induces dissociation of the client and remaining co-chaperones
that signals completion of the chaperone cycle.

In conclusion, a variety of co-chaperones are required to
deliver client protein and to promote the chaperone cycle
of Hsp90. The complex nature of the Hsp90 chaperone
cycle has allowed co-chaperone regulation of Hsp90 by a
variety of mechanisms that involve modulating the co-operative
nature of N-terminal dimerization within Hsp90. Ultimately the
precise regulatory effect of such co-chaperones is dependent
on their post-translational modification and that of Hsp90
itself.

CONCLUDING REMARKS

The cytoplasmic Hsp90 proteins are required for a whole host
of biological processes, including adaptation to stress. It is
therefore not surprising that the Hsp90 levels in cells is abundant
and increases further during stress adaptation. Because of the
multitude of tasks carried out by Hsp90, numerous regulatory
systems operate to ensure the proper integration and regulation
of Hsp90 activity. Most importantly, HSF1 emerges as a master
regulator of the HSR, helping integrate a variety of cellular
signals into Hsp90 transcriptional control. As such, Hsp90 is a
highly regulated protein and is subject to many post-translational
modifications as well as being able to sense heat stress directly.
The regulation of Hsp90 is controlled by post-translational
modifications, and by co-chaperones and client proteins, of which
the latter are subject to various regulatory processes themselves.
Although much progress has been made in understanding these
processes, there remains a significant amount we still do not fully
understand. For example, we have recently established some of
the post-translational modifications that operate to regulate both
Hsp90 and its co-chaperones; however, our knowledge of the
processes that control these modifications are still in their infancy.
Many of the enzymes, such as kinases, phosphatases, histone
acetylases and histone deacetylases remain to be identified.
Determining how these modifications are integrated into coherent
regulatory systems will not be easy, but is essential if we are
to understand the Hsp90 chaperone cycle in the context of the
various biological processes that depend on it.
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