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Abstract

Neuroimaging faces the daunting challenge of multiple testing – an instance of multiplicity – that 

is associated with two other issues to some extent: low inference efficiency and poor 

reproducibility. Typically, the same statistical model is applied to each spatial unit independently 

in the approach of massively univariate modeling. In dealing with multiplicity, the general strategy 

employed in the field is the same regardless of the specifics: trust the local “unbiased” effect 

estimates while adjusting the extent of statistical evidence at the global level. However, in this 

approach, modeling efficiency is compromised because each spatial unit (e.g., voxel, region, 

matrix element) is treated as an isolated and independent entity during massively univariate 

modeling. In addition, the required step of multiple testing “correction” by taking into 

consideration spatial relatedness, or neighborhood leverage, can only partly recoup statistical 

efficiency, resulting in potentially excessive penalization as well as arbitrariness due to 

thresholding procedures. Moreover, the assigned statistical evidence at the global level heavily 

relies on the data space (whole brain or a small volume). The present paper reviews how Stein’s 

paradox (1956) motivates a Bayesian multilevel (BML) approach that, rather than fighting 

multiplicity, embraces it to our advantage through a global calibration process among spatial units. 

Global calibration is accomplished via a Gaussian distribution for the cross-region effects whose 

properties are not a priori specified, but a posteriori determined by the data at hand through the 

BML model. Our framework therefore incorporates multiplicity as integral to the modeling 

structure, not a separate correction step. By turning multiplicity into a strength, we aim to achieve 

five goals: 1) improve the model efficiency with a higher predictive accuracy, 2) control the errors 

of incorrect magnitude and incorrect sign, 3) validate each model relative to competing candidates, 

4) reduce the reliance and sensitivity on the choice of data space, and 5) encourage full results 

reporting. Our modeling proposal reverberates with recent proposals to eliminate the 

dichotomization of statistical evidence (“significant” vs. “non-significant”), to improve the 

interpretability of study findings, as well as to promote reporting the full gamut of results (not only 

“significant” ones), thereby enhancing research transparency and reproducibility.
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1. Introduction

Neuroimaging techniques often measure multiple signals simultaneously, such as from 

electro- or magneto-encephalogram sensors, or at spatial locations across the brain in 

functional magnetic resonance imaging (FMRI). In the former case, one may have tens to 

hundreds of nodes, while in the latter, one may have signals at over 100,000 spatial units 

(voxels and/or grayordinates) in the brain. A researcher will then be interested in evaluating 

how signals vary according to experimental conditions. This presents a particular kind of 

statistical problem, with fundamental issues that are still debated in the field after decades of 

existence.

In FMRI, the conventional analysis at the group level adopts a so-called massively univariate 
analysis approach with a two-step procedure.1 First, one performs a statistical analysis at 

every location separately but usually with the same model (or design matrix). The analysis 

itself can be a simple t-test (do signals during conditions A and B differ convincingly?) or a 

more elaborate linear model (ANOVA, GLM, or mixed-effects model) with several 

predictors and interaction terms (is there enough evidence for a three-way interaction?). But 

testing at multiple locations simultaneously forces the investigator to rethink her approach of 

controlling for the overall false positive rate (FPR) under the null hypothesis significance 

testing (NHST) framework. One is not simply worried about errors at a single location but at 

all locations of the dataset at the same time – hence the need for a second step. This multiple 

testing problem has led to beautiful and creative solutions by the neuroimaging community 

in the past quarter of century, including random field theory (Worsley et al., 1992), Monte 

Carlo simulations (Forman et al., 1995), and permutation testing (Nichols and Holmes, 

2001; Smith and Nichols, 2009). However, we believe that the current approaches have an 

important shortcoming: excessive penalties from correction for multiplicity due to modeling 

inefficiency.

Consider the two-step procedure. In the first step, by performing analysis at every location 

separately, one is assuming that all spatial units are unrelated to each other; in other words, 

they do not share information. Although the local relatedness (i.e., smoothness) among 

neighboring spatial units can be approximately accounted for during the second step of 

multiple testing correction, any similarity among brain regions is fully ignored. For example, 

from the Bayesian perspective neglecting such common information is equivalent to 

assuming that the effect can take values uniformly from −∞ to + ∞. It is worth noting that 

various approaches have been developed to take into consideration the spatial (and temporal) 

relatedness for localized statistical inference (e.g., Lindquist, 2008; Bowman et al., 2008; 

Derado et al., 2010; Kang et al., 2012; Zhang et al., 2015). Nevertheless, a multiplicity issue 

exists because there are as many models specified as the number of the spatial units, leading 

to potential overfitting and model inefficiency. A model specifies how the data are related to 

the effect in question, such as the difference of two means in a t-test or GLM. Whatever type 

of model is adopted in the first step, the investigator is forced by the presence of 

simultaneous inferences to follow up with a second step to adequately control for the overall 

1The two steps discussed here should not be confused with the “two steps” of first estimating regression coefficients at the individual 
level and then employing the coefficients at a second step of group modeling across subjects.
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chance of misidentification in the reported results. As mentioned, a series of correction 

methods have been developed in the past.

In the present paper, we argue that such a massively univariate approach leads to information 

waste and inefficient modeling. There may be a misperception outside the neuroimaging 

community that statistical analysis with brain data is untrustworthy, as if multiple testing 

were usually not corrected due to the misreading of the oft-noted dead salmon study that 

won the Ig Nobel prize (Bennett et al., 2010). The reality might be the opposite because of 

the modeling inefficiency. The multiplicity challenges are far from trivial and remain active 

research topics, as evinced in a recent paper that stirred substantial controversy (Eklund et 

al., 2016). Against this backdrop, we propose an integrative approach that incorporates all 

the spatial units into a single, unified Bayesian multilevel (BML) model, leading to 

potentially improved inference efficiency through global calibration. The BML framework 

also facilitates transparency, reporting a study’s full results instead of artificial 

dichotomization (“significant vs. non-significant”), and model validation. Accordingly, the 

modeling framework resonates with critical assessments of the NHST framework which 

have intensified in recent years (Nuzzo, 2014; Wasserstein, 2016; McShane et al., 2019; 

Amrhein et al., 2019).

2. Controlling overall FPR under the conventional framework

We start with a brief review of how multiplicity is handled under NHST in neuroimaging. 

The most basic correction for multiple testing is obtained via Bonferroni correction, namely 

by raising the bar for statistical evidence at each spatial unit by dividing the desired 

significance level by the number of spatial units (e.g., setting α = 0.0000005 if tests will be 

performed at 100; 000 locations). However, this approach assumes that effects at every 

spatial location are fully independent, an assumption that is violated in the case of FMRI 

data, making this classical approach highly conservative in general (i.e., there are fewer 

independent tests than the number of voxels). Investigators recognized early on that the 

probability that a clique of spatial units (such as a cluster of voxels) would be “active” 

together was much smaller than that of individual units. Accordingly, such spatial 

relatedness (i.e., voxel adjacency) has motivated most methodologies aimed at addressing 

multiplicity. Typical correction efforts belong to two main categories: 1) controlling for 

family-wise error (FWE), so that the overall family-wise error at the whole-brain or cluster 

level is approximately at the nominal value, and 2) controlling for false discovery rate 

(FDR), which targets the expected proportion of identified items (“discoveries”) that are 

incorrectly labeled (Benjamini and Hochberg, 1995). The two approaches are conceptually 

different in adjusting the overall statistical evidence. FDR can be used to handle a needle-in-

haystack problem, where a small number of effects exists among a sea of zero effects in, for 

example, bioinformatics. Although considered more powerful in general at the cost of 

increased FPR (Shaffer, 1995), FDR is usually more conservative for typical neuroimaging 

data most likely due to the complication of spatial correlation, evidenced by its rare adoption 

in the literature compared to the FWE correction methods currently implemented in the 

field.
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Multiple testing correction methods tend to be “add on” procedures that are separate from 

the individual statistical models of interest. Therefore, they contain an element of 

arbitrariness, as evidenced by the existence of varied “correction” techniques across the 

field. Conceptually, the situation is similar to that of defining an island using “pixels” in a 

satellite image as a piece of sub-continental land above a fluctuating sea level (Fig. 1): the 

definition of the island will depend on the water-level threshold adopted, which itself may 

vary with tide, season, geological time, and a minimal area setting (e.g., 10,000 square 

meters). In the conventional statistics framework, the thresholding bar ideally plays the role 

of winnowing the wheat (true effect2) from the chaff (random noise), and a p-value of 0.05 

is commonly adopted as a benchmark for comfort in most fields and an imprimatur during 

the publication review process. However, a problem facing the correction methods for 

multiple testing concerns “arbitrariness,” which can be examined from at least four different 

perspectives. First, the threshold or the cut-off value itself is arbitrary; why not use 0.04 or 

0.06, for instance? Thresholding is a binary operator that splits the outcome into categories 

in a way that in practice entails the belief that the effect is artificially divided into “real vs. 

non-existing”; that is, data are separated into those shown with “strong evidence” and “the 

rest,” which are hidden from the publications. Second, although particular correction 

methods are developed rigorously, differences in their respective assumptions may lead to 

different results – random field theory, cluster-based simulations and permutations have 

reasonable foundations for addressing multiple testing, but they have slightly differing 

results, in general. Third, the statistical evidence resulting from multiple testing correction 

will heavily depend on the analyst’s focus, or data space: whole brain, gray matter, a 

subnetwork, or a list of regions. Lastly, even though spatial relatedness is largely accounted 

for locally among neighboring voxels in all correction methods as noted above, the common 

information globally shared across the brain is fully ignored.

2.1. Available methods

At present, there are four general approaches of neighborhood leverage to handling 

multiplicity in neuroimaging: two of them can be called “cluster-based” and two can be 

called “permutation-based”. The two cluster-based methods are Random Field Theory (as 

used in SPM3) and Monte Carlo simulations (as adopted in AFNI (Cox, 1996)): starting with 

a voxel-wise p-value threshold (e.g., 0.01, 0.001), a spatial-extent threshold is subsequently 

determined that specifies the minimal cluster size that should be believed, therefore 

controlling the overall FPR at the cluster level – the idea is that one should believe in the 

islands, not in the image pixels. The voxel-level p-value and the cluster size trade-off against 

each other, with a stricter statistical threshold (lower voxel-wise p-value) leading to a 

smaller cluster size cutoff. Thus, a small region of activation can only gain ground with a 

low p-value at the voxel level, while large regions with a relatively large p-value at the voxel 

level may fail to survive the criterion (Fig. 1 at the threshold t3). Similarly, a more lenient 

statistical threshold (higher p-value) requires a larger cluster volume, so that smaller regions 

have little chance of reaching the survival level (Fig. 1 at the level t1 or t2). (For the 

investigator attracted to small regions of the brain, such as the amygdala or thalamic 

2Note that the concept of true effect only makes sense under the modeling framework at hand.
3http://www.fil.ion.ucl.ac.uk/spm/.
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subnuclei, this poses a considerable headache.) The arbitrariness of the statistical threshold 

at the voxel level poses another challenge to the investigator: one typically will lose spatial 

specificity with a lenient threshold since small regions that are contiguous will become part 

of large clusters of activation (at times spanning hundreds of cubic milliliters in the brain); 

but note that the ability to detect large regions of activation is compromised when a strict 

statistical threshold is chosen. A recent critique of the approach of cluster formation (Eklund 

et al., 2016) has resulted in a trend to require a stricter statistical bar in neuroimaging (a 

voxel-wise threshold below 0.001). However, shifting the threshold does not affect the 

arbitrariness associated with the thresholding procedure itself: it is a corollary of 

dichotomization.

Alternative methods exist that employ permutation testing procedures. The maximum 

statistic approach (Nichols and Holmes, 2001), an early version, starts with the construction 

of a permutation-based null distribution of a maximum statistic (either maximum testing 

statistic or maximum cluster size) at a predetermined primary threshold. The original data 

are assessed against the null distribution, and the top winners at a designated rate (e.g., 5%) 

are declared as the surviving ones. While the approach is effective at maintaining the 

nominal FPR level, as in the parametric case above, the results will depend on the threshold 

employed, often strongly so. The maximum statistic approach has been extended to the 

analysis of matrix data, implemented in packages such as network-based statistics (NBS) 

(Zalesky et al., 2010) and the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 

2012). Again, thresholding decisions may lead to disparate results when a different primary 

threshold is adopted – even as the same dataset is analyzed.

More recent permutation-based approaches take into consideration both statistical evidence 

and spatial extent (Smith and Nichols, 2009), and have been implemented in programs such 

as Randomise and PALM in FSL4 using threshold-free cluster enhancement (Smith and 

Nichols, 2009), and in 3dttest++ in AFNI using equitable thresholding and clusterization 

(Cox, 2019). A similar approach has also been borrowed in the analysis of matrix data 

(Baggio et al., 2018). These techniques circumvent the problem of having to choose a 

primary voxel-level threshold, thus ameliorating the issue of requiring a predetermined 

threshold in cluster-based methods. Nevertheless, the approach may come with some loss in 

statistical efficiency. For example, it is possible for a spatial clique to survive a cluster-based 

method that utilizes a primary threshold but not survive the permutation approach that 

combines both statistical strength and spatial extent (e.g., cluster-based approach adopting a 

primary threshold at t3 versus permutation for cluster C in Fig. 1), especially when the 

spatial clique sizes are relatively homogeneous. On the other hand, the permutation approach 

might achieve a higher sensitivity when the spatial size varies substantially (e.g., 

permutation versus cluster-based approach adopting a primary threshold at t2 for cluster B in 

Fig. 1).

Regardless of the specifics of each adjustment method, the effect of interest is assessed 

through a model applied separately at each spatial unit under the current modeling 

framework. Yet, each individual unit is only meaningful when it belongs to a surviving 

4https://fsl.fmrib.ox.ac.uk/fsl.
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cluster. Accordingly, the investigator cannot attach a specific uncertainty level (e.g., 

confidence interval under NHST) at particular locations because of the indivisible nature of 

the spatial cluster (Woo and Wager, 2015). As what survives is the entire cluster, the 

statistical significance at the voxel level is undefined.

2.2. Other issues

One challenge facing investigators involves potential “mid-analysis” changes of a correction 

method, or more broadly of “data domain”. When a whole-brain voxel-wise analysis fails to 

allow a region to pass the peer-accepted threshold, is it now legitimate to go through 

additional analysis steps? For example, the existing literature may legitimately point towards 

a set of target brain regions, so should the investigator now focus on those regions, or 

possibly even a single “star” brain area (e.g., amygdala, accumbens, fusiform gyrus, etc.)? 

Changing the model space, such as the space of multiple testing, may seem to “improve” the 

strength of statistical evidence (Kruschke, 2010), despite the fact that the original data 

remains exactly the same! Whereas trying multiple analysis strategies until “statistical 

significance” is reached is clearly unacceptable, where should the line be drawn between 

legitimate “trying to understand one’s data” and walking in “the garden of forking paths,” 

“data snooping” or p-hacking? To claim that a study would come to a halt based on a “first 

pass” of data analysis is admittedly naive, and does not acknowledge the actual way that 

science proceeds in the laboratory.

Another issue with the massively univariate modeling strategy is that it implicitly makes the 

assumption that the investigator is fully ignorant about the distribution of effect sizes across 

space. Specifically, conventional statistical inferences under NHST assume that all potential 

effects have the same probability of being observed; it is assumed that they follow a uniform 

distribution from −∞ to +∞ (Gelman et al., 2014). However, in practice, many types of data 

+tend to have a density of roughly Gaussian characteristics with a bell-shaped distribution 

exhibiting a single peak and near symmetry (which is not surprising given that the central 

limit theorem applies in many situations). The information waste resulting from the 

assumption of uniform instead of Gaussian distribution leads to inefficient modeling due to 

overfitting. The assumption of uniform distribution of effect sizes should be viewed in 

contrast to the adoption, indeed in the same conventional methods of statistical inference, of 

a Gaussian distribution when experimental entities are concerned (e.g., participants, 

animals). In fact, per the maximum entropy principle, the most conservative distribution is 

the Gaussian if the data have a finite variance (McElreath, 2016). Accordingly, the question 

that needs to be considered is as follows: Do we truly believe that effects across spatial units 

are uniformly dispersed across all possible values? If the answer is “no” (e.g., extremely 

high or low values are nearly unattainable), why cannot we assume that the effects across 

spatial units follow a Gaussian, as routinely practiced for the measuring units of subjects that 

are considered as random samples from a hypothetical pool, instead of adopting the stance 

of “full ignorance?” To anticipate, the Bayesian framework described here allows 

distributional assumptions to be incorporated in a principled manner, and to be validated 

against the observed data.
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3. Stein’s paradox and hierarchical modeling: Two case studies

Charles Max Stein (1956) discovered an interesting but counterintuitive phenomenon in 

statistics and in decision theory: When three or more effects are estimated individually, the 

overall accuracy of each is worse than an integrative approach that shares information across 

the effects.

3.1. Case study 1: Predicting basketball player performances

Suppose that the shooting rate of Kevin Durant’s field goals during the 2018–2019 National 

Basketball Association (NBA) season is 52.1%. If one has to guess his field goal rate during 

the next season without any other information, his current efficiency would be the best 

(unbiased) estimate, even though his future performance may be better or worse, of course. 

The same would be true for any other player. Now consider the prediction of the future 

success rate of Durant as part of the top 50 NBA players. The surprising fact is that more 

accurate predictions can be produced compared to those simply using their current 

percentages as future predictions, as rigorously proven (James and Stein, 1961; Efron and 

Morris, 1976). In other words, by considering each player as a member of a pool of the top 

50 performers, we can make overall more accurate predictions than directly using each 

player’s current performance as a prediction (Fig. 2). Thus, although we can reasonably 

assume that all players’ performances are independent of one another, it is better to pool 

information across all players to make a prediction for each individual player. The pooling is 

considered “partial” when some information is borrowed from other players when predicting 

each individual player, in contrast to “complete” pooling5 in which all players are assigned 

the same prediction (e.g., overall average). The paradox was later substantially elaborated 

and rigorously extended by Efron (e.g., Efron and Morris, 1976). Although Stein’s paradox 

was originally proven for the case of Gaussian distributions, it has since been generalized to 

other distributions and even multivariate cases.

The moral we can learn from the NBA player example is that the fundamental difference 

between the two modeling approaches lies in our willingness to apply available knowledge. 

The at-first intuitive approach of using each player’s current performance to predict future 

percentage (no pooling, Fig. 2A; note that current and predicted values are the same) 

assumes that we do not have any knowledge about the distribution of performances, and thus 

treat each player as an independent entity. In fact, such stance of “total ignorance” is 

equivalent to making the assumption that shooting rate performance is uniformly distributed. 

That is to say, all possible values are credible, including very low (e.g., 10%) and very high 

(e.g., 90%) shooting rates, which are actually not observed in practice.

It is instructive to consider the problem of simultaneously predicting the performance of the 

set of 50 players as a type of multiplicity problem. In this case, it is not only the individual 

accuracy (cf. voxel-wise p-value under NHST) that matters the most, but the overall 

accuracy (cf. overall FPR) that is of concern. As stated, one approach is to treat each player 

as independent from the rest, similar to the massively univariate approach in neuroimaging 

(Fig. 2A). As players do not simply repeat their performance across seasons, the future 

5Complete pooling can be viewed as specifying a prior with a zero variance.

Chen et al. Page 7

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performance yi (generated hypothetically) will deviate from the preceding season xi to some 

extent (as indicated by the purple lines connecting squares to diamonds in Fig. 2A). Suppose 

we could time-travel to the future and take a sneak peek at the independent shooting rates yi 

of the top 50 NBA players. If we predicted players’ future performance based on current 

performance via linear regression, we would obtain the fit displayed in Fig. 2C (solid green 

line). If we plot the linear regression predictions as in Fig. 2A, we can see that the predicted 

values differ from the current ones, as shown by the slanted green lines in Fig. 2B. The role 

of the Gaussian distribution assumption of future performance can be visualized as a sort of 

elastic band, whereby predictions are mutually informative. Notably, predictions for outlying 

players (high and low scorers) are shrunk toward the group mean via the implicit partial 

pooling of the procedure.

In the present case, our willingness to apply prior knowledge (that shooting percentages 

typically follow a Gaussian distribution) transformed the problem into a simple GLM 

system, thereby achieving a higher overall accuracy in Fig. 2B (see the comparison between 

the two sums of squared residuals) than that with the assumption of no prior knowledge 

(represented by a uniform distribution) in Fig. 2A. Notably, the prior information (i.e., the 

distribution assumption) only sets the general shape while the specifics of the shape (i.e., 

mean and variance) can be determined from actual data through the model (and estimated 

via ordinary least squares, or maximum likelihood). Thus, partial pooling is adaptive in the 

sense that information about centrality and spread of the players’ performances is not 

required as part of the prior knowledge, but is determined from the data. The adaptivity of 

the Gaussian prior can be further illustrated as follows. The prediction for the top 50 players 

through regression is different when they are considered as a subset of the top 100 players. 

However, the difference due to the addition of the 51st-100th players is relatively negligible 

(Fig. 2D).

3.2. Case study 2: Dealing with epidemiological data of kidney cancer

An example conceptually closer to the situation in neuroimaging involves the 

epidemiological survey data regarding the highest and lowest cancer rates across the United 

States (Fig. 3). Examination of the map indicates that the highest kidney cancer rates were 

observed in relatively sparsely populated regions of the country (Fig. 3A). One then might 

be tempted to infer that geographical factors explain the high rates, such as restricted access 

to healthcare, low utility infrastructure, or higher doses of radiation. But it is difficult to 

reconcile these explanations with the observation that counties with the lowest kidney cancer 

death rates also tend to be less populated (Fig. 3B). A more parsimonious explanation of the 

data, which is consistent with both maps, is based on the small sample size of rural counties, 

combined with the relatively low mortality rate due to kidney cancer (which is a rare 

disease). To see this, suppose that the national average death rate is around 1 per 2,000 

people (per 10 years). In a county with a population of about 1,000 people, one can imagine 

observing zero or one death by chance alone, which would place the county into the map 

with the lowest or highest rate, respectively.

So, based on the survey data, how should we make reasonable inferences about all the 

individual counties? Two questions can be posed: (1) Should we really believe that a resident 
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in a specific county has a higher (or lower) probability of dying of kidney cancer than the 

national average? (2) Can we infer that a resident in a county in Fig. 3A (or Fig. 3B) has a 

much higher (or lower) probability of dying of kidney cancer than a person in a county in 

Fig. 3B (or Fig. 3A)? That is, would we be able to confidently recommend that someone 

move from a county in Fig. 3A to one in Fig. 3B, or to discourage someone from moving 

from a county in Fig. 3B to one Fig. 3A? The answers would appear to be “no” in both 

cases.

The epidemiological distribution of kidney cancer deaths can be seen as involving a 

multiplicity problem over the several thousands of districts. A natural solution might be to 

borrow the idea of neighborhood leverage in neuroimaging (that is, spatial clustering), and to 

utilize the relatedness among adjacent counties to modulate the statistical evidence for 

clusters of counties. Note, however, that this leveraging approach only adjusts the extent of 

statistical evidence, and it does not modify the death rate estimates themselves (at county or 

cluster level). In other words, the conventional neuroimaging approach to handling 

multiplicity does not address the two types of estimation errors that are important to 

consider (Gelman and Tuerlinckx, 2000). One is the so-called type M error, which refers to a 

potential over- or under-estimation of the effect magnitude. The second is the so-called type 
S error, which refers to getting the sign of a comparison wrong (does county A have a higher 

or lower death rate than county B?). A potential solution is to employ a methodology that 

prevents the estimation process from being swayed by larger fluctuations.

Consideration of Stein’s paradox in the context of the kidney cancer case suggests potential 

strategies to address the multiplicity issue. One possibility is to not place trust only in 

isolated bits of survey data (at the county level), but instead to incorporate all counties into a 

Bayesian model with a hierarchical structure that leverages death rate information across 

counties (Gelman et al., 2014). The BML model reflects the central concept behind Stein’s 

paradox: We should be somewhat sceptical about individual inferences of effect estimates 

and their uncertainties, especially extreme ones. Furthermore, we should adopt some 

information sharing – what is called partial pooling or shrinkage because of the tendency to 

reduce extreme values – which is possible through a hierarchical model that shares 

information across all, not just neighboring, spatial units. One may feel uneasy about partial 

pooling because of its introduction of bias to individual effect estimates.6 The seemingly 

puzzling phenomenon of Stein’s paradox aptly captures the biased predictions about 

Durant’s future performance among his NBA peers (remember that the unbiased estimates 

should follow the y = x red dotted lines in Fig. 2). In the example, we shifted our focus from 

the accuracy of one particular effect (Durant’s future shooting rate or, in the cancer case, the 

death rate at one specific county) to the overall predictive accuracy among all effects (overall 

accuracy among all the 50 players or among all the U.S. counties).

3.3. BML: Trading off bias against predictive accuracy

To recapitulate, a fundamental difference between the conventional, isolated modeling 

approach and the integrative BML method is that the former seeks statistical unbiasedness at 

6Recall that, in statistics, the bias of an estimator is the difference between the estimator’s expected value and the “true” value of the 
parameter being estimated. An estimator with zero bias is thus called unbiased, otherwise it is called biased.
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each spatial unit, while accepting a daunting FPR problem that requires corrective 

procedures. Having an unbiased estimator (the quintessential example is probably the 

sample mean as an estimate of the population mean) may sound appealing, but it is not 

always the most desirable property, as recognized by statisticians and applied scientists for 

some time. This is especially the case when sample size is not large or when noise 

potentially overwhelms the effect, conditions all too often encountered by experimentalists 

in general and neuroimagers in particular. Briefly, in many circumstances, an unbiased 

estimator may have high variance. In such cases, it can fluctuate non-trivially from sample to 

sample. Adopting a biased estimator, instead, may be beneficial if it has a lower variance; 

thus, although the estimator does not tend, in the limit (in practice with rather large sample 

sizes) to the “true” value of the effect of interest, it can prove advantageous in many 

practical settings. In fact, shrinkage estimation has been effectively applied to parcellating 

brain regions at the subject level by borrowing strength across the whole group of subjects 

(Mejia et al., 2015).

As schematically demonstrated in Fig. 2, the introduction of a Gaussian distribution 

introduces a mild constraint when estimating all players’ performances simultaneously (their 

shooting rates are not free to vary everywhere, but are informed by the entire set of 

performances in a Gaussian fashion). In fact, many conventional methodologies employ 

constraints to their estimation procedures. More technically, they benefit from regularization 

(Tikhonov et al., 1998), which involves introducing additional information in order to solve 

an ill-posed problem or to prevent overfitting. For example, ridge regression, LASSO 

(Tibshirani, 2011), elastic nets, and linear mixed-effects framework introduce additional 

constraints to the estimated effects in addition to minimizing residuals (e.g., the LASSO 

attempts to keep the overall “budget” of weights under a certain value: ∑ j β j ≤ k). It is also 

interesting to note that global calibration is employed in meta analysis (Glass, 1976): when 

summarizing multiple studies of an effect, there is no correction for multiplicity of statistical 

evidence, but instead effects are weighted based on their respective relative reliability.

Some properties of the BML to be described further below include the following. First, the 

multiplicity issue is automatically dissolved given that a single model is employed – there is 

no “multiple” to correct! In addition to being conservative about extreme effects due to the 

shrinkage phenomenon, there is only one overall posterior that is formulated as a joint 

distribution in a high-dimensional parameter space (the dimensionality of which equals the 

number of parameters in the model). No multiplicity is incurred because (1) all the spatial 

units are included in one model and regularized through a reasonable prior, and (2) only one 

overall posterior distribution is utilized to predict various effects of interest. In fact, the 

analyst can make inferences for as many effects of interest (including comparisons) as 

desired because each effect of interest is simply a marginal distribution (or a perspective 

projection) of the overall high-dimensional joint posterior distribution (like various angles of 

projecting the earth onto a 2D map). Second, an important focus becomes addressing type M 

and type S errors (see Fig. 4) (Gelman and Tuerlinckx, 2000), both of which are meaningful 

in practice. Third, model efficiency, misspecifications and performance can be directly 

assessed and compared straightforwardly through predictive accuracy and cross validations, 

similar to techniques such as least squares, maximum likelihood and information criterion. 
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One predictive accuracy indicator is the Watanabe-Akaike information criterion, for 

instance, via leave-one-out cross-validation (Vehtari et al., 2017), and another one involves 

“posterior predictive checks”, which simulate replicated data under the fitted model so as to 

graphically compare actual data to model predictions.

3.4. Focusing on the research hypothesis instead of fighting a “strawman”

Before applying the BML approach to FMRI data, it is instructive to briefly compare the 

frameworks of NHST inference (as commonly employed by experimentalists) and the 

proposed Bayesian approach. Consider a scenario in which a single one-sample t-test with 

20 degrees of freedom (e.g., 21 subjects) is employed in the NHST setting. The null 

hypothesis H0 is that the population mean is zero. Suppose that the data indicate that t20 = 

2.85. If H0 were true, the probability of observing a t-value so extreme is rather low (p = 

0.01 in Fig. 5, left). The t- or p-value thus provides a measure of “surprise”: How surprising 

would it be to observe such an extreme value in a world in which H0 were really true? In this 

setting, one estimates the extent of surprise P(data|H0). By custom if p < 0.05, one declares 

that the effect is “present” with the all-important “significance” label.

The Bayesian framework aims to answer a different, though, related question: What is the 

probability of a research hypothesis HR based on the observed data, P(HR|data)? Note the 

difference in what is being “measured” and what is “given” in this proposition, as opposed 

to the preceding NHST case. Such a probability can be computed by using Bayes’ rule 

(Kruschke, 2010). In a typical setting the research hypothesis HR refers to an effect or 

parameter θ (e.g., “population mean”) being positive or negative (e.g., HR: θ > 0). An 

attractive property of this framework is that it is not typically formulated to generate a binary 

decision (“real effect” vs. “noise”, or “significant” vs. “not significant”) but instead to obtain 

the entire probability density distribution associated with P(θ|data) (Fig. 5, right). This 

posterior distribution is interpreted in a natural way even though it may take getting used to 

for those who are unfamiliar with Bayesian inferences. For example, P(0.1 < θ < 0.2|data) is 

the area under the curve within the effect interval (0.1, 0.2). For convenience, one can also 

indicate “tail probabilities” associated with values commonly used in the literature. For 

example, the two-sided area indicated in green is 0.05 and the two-sided area indicated in 

yellow-plus-green is 0.1; these would be analogous to 95% and 90% confidence intervals, 

respectively, in the NHST framework. Here, the value θ = 0 lies inside the left green tail; 

thus, the probability that the parameter exceeds zero is P(θ > 0|data) = 0.99. One can then 

use probability in question to emphasize or summarize the extent (e.g., “strong”, 

“moderate”, “weak”, or “little”) of statistical evidence. However, we stress that the goal is to 

quantify and qualify the evidence, not to make a binary decision in terms of “passes 

threshold” versus “fails to pass threshold.” In this manner, the value of P(HR|data) is not 

used for declaring that a result is “real” based on a threshold, but as the amount of evidence 

on a continuum. There is no need for thresholds and indeed one is encouraged not to use 

them – in the end they are arbitrary. Under the conventional paradigm, most software 

implementations do not reveal to the analyst the results that fail to survive the hard threshold 

(e.g., 0.05). In contrast, we propose a more fluid approach to categorizing statistical 

evidence: (1) one does not have to adopt a rigid threshold, especially when supporting 

Chen et al. Page 11

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information exists in the literature; (2) reporting the full results helps portray the entire 

spectrum of evidence.

An additional benefit of the Bayesian framework is that it provides direct interpretations of 

statistical evidence on the effects themselves. To see the difference between this and the 

NHST case, consider the representative distributions in Fig. 5. The left distribution shows 

the case of a common NHST statistical inference, such as a Student’s t under the null 

hypothesis and the statistic value (shown as a gray box). Note that the abscissa of unitless “t” 

values is unrelated to physical measures of the parameter. Furthermore, the distribution 

shape is entirely independent of the data and effect estimates except for the number of 

degrees of freedom (DFs); any sample with 20 DFs would have the same t distribution, 

regardless of the data and model fit. The inference hinges on the statistic value (gray box) 

relative to the null distribution. These properties can be compared and contrasted with the 

statistical inference under the Bayesian framework (Fig. 5, right). Here, the focus is directly 

on the effect (e.g., activation) in its original scale with a non-standard distribution 

conditioning on data, model and priors.

Within the traditional NHST framework, the confidence interval indicates the uncertainty of 

an effect estimate. The use of confidence intervals, however, tends to be plagued by 

conceptual misunderstanding and even more experienced researchers appear to struggle with 

its proper interpretation (Morey et al., 2016). For example, one may easily confuse a 

parameter with its estimator under the conventional statistical frame-work: a parameter (e.g., 

population mean) is considered a constant or a fixed effect (without uncertainty) while its 

estimator (e.g., sample mean) constructed with sampling data is treated as a random variable 

(with uncertainty). One can assign a distribution to the estimator, but one cannot do so for 

the corresponding parameter, even if a one-to-one correspondence can be established 

between the confidence interval of the parameter and an acceptance/rejection region for an 

estimator of the parameter; this is an all-too-common misconception under NHST. In 

comparison, all parameters are considered random under the Bayesian framework, and the 

quantile intervals for a parameter are more directly associated with the corresponding 

posterior density.

3.5. Limitations of NHST applications in neuroimaging

Much has been written about NHST over the past few decades. Here, we briefly enumerate a 

few aspects that are relevant in the present context.

1. Vulnerability to misconception. Defined as P(data | H0), the p-value under 

NHST measures the extent of “surprise” under the assumption of null effect H0 

(Fig. 5, left). In contrast, an investigator is likely to be more interested in a 

different measure, P(HR | data), the probability of a research hypothesis HR (e.g., 

a positive or negative effect) given the data (Fig. 5, right), which is conceptually 

different from, but often mistakenly construed as, the p-value. The disconnect 

between the p-value and the probability of the research interest often leads to 

conceptual confusions (Nuzzo, 2014).
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2. Arbitrariness due to dichotomization. As the underlying physiological or 

neurological effect is in all likelihood intrinsically continuous, the introduction 

of arbitrary demarcation through hard thresholding results in both information 

loss and distortion. Due to the common practice of NHST and the adoption of 

significance level as a publication-filtering criterion, a statistically non-

significant result is often misinterpreted as a non-existent effect (the absence of 

evidence is equated with the evidence of absence). The typical implementations 

in neuroimaging do not even allow the user to have the chance to visualize any 

clusters that are deemed to be below the preset threshold per the currently 

adopted correction methods; in addition, false negative errors under NHST are 

largely ignored in the whole decision process regardless of auxiliary information 

such as the literature and homologous regions between the two hemispheres. 

Indeed, although even fairly introductory students of statistics will explicitly be 

aware of this problem, the practice of describing non-significant results as non-

existent effects is puzzlingly widespread in the literature.

Hard thresholding leads to conceptual issues such as the following one: Is the 

difference between a statistically significant result and a non-significant one 

itself statistically significant (Fig. 6)? Translated into the neuroimaging context, 

when blobs of spatial units are relatively near but below the adopted threshold 

(given the cluster size or the integration of cluster size and statistical evidence), 

available software implementations hide them from the investigator (they are left 

uncolored, much like a location inside a ventricle). Should those “activation 

blobs” really be considered as totally devoid of evidence?

3. Arbitrariness due to data domain change. When the whole-brain voxel-wise 

analysis fails to reveal the expected regions at currently acceptable levels of 

statistical evidence, how should the experimenter proceed? Indeed, she may feel 

that it is justifiable to adopt “small volume correction” by limiting the data 

domain (e.g., focusing on regions of interest outlined in prior literature, or 

possibly particular regions of outstanding interest such as the nucleus accumbens 

in the domain of reward processing). But how to proceed in those circumstances 

is unclear as, in reality, few researchers are prepared to publicly describe their 

work as “purely exploratory” at that point. Essentially, the vulnerability to model 

space manipulations is a byproduct from the current adjustment criterion adopted 

for handling multiplicity.

4. Overstated estimates and distorted inferences. Reporting only statistically 

significant results tends to produce overestimated or inflated effect sizes 

(Cremers et al., 2017), as illustrated in the kidney cancer example (Fig. 3); in 

fact, the current publication practice of only allowing for results with stringent 

statistical evidence leads to many problems (Amrhein et al., 2019). Suppose that 

a brain region cannot survive the currently accepted correction criterion (cluster- 

or permutation-based) but still presents moderate amount of statistical evidence. 

Such result would have difficulty in getting reported under the current reviewing 

process, and its absence from the literature may waste the important information 

that could be utilized as evidence for future studies. If the region fails to reach 
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the designated statistical criterion among four out of ten such studies, the impact 

of dichotomization on meta analysis could also be substantial. We believe that 

the reporting of results and publication acceptance should not be based on a 

dichotomous decision rule in terms of a predetermined statistical significance 

level (e.g., 0.05).

5. Disregard for effect size and unavailability of uncertainty measures. Because 

neuroimaging studies perform inferences across tens of thousands of spatial 

locations, the practice in the field is to present maps that employ colors 

symbolizing statistical values (Chen et al., 2017). The unavailability of effect 

sizes leads to crude meta analyses, and renders power analysis challenging in 

neuroimaging. Furthermore, there is a contradiction, disconnection or 

inconsistency with the reported results under the conventional analysis approach 

in the literature. On one hand, due to the unbiasedness property, the effect 

estimate is considered trustworthy while the corresponding statistic (e.g., t-value) 

and the associated uncertainty (standard error or confidence interval) are 

frequently not directly interpretable at the spatial unit level because of the extra 

step required to adjust for multiple testing. On the other hand, due to this lack of 

interpretability, one cannot take at face value the reported maps with color-coded 

statistical evidence or the cluster tables with statistical values at peak voxels. In 

fact, each spatial clique goes through a binary process of either passing or failing 

the surviving criterion (e.g., either below or above the FPR of 0.05); accordingly, 

no specific uncertainty can be assigned to the effect at the spatial unit (or peak 

voxel) level.

6. Lack of spatial specificity. Whereas the conventional massively univariate 

approach attempts to determine statistical evidence at each spatial unit, the 

procedures to handle multiple testing render statistical inferences viable only at 

the cluster level. Surviving clusters have different spatial extents, and in practice 

one may observe some that are quite large. As the unit of statistical inferences is 

the entire cluster, the investigator loses the ability to refer to individual voxels, as 

shown in the common practice of locating a region via its “peak” voxel. In other 

words, when a cluster spans a few anatomical regions, spatial specificity may be 

compromised as the investigator typically identifies only one region in which the 

“peak” voxel resides.

7. Penalizing intrinsically small regions. Compared to the excessive Bonferroni 

correction, neighborhood-leveraging procedures offer a relatively effective 

approach at handling multiplicity. However, the conventional massively 

univariate approach inefficiently models each individual spatial unit separately, 

and the compensation for the incurred multiplicity cannot fully recover the lost 

efficiency, resulting in loss of statistical power as the process attempts to achieve 

nominal FPR levels. The combination of statistical evidence and spatial extent 

adopted in recent permutation-based methods (Smith and Nichols, 2009; Cox, 

2019) provides a principled approach to address the arbitrariness of primary 

thresholding, but all the correction approaches discriminate against spatially 

small regions. For example, between two brain regions with comparable 
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statistical strength, the anatomically larger one would be more likely to survive; 

and between a scenario involving an isolated region and another with two or 

more contiguous regions, the former may fail to survive the current filtering 

methods even when locally exhibiting stronger statistical strength.

Variations of FDR correction have been developed over the years to handle 

spatial relatedness in the brain (e.g., Leek and Storey, 2008). However, FDR as 

an adjustment method for multiplicity shares the same issues as the FWE 

approach (noted above). For example, when effects are not likely to be truly zero, 

or when the distinction between zero and non-zero is blurry, the FDR control of 

“false discovery” (zero effect) shares the same logic as the NHST framework, 

which is based on the idea of a binary distinction between “true” and “false” 

effects (instead of graded effect magnitudes). Additionally, it is also a separate 

criterion applied to “fix” the overall results, rather than a coherent strategy, such 

as the single BML model. Therefore, most of the issues enumerated above apply 

to FDR correction methods, since FDR ultimately results in adjusted p-value s 

which are then thresholded.

4. Applications of Bayesian multilevel modeling in neuroimaging

We now illustrate the applications of Bayesian multilevel modeling to neuroimaging data. 

We perform group analysis as a prediction process for all spatial units simultaneously in a 

single model, which assesses the statistical evidence for the research hypothesis HR based on 

the available data, that is, P(HR | data).

4.1. Region-based analysis

In a recent study (Chen et al., 2019a), we developed a BML framework for region-based 

group analysis. As BOLD responses approximately share the same scale, the approach 

allows information to be pooled and calibrated across regions to jointly make inferences at 

individual regions. The approach was applied to an FMRI dataset of 124 subjects, each of 

which had effect estimates at 21 regions. For each individual, a seed-based correlation 

analysis was performed with the right temporo-parietal junction as the seed (i.e., the 

correlation between each region and the seed). The question of interest was as follows: What 

is the relationship between such correlations and individual differences in a questionnaire-

measure of theory of mind?

For comparison, the same data were analyzed via conventional whole-brain voxel-wise 

analysis, which illustrated the difficulty of detecting surviving clusters. With a primary 

voxel-wise p-value threshold of 0.05, 0.01 or 0.005, four clusters were observed after 

correction through Monte Carlo simulations (Cox et al., 2017); with a primary threshold of 

0.001, only two clusters survived (Xiao et al., 2019). In contrast, with BML analysis 8 out of 

the 21 regions exhibited considerable evidence (Fig. 7). In a Bayesian framework, effect 

inference is summarized via its entire distribution, the so-called posterior density 

distribution. Note that as there is no closed-form solution for the distribution, it must be 

determined via computational algorithms, such as Markov chain Monte Carlo (MCMC) 

sampling methods. Similar to traditional approaches, one can highlight distributional tail 
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areas to denote quantiles of interest (such as 95%), which one may use to label effects as 

“moderate”, “strong”, and so on. Consider the case of the R TPJp region (top, middle panel 

of Fig. 7). In this case, the probability of the effect being less than or equal to zero (blue 

vertical line) is rather small, as it is clearly within the green (0.05) tail. In other words, the 

probability that the effect is greater than 0 is the area to the right of the blue line (in this 

case, 0.99). In contrast, in the case of the R Insula (top, right panel of Fig. 7), the probability 

that the effect lies in the central white area of the plot (which includes zero) is 90%. Now 

consider the case of the L SFG region (second row, middle panel of Fig. 7). One possibility 

is to disregard this region given that the zero-effect line does not reside in the colored tails, 

which is the approach typically adopted under the common practice of dichotomizing. But 

close inspection of the posterior reveals that the probability that its effect is greater than zero 

is about 0.93, and the experimentalist may thus wish to deem the results as providing a 

“moderate” amount of statistical evidence. Regardless of the linguistic terms utilized, one 

does not have to dichotomize the results, and in fact the investigator is encouraged to report 

the full posterior.7 It is also instructive to explicitly compare BML results with those 

obtained with conventional GLM estimates (Fig. 8). We can see that the BML estimates are 

pulled to the center (with the exception of region R TPJp), an overall behavior analogous to 

the one described for the basketball shooting performances.

An appealing aspect of Bayesian modeling is that the performance and efficiency of a model 

can be readily compared to alternative models with cross validation tools such as 

information criteria and posterior predictive checks. The intuition of visual examination on 

predictive accuracy through posterior predictive checks is that, if a model is reasonable, the 

data generated based on the model should look similar to the raw data at hand. For example, 

the massively univariate approach with GLM yielded a poor fit (Fig. 9A), whereas BML 

rendered a much better fit (Fig. 9B).

4.2. Matrix-based analysis

We now illustrate the BML framework in the context of another type of data that are of great 

interest to neuroimaging investigators, namely those summarized in a matrix form. The most 

common example involves time series correlations between regions (e.g., as in resting state 

studies), inter-subject correlations among subjects (e.g., as employed for naturalistic 

scanning (Chen et al., 2019c)), or similarity measures (e.g., representational similarity, latent 

semantic analysis). In a typical case, an investigator may have tens or even hundreds of ROIs 

and wish to examine the correlation structure in the data. Consider the case in which the 

brain is partitioned into 100 ROIs, leading to a 100× 100 correlation matrix. Given 

symmetry, one is interested in 100 × 99/2 entries (or more generally n(n 1)/2 with n ROIs). 

Although the number of ROIs here is not particularly high, the number of pairwise 

inferences is 4950, which entails a non-trivial correction for multiple testing. Along the lines 

described in the preceding section, we developed an approach to model all pairwise 

correlations simultaneously. Given that a single model is formulated, correcting for 

multiplicity is not required.

7It is probably advisable to avoid the “codification” of linguistic labels (“moderate”, “strong”, etc.) that are tied to particular 
probability values (say, 95%). Naturally, considering values along a continuous numerical scale is an advantage of mathematics over 
discrete language usage. Nevertheless, linguistic descriptors are probably benign as long as the posterior distribution is fully presented.
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The central issue of matrix-based data analysis is to make inferences for each region pair 
which poses considerable challenges. First, correlation values are, by definition, computed 

over pairs of random variables (e.g., average BOLD time series for FMRI data), but the 

existence of “shared regions” implies that some pairwise correlations are not independent, 

namely they are correlated themselves (Fig. 10A). Because the correlation between regions 

Ri and Rj and that between regions Rj and Rk share a common region Rj, proper modeling 

requires accounting for such covariance between region pairs. A second challenge concerns 

of course the problem of multiple testing (Fig. 10B), which has been tackled via 

permutations, where a null distribution is generated to declare which region pairs survive 

thresholding (Zalesky et al., 2010).

We applied our BML approach to data from a previous cognitive-emotional task (Choi et al., 

2012). Briefly, participants performed a response-conflict task (similar to the Stroop task) 

under safe and threat conditions. A unique feature of the approach developed is that it allows 

the assessment of effects at the individual region level (Fig. 11). Because the effect of each 

region pair is decomposed in terms of multiple components including that for each 

individual region involved, a region-level effect that characterizes the “contribution” of a 

region can be inferred by BML model. Such an effect, presented with its uncertainty (and 

the entire posterior distribution), allows the assessment of region importance in a manner 

that is statistically more informative than those metrics commonly used in graph-theoretic 

analysis such as degrees and hubs. Although the BML approach is illustrated here in the 

context of inferences about the population effect for each region and region pair, a researcher 

might also be interested in group differences, or in the association of a response to a 

covariate such as one related to individual differences. In the latter situation, one can 

seamlessly incorporate additional explanatory variables into the BML model, as discussed in 

the case of region-based analysis in the previous subsection (see also Chen et al., 2019a; 

Xiao et al., 2019; Chen et al., 2019c).

The comparison of region-pair effects are quite revealing between the results based on the 

conventional GLM approach and those based on our BML proposal (Fig. 12). The GLM 

results were obtained through a massively univariate analysis with (16 × 15)/2 independent 

models, one for each region pair. The BML results were derived by fitting a single model to 

half of the off-diagonal elements in the correlation matrix. The impact of partial pooling 

(i.e., information sharing) under BML can be observed by noticing the smaller effect sizes 

among many region pairs. In other words, the effects for most region pairs are “pulled” 

toward the “middle” relative to their GLM counterparts. The inference efficiency of BML 

can be appreciated by noticing that 33 region pairs exhibited “moderate” to “strong” 

statistical evidence; they formed a subset of the 62 region pairs that individually were below 

the 0.05 threshold under GLM. At the same time, when cluster-level correction for multiple 

testing was applied at FPR of one-sided 0.05 with permutations (Zalesky et al., 2010), no 

region pairs survived in the GLM case.

5. Discussion

The bulk of statistical training focuses on the conventional NHST paradigm, and so 

researchers are accustomed to accepting the framework unquestioningly. The “surprise” 
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measure encapsulated by P(data | H0)has become a target goal of data analysis that takes its 

aim at a “straw man” scenario of “zero effect” under NHST (Fig. 5, left). Unlike situations 

with truly dichotomous categories (e.g., guilt or innocence in a courtroom trial), most effects 

or mechanisms under investigation in neuroimaging – and arguably biology more generally 

– exist along a continuum (e.g., Gonzalez-Castillo et al., 2012), and therefore will be 

considerably distorted if binarized (as in the dichotomy of statistically “significant” vs. 

“non-significant”).

As discussed by others in the past, a more natural objective of the experimentalist would be 

to focus on the research hypothesis HR of interest, which can be assessed through P(HR | 

data) (Fig. 5, right). With rather benign model assumptions, Bayesian methodology allows 

just that. Furthermore, advances in Bayesian methods in the past two decades are 

encouraging a reexamination of some entrenched practices. For example, unbiasedness is 

generally considered to be a “nice,” if not requisite, property for an estimator. However, it 

might not always be the most important property. For one, when it is difficult to reach a 

satisfactory sample size (a nearly universal reality of experimentalists), some extent of 

statistical bias at the individual-entity level (e.g., participant, brain region) might be a cost 

worth incurring to achieve an overall higher predictive accuracy at the collective level.

Multiplicity is an intrinsic component of the massively univariate approach, and poses 

substantial challenges, including artificial dichotomy, inflated type M and type S errors, 

vulnerability to data fishing, suboptimal predictive accuracy and lack of model validation. 

Moreover, the sole focus on the FPR control under NHST as the rationale of adjusting for 

multiplicity through neighborhood leverage presumes that the weight of false negatives is 

essentially negligible in the implicit loss function. These negative consequences are 

symptomatic of inefficient modeling. To overcome these shortcomings, we propose adopting 

an integrative BML model and making inferences by sharing information across spatial 

units. Rather than trying to fight multiplicity through leveraging the relatedness only among 

neighboring spatial units, we calibrate the information shared across all spatial units through 

the hierarchical structure of BML: control useful errors of type M and S; improve modeling 

efficiency; reduce the susceptibility to fishing expeditions; validate each model; and show 

complete results.

5.1. Modeling frameworks and conceptual differences

An intrinsic distinction exists between random and fixed effects under the conventional 

statistical framework (e.g., ANOVA and LME). The parameters of interest (e.g., intercept 

and slopes) under the conventional statistical models (t-test, GLM, ANOVA and LME) are 

modeled as fixed but unknown effects because these effects are treated as capturing the 

“real” properties of the population (e.g., activation strength, or association between brain 

activation and behavior). Such effects include the paradigmatic examples with measurement 

errors for constants such as: players’ performance, epidemiological estimate at the county 

level, Newton’s G, the speed of light c, Planck’s constant h, or the effect of interest at each 

brain region in neuroimaging data. The absence of information about each fixed effect is 

assumed to be temporary, and therefore its uncertainty is considered epistemic and will be 

reduced once the effect can be characterized better and estimated through an improved 
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model (and sufficient data). In this framework, the treatment of fixed effects is “objective” 

and unbiased since we fully trust the empirical data with the assumption that all potential 

findings are equiprobable (e.g., activation is a priori as likely to be 0.1% as 100% signal 

change). In contrast, random effects capture the intrinsic variations observed in inherently 

random samples. The inclusion of random effects in the model makes inference 

generalization possible at the population level, and the uncertainty associated with random-

effects variables is treated as aleatoric, reflecting the elusive nature of fluctuations among 

measuring entities (e.g., subjects). Under the conventional modeling framework, random 

effects are generally of no interest (e.g., residuals in GLM and subject-specific effects under 

LME) but are included in the model to account for data variability and to allow 

generalizations from the current sample to a hypothetical population.

However, such a distinction between random and fixed effects is dissolved under BML by 

treating all effects as random. For example, the effect of interest at each region can be 

viewed as a varying quantity relative to a collectioin of background information across all 

regions; that is, by treating the effects among brain regions as the outcome of a “subjective” 

Gaussian distribution, we no longer need the distinction of fixed versus random effects. 

Specifically, by leveraging the global assumption of exchangeability among the regions, we 

infer each region’s effect based on the overall predictive accuracy across all regions. The 

dissolution between epistemic and aleatoric variability has even been practically applied to 

effectively modeling measurement errors under the Bayesian framework for conventional 

physics constants such as the speed of light (Gelman et al., 2014).

To recapitulate, the focus of the Bayesian paradigm is not on the inbuilt metaphysical nature 

of the effect under study; rather, we treat all model parameters (including those that are 

typically coded as fixed effects under the conventional framework) as random variables by 

expressing our knowledge and uncertainty through probability distributions. Consider the 

following example relevant in the context of neuroimaging. For the population of all 

humans, do we expect there to be a fundamentally fixed, underlying BOLD response in the 

amygdala (say, 0.538% signal increase) when contrasting images of fearful vs. neutral faces? 

Should we assume that all the factors contributing to the uncertainty of measuring this effect 

in an experiment (e.g., genetic variability, experimental context, mood, alertness, anxiety, 

etc.) are epistemic? We suggest that it is reasonable to treat the uncertainty associated with 

any effect, regardless of the investigator’s interest, as aleatoric within the scope of the BML 

framework and determine its magnitude uncertainty based on a (large enough) sample of 

participants. Indeed, the range of aleatoric uncertainty can be reported as a quantile interval 

from the posterior distribution (or other forms of statistical summary as in conventional 

approaches). In other words, instead of forcing a view of brain response as exact, intrinsic 

values across all human beings, we make statistical inferences based on an integrative model 

that renders a representative distribution of the effect. The Bayesian framework thus helps 

dissolve the distinctions between the two uncertainty types. Model parameters such as 

intercept and slopes are no longer treated as unknown fixed effects at the population level, 

but are pragmatically considered to be aleatoric, much like random effects such as subjects 

under the conventional framework. More broadly, a guiding principle of Bayesian statistics 

is that the state of knowledge about anything unknown should be expressed by a probability 

distribution.
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A little more technically, the move away from assuming epistemic uncertainties (“fixed but 

unknown”) allows us first to incorporate spatial units as levels of a factor into LME 

modeling, and then to transition from LME to BML (for technical details, see Chen et al., 

2019a). For example, the individual spatial units would be typically treated as independent 

entities (isolated locations) and modeled in parallel under the massively univariate modeling. 

On the other hand, consider the example of inferring an effect at each region pair with 

matrix data. In a traditional LME model each region pair is treated as a random effect, and 

no inference can be made about individual regions and region pairs other than the intercept 

(common effect shared by all regions and all subjects), which is typically not very 

informative in practice. In contrast, within the BML framework, the effect of each region 

pair is modeled as the contribution of each involved region plus their interaction. In doing 

so, we can derive both the individual effects and their combined contribution as a pair by 

sampling from the posterior joint distribution (Chen et al., 2019b). Thus, the distinction 

between fixed- and random-effects characterized in the conventional LME framework is 

mapped to, in the BML context, the distinction between information pooling across regions 

and, separately, across-subject variability.

Historically, much has been discussed about the Bayesian approach in the context of 

“subjectivity” versus “objectivity.” Bayesian methods are frequently linked with the former, 

and in fact in a negative fashion. As all statistical models are subjective in the sense of 

idealizing or approximating reality, we favor adopting a pragmatic stance. Certainly, analytic 

decisions require scientific evaluation, including specific aspects of data processing specifics 

(amount of spatial smoothing, choice of data included or excluded, model validation, etc.) 

and uncertainty assignment through a probability distribution. By considering Stein’s 

paradox and related examples, we hope to have motivated the idea that the “objectivity” of 

effect inferences (i.e., statistical unbiasedness) should not be the sole criterion in adopting a 

statistical approach. In fact, the Gaussian prior incorporated in the scenarios of the 

basketball players, counties, and ROIs, is a model assumption much like those in 

conventional statistical methods (e.g., Gaussian distribution for residuals and subjects). Note 

that the Gaussian prior only stipulates the distribution shape, and its specific parameters are 

actually determined a posteriori through the model conditioning on the data. In contrast, the 

uniform distribution implicitly assumed under the conventional massively univariate 

framework, as a special case of BML, is usually not examined or verified in real practice. As 

experimentalists, we generally have prior knowledge about an effect of interest (e.g., a 

BOLD percent change of 100% is unrealistic for most contrasts). Adopting a weakly 

informative prior adds a small amount of real-world information to the model – it provides a 

“nudge”. Naturally, the analyst should explicitly report all model assumptions, including the 

priors adopted. Importantly, the performance of a Bayesian model can be evaluated via 

graphical tools such as posterior predictive checks (Fig. 9) as well as via cross-validations. 

Taken together, we believe that the global calibration approach can contribute to improving 

neuroimaging research in multiple ways, including by reducing thresholding-related 

arbitrariness, increasing model efficiency, and enhancing reproducibility. When BML is 

applied to the region level, all brain regions are treated on an equal footing based on their 

respective effect strength. Thus, small regions are not penalized simply because they happen 

to be small (e.g., less than 20 voxels). In this manner, BML can simultaneously achieve 
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meaningful spatial specificity and detection efficiency. This differs from the conventional 

analysis, where small regions are inherently placed in a disadvantageous position even if 

they have similar signal strength as larger ones, as illustrated in Fig. 1.

Related to the current context is the multiplicity issue associated with reproducibility studies 

as well as with all research studies that employ statistical analysis. For example, one may 

design a new study to check whether the conclusion from a paper can be duplicated; that is, 

a replication study intends to determine the generalizability to different subjects, age groups, 

scanners, sites, preprocessing decisions, analytical tools, etc. One natural question is: under 

the conventional framework, would one correct for duplicity in statistical inferences? In the 

same vein, whenever a new statistical analysis is performed, one more inference is added to 

a huge hypothetical pool of all previous analyses, potentially leading to an incremental 

inflation of the overall statistical evidence: should the analyst incrementally adjust for the 

significance evidence under the conventional framework through, for example, Bonferroni 

correction? One may intuitively say no, but how to reconcile the two seemingly 

contradicting perspectives under NHST? We believe that the Bayesian framework offers a 

more consistent perspective in this regard. For one particular research conclusion submitted 

to a journal or reported in the literature, a reviewer or reader may hold a doubtful attitude 

toward the statistical evidence demonstrated in the paper, reflecting some extent of 

uncertainty intrinsically embedded in the probabilistic nature of the data and the adopted 

modeling approach. With more and more similar studies accumulated, we would not expect 

that all the results are exactly the same; rather, we assume that the studies follow, for 

example, a Gaussian distribution: most of them are similar to each other with a minority as 

outliers. In other words, when we emphasize the importance of reproducibility in all 

scientific investigations, our implicit attitude is homomorphic to embracing, rather than 

fighting, multiplicity by intuitively applying partial pooling to all the analytical results with 

a Gaussian prior.

5.2. Potentials and limitations of BML applicability in neuroimaging

Table 1 compares the conventional massively-univariate approach and the multilevel 

framework described here. One noteworthy aspect is that the investigator’s intention 

concerning the data space has a considerable impact on the extent of statistical evidence in 

conventional NHST (Kruschke, 2010). For example, if the investigator decides to perform a 

whole-brain voxel-wise analysis, or to target a few dozen regions of interest, the associated 

corrections for multiple testing might result in quite different results (from not being able to 

report a single voxel to reporting noteworthy results across multiple regions). How does 

BML fare in this respect? Provided that the investigator’s objective is the overall predictive 

accuracy, partial pooling is expected to produce similar results (Fig. 2D illustrates this 

behavior for the case of pooling among the top 50 NBA players versus the top 100 players). 

Accordingly, in a neuroimaging study, if the set of spatial units changes because of an 

evolving research focus (e.g., adding or subtracting regions), the impact would typically be 

relatively small as long as the cross-region variability is not substantially smaller than the 

within-region variability (Chen et al., 2019a). Such adaptivity of the Gaussian prior is 

supported by ongoing analyses of a task-related dataset with different numbers of regions of 

interest (e.g., 30, 300, and 1000), resulting in consistent inferences.
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We also wish to emphasize the importance of reporting the continuous spectrum of statistical 

evidence. In the applications described in the previous sections, effect uncertainty was 

quantified via quantile intervals of the posterior distribution, providing a straightforward and 

intuitive representation of variability. This approach works well when the number of 

estimates involved is relatively small (say, 10–20) but is more challenging for larger datasets. 

Given that neuroimaging data analysis typically involves larger data structures, one may 

choose to highlight a subset of the effects, particularly those with “strong” or “moderate” 

evidence. However, these convenient linguistic labels should be operationally defined and 

not viewed as carrying categorical information (“active” vs. “not active”). There has been a 

recent call for the distinction between exploratory research (generating research hypotheses 

with existing data) and confirmatory research (testing existing research hypotheses with new 

data). Preregistration has been proposed to provide a clearer distinction between the two 

research aims, and to reduce the influence of publication bias on effect size (Nosek et al., 

2018). Our emphasis of complete-results reporting is well-aligned with current trends of 

study preregistration.

The BML models described here are formulated at the level of brain regions. Could the 

approach be extended and be applied to a whole-brain voxel-wise level? At present the 

answer is “no” given the computational cost of fitting very large multilevel models. 

However, this type of analysis may be feasible in the not distant future with the use of 

Graphical Processing Units and within-chain parallelization (Stan Development Team, 

2019). Nevertheless, there are a few disadvantages associated with a whole-brain voxel-wise 

analysis that could be complemented through a region-based approach. For instance, 

analysis at the voxel level is susceptible to the quality of inter-subject alignment, an 

increasing challenge as the field keeps pushing for smaller and smaller spatial units (e.g., 

less than 1 mm isotropic voxels). In addition, inferences based on region-based analysis are 

region-specific; in contrast, statistical evidence at the voxel level is not necessarily well-

aligned with the anatomical or functional definitions, leading to ambiguous or difficult 

inferences. As region definitions (atlases or parcellations) are available that cover the whole 

brain (e.g., 1000 parcels (Schaefer et al., 2018)), BML can be directly applied to a set of 

regions that provide a full coverage for the whole brain (Chen et al., 2019c).

The performance of BML requires more testing to assess and validate its consistency and 

replicability under different scenarios and when applied to multiple datasets. For example, 

would the inference be consistent when the number of regions increases in real data 

analysis? Does BML consistently outperform its GLM counterpart in terms of predictive 

accuracy? The linearity of effect decomposition under BML is a strong assumption, and, as 

in all linear models, it is an approximation.

In addition,partial pooling under BML is not always effective. On one hand, partial pooling 

effectively implements a compromise between two “forces,” one pulling the effect estimate 

toward the center across all regions, and the other toward the local effect at each specific 

region. Pooling through a weighted average of these two extremes is particularly effective 

when the across-region variance of the effects is within the same order of magnitude as the 

within-region variance (sum of cross-subject variance and residual variance). However, 

when one variance is substantially overwhelmed by the other with a different order of 
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magnitude, then information sharing is basically reduced to one of the two degenerative 

cases: either “no pooling” (relatively huge within-region variability) or “complete pooling” 

(relatively negligible within-region variability). Under these scenarios, partial pooling is 

ineffective, and larger sample sizes are most likely required. For a technical description of 

these issues, please refer to Chen et al., (2019a).

One potential concern about the BML approach is the underlying assumption about the 

relationships among the spatial units. Although independence is not required, 

exchangeability8 is needed to guarantee that no differential information among spatial units 

is available (it also allows approximating the prior distribution across regions in terms of a 

mixture of identical and independent distributions per de Finetti’s theorem). The assumption 

of exchangeability is also advantageous because a prior distribution with fewer adjustable 

parameters will be associated with “sharper” posterior densities (i.e., one with a more 

discernible peak) than more complex prior distributions (Jefferys and Berger, 1992). 

Nevertheless, it is to be expected that some regions in the brain will share more information 

between them (relative to other regions), such as anatomically adjacent or interhemispheric 

(i.e., homotopic) regions. Therefore, a fruitful direction of research will be to relax the 

assumption of exchangeability so as to capture potential forms of information sharing 

between groups of regions. In particular, the multilevel correlation structure among spatial 

units may be informed by the functional organization of brain regions, such as a gradient 

between sensorimotor and transmodal areas (Huntenburg et al., 2018). Recent development 

in the estimation of structured high-dimensional covariance and precision matrices (e.g., Cai 

et al., 2016) may also help in modeling the hierarchy of spatial relatedness. Another 

potential modeling improvement is to adopt a meta-analytic-predictive approach with 

mixture priors that incorporate historical information through heavy tails (Schmidli et al., 

2014). Higher predictive accuracy may be achieved when prior information from the 

literature can be specifically inserted into the model at the region level.

Another direction for improvement is related to the current practice of splitting the analysis 

pipeline into at least two levels, one that utilizes one regression model per subject (or even 

per run/session) to estimate the BOLD signal at the individual level, and another model (e.g., 

GLM or LME) at the population level. One consequence of such an approach is the potential 

information loss if the reliability information (e.g., standard error) about the effect estimate 

is not utilized at the group level. As with other multilevel modeling approaches in the field, 

BML can potentially take the reliability information into consideration. Thus, a future 

research direction would be to further integrate the modeling of BOLD data into the BML 

framework.

Admittedly, there is no magic bullet that could solve all of the problems discussed here. 

Instead, we may need a cocktail approach that blends multiple solutions. For example, in 

addition to scientific nuance and preregistration, most likely efficient modeling approaches, 

8Exchangeability assumes that no differential information is available across the measuring entities (e.g., regions and subjects in 
neuroimaging) in the model. A set of entities is exchangeable if its joint probability distribution is a symmetric function of the entities; 
thus, if the order or sequence of the entities is permuted, the joint distribution would not change. Exchangeability captures the 
distributional symmetry among the entities in a sense that does not require independence: independent and identically distributed set 
of entities is exchangeable, but not vice versa.
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model validation, full results and full methods reporting, transparency, and data sharing will 

contribute to the improvement of reproducibility. We believe that highlighting results with 

stronger evidence without hiding weaker ones is healthier than the sharp thresholding 

practiced presently. The adoption of BML could also alleviate the vulnerability to data space 

specification (e.g., what precise set of ROIs is being considered?), as well as promote model 

validations. In addition, as shown in the kidney cancer example, the focus of controlling for 

the errors of incorrect sign and incorrect magnitude under BML is potentially more useful 

than the conventional concept of false positives and negatives under NHST. More generally, 

a paradigm shift may be needed, one less restricted to null hypothesis testing and more 

focused on parameter estimation with its associated precision (Gelman and Hill, 2007; 

Cumming, 2014). Nevertheless, basic statistical principles remain applicable regardless of 

the modeling approach. For instance, when the across-region variability is substantially 

smaller than its within-region counterpart, partial pooling through BML may fail 

dramatically, leading to an undesirable scenario of complete pooling. Per asymptotic theory, 

such a situation usually indicates a demand for a larger sample size, as may be the case when 

estimating interaction effects.

6. Conclusions

Neuroimaging investigators confront the issue of multiplicity front and center. The analysis 

challenges posed by this problem are inherently linked to the conventional strategy of 

modeling the data in a univariate manner: Each spatial unit (e.g., voxel, region) is modeled 

independently. In the present paper, we described how this approach leads to modeling 

inefficiency and information loss given the required procedures for handling multiplicity. As 

an alternative framework, we presented a Bayesian multilevel modeling framework that 

makes inferences across spatial units by pooling information across them and achieving a 

higher overall predictive accuracy. Instead of a multiplicity of models (one for each spatial 

unit), a single integrative model is employed to embrace multiplicity to modeling advantage. 

It is our hope that the convergence of theoretical progress combined with algorithm 

development will stimulate the growth of Bayesian modeling in neuroimaging. Bayesian 

models also have the potential to encourage reporting experimental findings more fully, 

instead of dichotomizing them into “significant” and “non-significant” bins, thus reducing 

information loss in the literature while enhancing both transparency and reproducibility.
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Fig. 1. 
Schematic illustration of handling multiplicity via neighborhood leveraging procedures. The 

process is illustrated by considering three hypothetical spatial clusters that can be imagined 

as three sub-continental landmasses. The “pass” or “fail” of a cluster depends on its size 

(cross-section extent) at a particular voxel-wise threshold (or sea level; showcased by the 

blue segment length of T1, T2 and T3). In other words, only the neighborhood defined by 

that particular threshold matters in the sense that the spatiotemporal information contained 

in the data is summarized by a snapshot (a cluster defined by a cutoff). At the level of t1, 

clusters A and B survive (green “+” sign) based on the spatial threshold T1 while C does not 

(red “×” sign) because of its small size. In contrast, at the stringent level t3, both clusters A 

and B fail while C survives. Note that the surviving clusters strongly depend on the “sea 

level” adopted, and no single case is ideal. In particular, if an anatomical region is 

intrinsically small, clustering will often fail to reveal it unless the statistical evidence is 

unusually strong.
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Fig. 2. 
Geometric illustration of Stein’s paradox with simulated data of the top basketball players. 

Here, we pretend that we could time-travel to the future and take a sneak peek at the 

independent shooting rates yi of the players, which are assumed to follow a Gaussian 

distribution: y1, y2, …, y50 N my, σy
2  (here, my = 0.4, σy = 0.1). Kevin Durant’s data point is 

labeled as “KD”. (A) The future performance of the top 50 players is predicted (values 

represented by squares) to be the same as in the current season (circles). The actual “future” 

values are also shown (diamonds). The purple dashed lines link the predicted and actual 

future values. (B) The performance of the top 50 players is predicted through simple 

regression. The green slanted lines, corresponding to the green fitted line in (C), illustrate 

partial pooling, which interestingly also corresponds to the concept of regression to the 

mean established by Francis Galton. For the hypothetical dataset at hand, note that the 

prediction of the next season for Durant as one of the top 50 players is 51.5%, a value that is 
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slightly downgraded from his current 52.1%. (C) Two scenarios are contrasted for the top 50 

players. First, as in panel (A), using each player’s current performance to predict future 

values gives the diagonal line fit x = y (red dotted line). Second, we could imagine having 

future data and predicting future yi values with the current data xi as an explanatory variable. 

In this case, the ordinary least squares solution (green line) would produce a fitted line 

shallower than the diagonal (red dotted line), which illustrates the partial pooling effect 

(Stigler, 1990). (D) What would happen if we predicted the performance of the top 50 

players as part of a bigger pool of the top 100 players? The effect of partial pooling remains 

evident by the shallower line of regression fit (solid blue line). Although the prediction of 

the top 50 players as part of the top 100 players is different from that limited to the top 50 

players (green dashed line, same as the solid green line in panel (C), the prediction 

difference is relatively small due to the adaptive nature of the Gaussian distribution assumed 

for the data.
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Fig. 3. 
The U. S. counties with the highest (A) and the lowest (B) 10% death rates of kidney cancer 

during 1980–1989 are shown with blots. Republished with permission of Taylor & Francis 

Group LLC, from Gelman et al. (2014); permission conveyed through Copyright Clearance 

Center, Inc.
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Fig. 4. 
Illustration of the concept and interpretation for type I (FPR), type II, type S and type M 

errors. Suppose that there is a hypothetical noncentral t20 distribution (solid black curve) for 

a true effect (blue vertical line) of 0.7 (A) or 0.3 (B) and a standard error of 1.0. Under the 

null hypothesis (red vertical line and green dot-dashed curve), two-tailed testing with a type 

I error of 0.05 leads to having thresholds at 2.09; FPR = 0.05 corresponds to the null 

distribution’s total area of the two tails (marked with red diagonal lines). The power (shaded 

in blue) is the total area of the t20 distribution for the true effect (black curve) beyond these 

thresholds, which is 0.10 (A) or 0.06 (B). The type S error is the ratio of the blue area in the 

true effect distribution’s left tail beyond the threshold of −2.09 to the total area of both tails, 

which is 4% (A) or 21% (B) (i.e., the ratio of the “statistically significant” area in the wrong-

signed tail to that of the total “statistically significant” area). If a random draw from the t20 

distribution under the true effect happens to be 2.2 (small gray square), it would be identified 

as statistically significant at the 0.05 level, and the resulting type M error would quantify the 

magnification of the estimated effect size as 2.2/0.7 ≈ 3.1 (A) or 2.2/0.3 ≈ 7.3 (B), which is 

substantially larger than unity. These two plots aptly demonstrate the importance of 

controlling the errors of incorrect sign and incorrect magnitude when a large amount of 

variability exists in the data. High variance is bound to occur when we deal with the 

multiplicity issue embedded with massively univariate modeling, which is further 

exacerbated by scenarios such as small sample size, noisy data, unaccounted for cross-

subjects variability and suboptimal alignment to a standard template. More systematic 

exploration and comparison between the conventional (type I and type II) and the new (type 

S and type M) sets of errors can be found in Gelman and Tuerlinckx (2000) and Chen et al. 

(2019a).
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Fig. 5. 
Different probability definition and focus between the conventional and Bayesian 

frameworks. Statistical inferences under NHST usually pivot around the “weirdness 

indicator” of the p-value (left curve): green (or yellow) tails symbolize a two-sided 

significance level of 0.05 (or 0.1). If the data renders a t20 value of 2.85 (small gray square), 

reaching the comfort zone (green or yellow area) with a two-tailed p-value of 0.01 (the 

probability of obtaining such data with a t20 value at least as extreme if the effect were truly 

zero), one may declare to have strong evidence for the effect with an FPR threshold of 0.05 

under the NHST framework. In contrast, inferences under the Bayesian framework directly 

address the research interest (right curve): what is the probability of the effect magnitude 

being greater than 0 with the data at hand (greater than 0.99 in this case)? There are different 

ways to provide a point estimate of centrality from the posterior distribution such as mean, 

median and mode (or maximum a posteriori probability (MAP)) under the Bayesian 

framework, while such point estimates are usually the same due to symmetry under the 

theoretical distribution of NHST. However, Bayesian inferences tend to emphasize more the 

uncertainty of an effect, not its point estimate. The green and yellow tails of the posterior 

density mark the extent of statistical evidence associated with the two specific (two-sided 

95% and 90%) uncertainty intervals, and the dotted dark green line shows the median or 

50% quantile of the posterior density. Notice 1) the x-axis is different between the two 

densities (standardized value for NHST and effect in physical dimension for the Bayesian 

paradigm), 2) P(data | zero effect) under NHST is conceptually and numerically most of the 

time not the same as 1–P(effect > or < 0 | data) under the Bayesian framework, 3) the null 

distribution under NHST has a smooth and regular shape due to the assumption of a standard 

curve in the model as a prior while the irregular posterior distribution is formulated through 

random samples through Markov chain Monte Carlo simulations under the Bayesian 

framework, and 4) compared to the conventional confidence interval that is flat and 

inconvenient to interpret, the posterior density provides much richer information such as 

spread, shape and skewness.
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Fig. 6. 
Arbitrariness resulting from dichotomization. Two hypothetical effects that independently 

follow Gaussian distributions: N m1, σ1
2  (blue) and N m2, σ2

2  (red), respectively, where m1 = 

0.2;σ1 = 0.1;m2 = 0.4;σ2 = 0.3. Under NHST the first effect would be considered statistically 

significant with a one-sided (or two-sided) p-value of 0.023 (or 0.045); in contrast, the 

second effect would not be viewed statistically significant given a one-sided (or two-sided) 

p-value of 0.091 (or 0.18). On the other hand, the difference between the two effects is not 

statistically significant with a one-sided p-value of 0.26; in fact, the second effect is more 

likely larger than the first one with a probability of 0.74.

Chen et al. Page 34

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Posterior distributions of the slope effect derived from BML with 124 subjects at 21 regions. 

The density plot and the associated posterior interval at each region were based on random 

draws from the same overall high-dimensional posterior distribution that was numerically 

simulated from the BML model. The vertical blue line indicates zero effect; orange and 

green tails mark the regions beyond the 90% and 95% uncertainty (compatibility or quantile) 

intervals, respectively. If results highlighting is desirable, one can claim the regions with 

strong evidence of slope effect as the blue line being within the color tails, as indicated with 

orange and green dot-dashed boxes. Compared to the conventional confidence interval that is 

flat and inconvenient to interpret, the posterior density provides much richer information 

about each effect such as spread, shape and skewness. Relative to the conventional whole-

brain voxel-wise analysis that rendered with only two surviving clusters (Xiao et al., 2019) 

based on the primary voxel-wise p-value threshold of 0.001, the BML showed a much higher 

inference efficiency with 8 regions that could be highlighted with strong evidence. To 

illustrate the conventional dichotomization pitfall through a common practice of 

thresholding at 0.05, the region of L SFG also elicited some extent of slope effect with a 

moderate amount of statistical evidence: the probability that its effect is greater than zero is 

about 0.93 conditional on the data and the BML model. Reprinted from Chen et al. (2019b).
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Fig. 8. 
Comparisons of results between the conventional region-based GLM and BML in box plots. 

For each region, the left box shows the GLM result that was inferred with the region as an 

isolated entity while the right box corresponds to the BML inference. With one GLM for 

each of the 21 regions, none of the regions would survive FPR correction under NHST. The 

effect is shown with the horizontal black bar in the middle of each box as the mean for GLM 

or median for BML; each box (or whisker pair) represents the 90% (or 95%) confidence 

interval for GLM (dashed, left) or uncertainty interval for BML (solid, right). The shrinkage 

or pooling impact of BML calibrates and “drags” most but not all regions (see R TPJp). 

Reprinted from Chen et al. (2019a).
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Fig. 9. 
Model performance comparisons through posterior predictive checks and cross validations 

between conventional univariate GLM (A) and BML (B). The subfigures A and B show the 

posterior predictive density overlaid with the raw data from the 124 subjects at the 21 ROIs 

for GLM and BML, respectively: solid black curve is the raw data at the 21 ROIs with linear 

interpolation while the fat curve in light blue is composed of 500 sub-curves each of which 

corresponds to one draw from the posterior distribution based on the respective model. The 

differences between the solid black and light blue curves indicate how well the respective 

model fits the raw data. BML fitted the data clearly better than GLM at the peak and both 

tails as well as the skewness because pooling the data from both ends toward the center 

through shrinkage clearly validates our adoption of BML. To make performance 

comparisons possible, the conventional univariate GLM was Bayesianized with a 

noninformative prior (i.e., uniform distribution on (− ∞, + ∞)) for the regions. Reprinted 

from Chen et al. (2019a).
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Fig. 10. 
Characterizing the inter-region correlation structure of group brain data. A) Correlations 

between two pairs of brain regions, rij, are not independent when they share a common 

region. Thus, when simultaneously estimating multiple correlations, such relatedness needs 

to be modeled and accounted for. B) Making inferences about correlations leads to a 

multiplicity problem, in particular how to account for the simultaneous inferences of all 

effects under NHST. In a Bayesian framework, multiplicity relates to the problem of 

modeling all correlations simultaneously by invoking information sharing or partial pooling. 

C) Within a Bayesian multilevel framework, it is possible to frame the problem in terms of 

capturing the population-level effect of (1) brain region, Rq, (2) region pair, rij, and (3) 

subject k. The characterization of the effects at the region level is a unique contribution of 

our framework, which allows investigators to reveal a region’s “importance” within a 

principled statistical framework. Reprinted from Chen et al. (2019b).
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Fig. 11. 
Posterior density plots of region effects (in Fisher’s z-value). Each posterior distribution 

indicates the probability of observing region effects. The orange and green tails mark areas 

outside the two-sided 90% and 95% quantile intervals, respectively; the blue vertical lines 

indicate the zero region effect. Consider a region such as the BNST_L (top row, third 

column): the zero region effect lies in the left green area, indicating that the probability that 

the effect is positive is greater or equal to 0.975 (conversely, the probability that the effect is 

negative is ≤0.025). The same is true for the Thal_R (second row, second column). In these 

two cases, there is strong statistical evidence of a region effect, as indicated with green dot-

dashed boxes. Two other regions (BNST_R and Thal_L; orange dot-dashed boxes) exhibited 

moderate statistical evidence of a region effect (the blue vertical lines were each within the 

orange band). Four more regions forming contralateral pairs of regions (BF_L and BF_R, 

aIns_L and aIns_R) plus SMA_R also exhibited some statistical evidence as they were close 

to the typical “convenience” thresholds. Note that the posterior density provides rich 

information about each effect distribution, including shape, spread and skewness. Unlike the 

conventional confidence interval that is flat and inconvenient to interpret, it is valid to state 

that, conditional on the data and model, with probability, say, 95%, the region effect lies in 

its 95% posterior interval. Inferences about region pairs are shown in Fig. 12. Region 

abbreviations: BF: basal forebrain; BNST: bed nucleus of the stria terminalis; IFG: inferior 

frontal gyrus; IPG: inferior parietal gyrus; Ins: insula; MPFC: medial prefrontal cortex; 

SMA: Supplementary motor area; Thal: thalamus. Other abbreviations: a: anterior; p: 

posterior; m: medial; L: left; R: right. Reprinted from Chen et al., (2019c).
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Fig. 12. 
Comparisons of region pair effects between univariate GLM (left) and BML (right) for a 

matrix dataset. Density plots like Fig. 11 are possible at the region-pair level, but only a 

summarized version is presented here due to space limitation. The empty entries along the 

diagonal correspond to the correlation value of 1. The effect magnitude (Fisher’s z-value) is 

symbolized with both circle area and color scheme (colorbar, far right). The impact of partial 

pooling (or shrinkage) under BML is evident as the effects for most region pairs are “pulled” 

toward the middle relative to their GLM counterparts. Not to dichotomize but to highlight 

the extent of the statistical evidence, region pair are colored with a green or orange 

background based on the strength of statistical evidence associated with 95% or 90% two-

sided quantiles. The high efficiency of BML becomes obvious when compared with the 

conventional GLM. With BLM, 33 region pairs exhibited moderate to strong statistical 

evidence and they formed a subset of those 62 region pairs declared under GLM. With 

GLM, 62 region pair were identified as statistically significant (one-sided, 0.05; green and 

orange boxes) without correction for multiple testing; when cluster-level correction was 

applied to GLM (FPR of one-sided 0.05 with permutations), no region pairs survived. A 

distinct feature of BML from GLM, as a natural consequence of the effect decomposition in 

BML, is the capability of inferring at the region level (Chen et al., 2019b, 2019a) as 

presented in Fig. 11. Reprinted from Chen et al. (2019c).
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Table 1

Comparisons of assumptions and properties of massively univariate analysis and Bayesian multilevel 

modeling.

Massively Univariate Analysis Bayesian Multilevel Modeling

Number of models number of units plus correction for multiple comparisons one

Sharing of information each unit is independent units are exchangeable and loosely regularized

Focus of error control overall type I (i.e., FPR) type S (sign) and type M (magnitude)

Strategy for 
multiplicity

FPR correction (control for inflated statistical evidence) partial pooling (control for inflated effect sizes)

Effect uncertainty epistemic (effect is intrinsic and fixed with uncertainty from 
measurement error, etc.)

aleatoric (effect has inherent variability)

Effect inferences effect: locally unbiased with no calibration; uncertainty: 
uninterpretable at unit level and dichotomized at the clique 
level

effect: locally biased and globally calibrated; 
uncertainty: expressed via posterior distribution

Framing of hypotheses P(data | H0): estimate the “surprise” of having the observed 
data under the null hypothesis H0 scenario

P(HR | data): find the evidence for research 
hypothesis HR given the observed data

Inference method perform NHST with a binary decision based on an FPR-
adjusted threshold

assess statistical evidence P(HR | data) through 
posterior distribution: highlight but no hide

Model efficiency local (e.g., unbiasedness of each unit, statistical power) global (cross-validations, posterior predictive 
checks)
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