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Original Article

Integrated analysis of single-cell and bulk transcriptome identifies 
a signature based on NK cell marker genes to predict prognosis 
and therapeutic response in clear cell renal cell carcinoma
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Background: Accumulating evidence has highlighted the effects of natural killer (NK) cells on shaping 
anti-tumor immunity. This study aimed to construct an NK cell marker gene signature (NKMS) to predict 
prognosis and therapeutic response of clear cell renal cell carcinoma (ccRCC) patients.
Methods: Publicly available single-cell and bulk RNA profiles with matched clinical information of ccRCC 
patients were collected from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), 
ArrayExpress, and International Cancer Genome Consortium (ICGC) databases. A novel NKMS was 
constructed, and its prognostic value, associated immunogenomic features and predictive capability to 
immune checkpoint inhibitors (ICIs) and anti-angiogenic therapies were evaluated in ccRCC patients.
Results: We identified 52 NK cell marker genes by single-cell RNA-sequencing (scRNA-seq) analysis 
in GSE152938 and GSE159115. After least absolute shrinkage and selection operator (LASSO) and Cox 
regression, the most prognostic 7 genes (CLEC2B, PLAC8, CD7, SH3BGRL3, CALM1, KLRF1, and JAK1) 
composed NKMS using bulk transcriptome from TCGA. Survival and time-dependent receiver operating 
characteristic (ROC) analysis exhibited exceptional predictive capability of the signature in the training set 
and two independent validation cohorts (E-MTAB-1980 and RECA-EU cohorts). The seven-gene signature 
was able to identify patients within high Fuhrman grade (G3–G4) and American Joint Committee on Cancer 
(AJCC) stage (III–IV). Multivariate analysis confirmed the independent prognostic value of the signature, 
and a nomogram was built for clinical utility. The high-risk group was characterized by a higher tumor 
mutation burden (TMB) and greater infiltration of immunocytes, particularly CD8+ T cells, regulatory 
T (Treg) cells and follicular helper T (Tfh) cells, in parallel with higher expression of genes negatively 
regulating anti-tumor immunity. Moreover, high-risk tumors exhibited higher richness and diversity of T-cell 
receptor (TCR) repertoire. In two therapy cohorts of ccRCC patients (PMID32472114 and E-MTAB-3267), 
we demonstrated that high-risk group showed greater sensitivity to ICIs, whereas the low-risk group was 
more likely to benefit from anti-angiogenic therapy.
Conclusions: We identified a novel signature that can be utilized as an independent predictive biomarker 
and a tool for selecting the individualized treatment for ccRCC patients.
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Introduction

Renal cell carcinoma (RCC) is the most lethal of all urinary 
malignant tumors that accounts for 2.2% of the total cancer 
incidence in 2020 worldwide, claiming 1.8% of all the 
deaths (1). Clear cell RCC (ccRCC) is the most common 
subtype of RCC and is responsible for most of the RCC-
related mortality (2,3). Although early and localized tumors 
can be treated by surgical or ablative methods, one-third 
of cases will still present with or develop metastases (4). 
With the innovation of biological technologies, targeted 
and immune therapies have been widely concerned, which 
dramatically improved the outcomes of metastatic ccRCC 
patients.

ccRCC is highly immunogenic, with tumor-infiltrating 
immune cells and immunomodulatory molecules serving 
as key determinants of tumor progression, metastasis and 
immunotherapy efficacy (5). While research on the role of 
adaptive immune system has received much attention, little 
is known about innate immune cells in the prognosis and 
therapeutic efficacy of solid tumors. Natural killer (NK) 
cells, as a subset of lymphocytes that mainly participate in 
innate immunity, play a key role in anti-tumor effects (6). 

Other than that the anti-tumor effect of T cells depends 
on major histocompatibility complex (MHC), NK cells 
can directly recognize and kill tumor cells early in the 
disease, and thus regarded as the first line of defense against 
tumors (7). Additionally, NK cells can interact with various 
immunocytes associated with tumor microenvironment 
(TME), including macrophages, dendritic cells (DCs) and 
T cells, leading to the synthesis and secretion of cytokines, 
chemokines, and growth factors, etc. (8-10). However, 
current research demonstrated that tumor-infiltrating NK 
cells are inactive and dysfunctional, which could inhibit 
the immune response and block functions of killer cells, 
highlighting the potent role of NK cells in shaping anti-
tumor immunity (10-12). In previous studies, the abundance 
of tumor-infiltrating NK cells has been reported to be 
markedly correlated with the prognosis of patients with 
various solid malignancies, including ccRCC (13-17). As 
a vital element of the anti-tumor responses in the TME, 
higher infiltration of NK cells indicated improved survival 
in ccRCC patients (18). However, few studies have focused 
on the molecular analysis of NK cells in ccRCC, which 
necessitates further investigations.

In the recent years, the development of single-cell 
RNA-sequencing (scRNA-seq) has provided an efficient 
opportunity to identify cell phenotypes in TME (19). 
Prior studies have used scRNA-seq profiles to construct 
gene signatures based on the molecular features of specific 
immune cells to predict the prognosis and immunotherapy 
response of cancer patiens (20-22). Inspired by these 
studies, we analyzed scRNA-seq data from ccRCC samples 
and identified genetic markers of tumor-infiltrated NK 
cells. After constructing a prognostic NK cell marker 
gene signature (NKMS) on The Cancer Genome Atlas 
(TCGA) cohort, comprehensive analysis was conducted to 
evaluate and validate the predictive performance of NKMS. 
Furthermore, the correlation between NKMS and TME, as 
well as therapeutic responses was investigated. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-2782/rc).
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Methods

Data source and acquisition

The schematic flowchart of our study is shown in Figure 1. 
The 10x Genomics scRNA-seq files of 9 ccRCC samples 
(GSE152938, n=2; GSE159115, n=7) were downloaded 
from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) for the identification 
of NK cell cluster. The bulk tumor transcriptomic and 
matched clinical profiles of 532 ccRCC patients and 
masked somatic mutation data of 358 patients in TCGA-
kidney renal clear cell carcinoma (KIRC) cohort (release 
number: 32.0, release data: 2022-03-29) were downloaded 

from Genomic Data Commons Data Portal (https://
portal.gdc.cancer.gov/) of TCGA for further screening of 
survival-related genes and signature construction. To verify 
the prognostic capability of the signature, we obtained 
expression profiles and clinical features of two independent 
external cohorts, E-MTAB-1980 cohort from ArrayExpress 
and RECA-EU from International Cancer Genome 
Consortium (ICGC). In addition, we acquired two therapy 
cohorts with transcriptomic and clinical data of ccRCC 
patients, PMID32472114 from online supplementary data 
and E-MTAB-3267 from ArrayExpress, to test the predictive 
ability of the signature in therapeutic response (23). All data 
used in our study were obtained from publicly available 
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Figure 1 Schematic flowchart of present study. scRNA-seq, single-cell RNA-sequencing; ccRCC, clear cell renal cell carcinoma; NK, nature 
killer; LASSO, least absolute shrinkage and selection operator; TCGA, The Cancer Genome Atlas; NKMS, nature killer cell marker gene 
signature; ssGSEA, single sample gene set enrichment analysis; ICGC, International Cancer Genome Consortium.
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databases and did not require approval of the local ethics 
committee. Our study was conducted in accordance with 
the Helsinki Declaration (as revised in 2013).

Identification of NK cell marker genes by scRNA-seq 
analysis

The ccRCC scRNA-seq data were analyzed with the R 
package “Seurat” (version 4.1.1) (24). After ScRNA-seq data 
of ccRCC samples merged with “merge” function, the cells 
were filtered with the following quality control metrics: (I) 
cells with more than 10% of mitochondrial counts; (II) cells 
with unique feature counts over 3,000 or less than 200. Then, 
“NormalizeData” function was utilized to normalize the data 
with “LogNormalize” method. The “ScaleData” function 
was subsequently applied to perform a linear transformation 
on expression values and remove the heterogeneity associated 
with mitochondrial contamination. Afterwards, the top 
2,000 variably expressed genes were included to perform 
principal component analysis (PCA). Thirty PCs with 
P<0.05 evaluated by JackStraw analysis were selected for 
non-linear dimensional reduction using the algorithm of 
uniform manifold approximation and projection (UMAP) 
with “RunUMAP” function. The “FindClusters” function 
was utilized to cluster the cells with resolution of 0.3, and the 
R package “SingleR” (version 1.10.0) was applied to annotate 
the cell types using a reference dataset from the Human 
Primary Cell Atlas and typical cell markers (25,26). Then, 
“FindAllMarkers” function was used to identify distinct genes 
of each cluster with minimal percentage of cells in the cluster 
where the gene is detected >0.70. Genes that exhibited an 
absolute log2(fold change) >1 and adjusted P value <0.01 were 
considered as the marker genes.

Construction and validation of prognostic signature based 
on NK cell marker genes

The TCGA-KIRC cohort was applied as the training 
dataset to construct the signature. The R package “survival” 
(version 3.4-0) was utilized to perform the univariate Cox 
regression analysis to investigate the association between 
the expression of NK cell marker genes and the overall 
survival (OS) of ccRCC patients in TCGA-KIRC cohort. 
Marker genes with P<0.05 by univariate Cox regression 
were considered as candidate prognostic genes. The R 
package “glmnet” (version 4.1-4) was utilized to identify 
the prognostic hub genes from candidate genes by the 
least absolute shrinkage and selection operator (LASSO) 

Cox proportional hazards regression (27). Optimal value 
of tuning parameter (λ) was determined by 20-fold cross-
validation with minimum criteria. “Step” function was 
applied to conduct the stepwise multivariate Cox regression 
analysis to determine the most predictive genes with P<0.1. 
Based on the signature built, a risk score equation was 
established: 

( ) ( )i
NKMS score i Exp iβ= ×∑  [1]

β(i), the Cox regression coefficient, represented the 
weight of ith gene included, and Exp(i) represented the 
expression value of ith gene. Then, the patients in TCGA-
KIRC were classified into high- or low-risk group according 
to the median NKMS scores. “Survminer” package (version 
0.4.9) was applied to evaluate the relationship between 
NKMS scores and OS, progression-free survival (PFS) of 
ccRCC patients via Kaplan-Meier analyses, and log-rank 
test was utilized to estimate the significance of differences. 
The predictive value of this risk model was verified in two 
independent validation sets, which were E-MTAB-1980 
with 101 ccRCC patients and RECA-EU with 91 ccRCC 
patients. Detailed information of TCGA-KIRC and 
validation sets were listed in Table 1. After normalization 
of mRNA expression and calculation of NKMS scores, the 
optimal cut-off value of NKMS scores in validating sets was 
determined by the “surv_cutpoint” function. The Kaplan-
Meier method and log-rank test were used for survival 
analysis. Besides, the predictive ability of the risk model was 
also evaluated by the area under the curve (AUC) in time-
dependent receiver operating characteristic (ROC) analysis 
using “pROC” R package (version 1.18.0).

Nomogram construction

“Survival” package was utilized to perform univariate 
and subsequent multivariate Cox regression analyses to 
determine whether our signature was independent of several 
clinical variables. Then, a nomogram was constructed 
based on results of multivariate Cox regression analysis 
in the TCGA-KIRC cohort with “rms” (version 6.3-0) 
package. The total points accumulated by various covariates 
correspond to the predicted probability for a patient. The 
concordance index (C-index) was calculated to evaluate the 
predictive ability of the nomogram. Theoretically, a higher 
C-index indicates a greater level of precision in predictions. 
Calibration curves were used to examine the consistency 
between predicted and actual survival outcome. Ninety-five 
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percent confidence interval (CI) of C-index and calibration 
curves were calculated by bootstrap-based 1,000 iterations 
resampling method.

Pathway and function enrichment analysis

“Limma” package (version 3.52.2) was implemented 
to screen differentially expressed genes (DEGs). False 
discovery rate (FDR) <0.05 and absolute value of log2(fold 
change) >1 was defined as the marked threshold of DEGs. 
Pathway and functional enrichment analysis of Kyoko 
Encyclopedia of Genes and Genomes (KEGG) and gene 
ontology (GO) were performed by Metascape, an online 
gene annotation and analysis resource (28). 

Somatic variants analysis

“Maftools” package (version 2.12.0) was used to analyze 
somatic variants (29). “Oncoplot” function was applied to 
visualize the overall mutation status in high- and low-risk 
groups. “Tmb” function calculated tumor mutation burden 
(TMB) of two groups. “MafCompare” and “forestPlot” 
functions compared the differentially mutated genes 
between subgroups.

TME infiltration estimation

The “IOBR” R package (version 0.99.9) integrates 8 
published algorithms for TME contexture estimation and 

Table 1 Clinical characteristics of ccRCC from multiple cohorts

Variables TCGA (n=532) E-MTAB-1980 (n=101) RECA-EU (n=91)

Age (years)

Median 61 64 60

Range 26–90 35–91 35–83

Gender, n

Male 345 77 52

Female 187 24 39

AJCC stage, n

I 266 66 54

II 57 10 13

III 123 13 17

IV 83 12 7

NA 3 0 0

Fuhrman grade, n

1 14 13 –

2 228 59 –

3 206 22 –

4 76 5 –

NA 8 2 –

OS status, n

Alive 357 78 61

Deceased 175 23 30

ccRCC, clear cell renal cell carcinoma; TCGA, The Cancer Genome Atlas; AJCC, American Joint Committee on Cancer; NA, not available; 
OS, overall survival.
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was used to apply the ESTIMATE and CIBERSORT 
algorithms to explore the immune cells abundance between 
high- and low-risk groups in TCGA and E-MTAB1980 
cohorts (30-32). For verification, the ImmuneCell_AI 
algorithm with “ImmuCellAI” package (version 0.1.0) 
and single sample gene set enrichment analysis (ssGSEA) 
with “GSVA” package (version 1.44.5) were employed 
for TME immune infiltration estimation (33,34). The 29 
immune-related signatures for ssGSEA analysis were listed 
in website: https://cdn.amegroups.cn/static/public/tcr-22-
2782-1.xlsx. The immune-related molecules were analyzed 
to understand the immune infiltration in ccRCC.

Therapeutic response prediction

To predict the response to immune checkpoint inhibitors 
(ICIs), we compared the number of unique T-cell 
receptors (TCRs richness) and the relative abundance 
(Shannon diversity index) of different TCRs in subgroups 
of TCGA-KIRC, which were obtained from the Pan-
Cancer Atlas study (35). We then further explored a study 
(PMID32472114) which contained 181 metastatic ccRCC 
patients treated with nivolumab to evaluate the predictive 
capacity of NKMS for ICI. Additionally, we investigated 
whether NKMS could predict response to antiangiogenic 
therapy by estimating the differences in angiogenic gene 
expression between high- and low-risk groups in TCGA. 
Meanwhile, the predictive ability of NKMS was tested in 
E-MTAB-3267 cohort with 53 metastatic ccRCC patients 
treated with sunitinib.

Statistical analysis

R software (version 4.2.1) was utilized for data processing 
and generation of figures. Differences between variables 
were analyzed with Wilcoxon test and chi-square test. 
P<0.05 was statistically significant.

Results

scRNA-seq profiling, clustering and NK cell markers 
identification

After preprocessing the scRNA-seq data with the criteria 
mentioned, GSM4819726 and GSM4819728 were discarded 
due to high mitochondrial counts (Figure S1A), and 20,074 
high-quality cell samples from 7 ccRCC samples were 
isolated for subsequent analysis. The Pearson’s correlation 

coefficient was 0.92 between numbers of detected genes 
(nFeatures) and sequencing depth (nCount) (Figure 2A). 
After the reduction of dimensionality by PCA (Figure 2B), 
UMAP algorithm was implemented on the top 30 principal 
components (PCs) for visualization of high dimensional 
scRNA-seq data. The cell samples were then divided into 
25 clusters (Figure 2C), and the top 5 genes differentially 
expressed in each cluster were visualized in heatmap  
(Figure S1B). Afterwards, 8 types of cells were annotated 
with “SingleR” and corresponding cell markers, and the 
cells in cluster 6 were identified as NK cells (Figure 2D). 
The top 5 distinctive genes in each cluster were depicted in 
Figure 2E. As shown in Figure 2F, CD16 (FCGR3A), KLRD1, 
KLRB1, PRF1, CX3CR1, GZMB, GNLY, and SPON2 were 
highly expressed in the NK cell cluster, which were reported 
as NK and cytotoxic cell markers (36-38). The distinct gene 
expression profiles of cluster 6 were further analyzed. As 
a result, 52 genes were identified as NK cell marker genes 
of ccRCC (https://cdn.amegroups.cn/static/public/tcr-22-
2782-2.xlsx). GO analysis showed 52 NK cell marker genes 
were markedly associated with cytolysis, cell activation and 
cell killing (Figure S2A), while KEGG analysis illustrated 
that NK cell marker genes participated in NK cell mediated 
cytotoxicity and leukocyte transendothelial migration 
(Figure S2B). These results confirmed the identification of 
the NK cell cluster.

Construction of prognostic signature on NK cell marker 
genes

After performing a univariate Cox proportional regression 
analysis on the TCGA-KIRC training set, 22 out of 52 
NK cell markers were exhibited significantly associated 
with OS (P<0.05, Figure S2C). After applying the LASSO 
Cox regression model on prognostic genes, 18 genes with 
minimal λ were screened out (Figure 3A,3B). Subsequently, a 
stepwise multivariate Cox regression analysis was conducted 
to optimize the prognostic signature to include the 7 most 
predictive genes (CLEC2B, PLAC8, CD7, SH3BGRL3, 
CALM1, KLRF1, and JAK1) (Figure 3C). The risk score was 
calculated as followed: NKMS score = (0.237 × CLEC2B 
expression) + (0.203 × PLAC8 expression) + (0.132 × CD7 
expression) + (0.124 × SH3BGRL3 expression) + (−0.287 
× CALM1 expression) + (−0.296 × KLRF1 expression) 
+ (−0.308 × JAK1 expression). Among the 7 prognostic 
genes, 4 (CLEC2B, PLAC8, CD7, and SH3BGRL3) were 
regarded as risk genes [Cox hazard ratio (HR) >1], while 3 
(CALM1, KLRF1, and JAK1) were protective (Cox HR <1)  

https://cdn.amegroups.cn/static/public/tcr-22-2782-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-22-2782-1.xlsx
https://cdn.amegroups.cn/static/public/TCR-22-2782-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-2782-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tcr-22-2782-2.xlsx
https://cdn.amegroups.cn/static/public/tcr-22-2782-2.xlsx
https://cdn.amegroups.cn/static/public/TCR-22-2782-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-2782-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-2782-Supplementary.pdf
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Figure 2 Single-cell sequencing analysis of 20,074 cells from 7 ccRCC samples. (A) Pearson’s correlation between nFeature and nCount. (B) 
PCA plot colored by different samples. (C) Cells were classified into 25 clusters via UMAP algorithm. (D) Eight cell types were identified 
and annotated by marker genes. (E) Heatmap visualized top 5 marker genes among 8 cell clusters. (F) Visualization of gene expression in cell 
clusters. PC, principal component; UMAP, uniform manifold approximation and projection; NK, nature killer; ccRCC, clear cell renal cell 
carcinoma; PCA, principal component analysis.
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Figure 3 Construction of NKMS in TCGA cohort. (A,B) LASSO Cox regression with 20-fold validations identified 18 
genes significantly correlated with OS. (C) Forest plot of stepwise multivariate Cox regression identified the 7 most predictive genes. (D) 
Multivariate Cox regression coefficients of genes in NKMS. (E) The distribution of risk score. (F) The distribution of survival status. (G,H) 
Kaplan-Meier curves depicted that high-risk group had worse OS (G) and PFS (H). (I) ROC analysis of NKMS for predicting the risk 
of death at 1, 3, 5 years. *, P<0.05; **, P<0.01; ***, P<0.001. df, degrees of freedom; AIC, Akaike information criterion; HR, hazard ratio; 
CI, confidence interval; AUC, area under the curve; NKMS, nature killer cell marker gene signature; TCGA, The Cancer Genome Atlas; 
LASSO, least absolute shrinkage and selection operator; OS, overall survival; PFS, progression-free survival; ROC, receiver operating 
characteristic.
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(Figure 3D). The risk score of each patient in TCGA-
KIRC cohort was calculated (https://cdn.amegroups.cn/
static/public/tcr-22-2782-3.xlsx) and the patients were 
sorted into high-risk (n=266) and low-risk groups (n=266) 
based on the median score (−0.101, Figure 3E). High-risk 
group comprised more deceased cases than low-risk group  
(Figure 3F). Kaplan-Meier analysis demonstrated that 
ccRCC patients in the high-risk group had significantly 
lower OS and PFS than low-risk patients (P<0.0001,  
Figure 3G,3H). The predictive accuracy of this signature 
was 0.724, 0.716, and 0.728 at 1, 3, and 5 years, respectively 
(Figure 3I).

Validation of the gene signature

To examine the predictive performance of NKMS, two 
external cohorts (E-MTAB-1980, n=101; ICGC RECA-
EU cohort, n=91) were enrolled for verification. The 
characteristics of TCGA-KIRC and two external cohorts 
are shown in Table 1. The NKMS score of each patient was 
calculated with the formula established after expression 
data normalized. The heatmaps visualized the distribution 
of genes in NKMS in different risk groups (Figure 4A,4B). 
Survival analysis depicted significantly lower OS in high-
risk groups of both external cohorts (HR =5.90, P<0.001 in 
E-MTAB-1980, Figure 4C; HR =2.66, P=0.006 in RECA-
EU, Figure 4D). The time-dependent ROC curve of two 
cohorts are shown in Figure 4E,4F. These findings revealed 
strong predictive performance of NKMS in ccRCC.

Higher NKMS score was correlated with advanced ccRCC 
progression

First, we evaluated the correlation between risk scores and 
clinical parameters in TCGA and E-MTAB-1980 cohorts 
which contained sufficient clinical information. In these two 
cohorts, higher NKMS scores were markedly enriched in 
groups of advanced American Joint Committee on Cancer 
(AJCC) stages, unfavorable survival status, high Fuhrman 
grade, high pT and pN stage (Figure 5A,5B). Then, survival 
analysis in TCGA clinical subgroups indicated that patients 
in high-risk group suffered shorter OS and PFS stratified 
by young (OS, HR =3.60, P<0.001, Figure S3A; PFS, HR 
=3.55, P<0.001, Figure S3B) or elder (OS, HR =2.73, P<0.001, 
Figure S3C; PFS, HR =2.38, P<0.001, Figure S3D), male 
(OS, HR =2.20, P<0.001, Figure S3E; PFS, HR =2.15, 
P<0.001, Figure S3F) or female (OS, HR =4.62, P<0.001,  
Figure S3G; PFS, HR =3.88, P<0.001, Figure S3H), low 

(OS, HR =1.96, P=0.033, Figure S3I; PFS, HR =3.31, 
P=0.002, Figure S3J) or high Fuhrman grade (OS, HR 
=2.23, P<0.001, Figure S3K; PFS, HR =1.87, P<0.001, 
Figure S3L), early (OS, HR =2.12, P=0.007, Figure S3M; 
PFS, HR =2.11, P=0.023, Figure S3N) or advanced AJCC 
stage (OS, HR =1.89, P<0.001, Figure S3O; PFS, HR 
=1.59, P=0.012, Figure S3P).

NKMS was an independent prognostic factor in ccRCC 
patients

To further explore the prognostic value of NKMS in 
ccRCC patients, univariate and multivariate Cox regression 
analyses were performed on clinical features and NKMS 
risk scores in TCGA-KIRC and E-MTAB-1980 cohorts, 
the results of which confirmed NKMS score was an 
independent prognostic factor of ccRCC (multivariate HR 
=1.44, P<0.001, TCGA, Figure 5C; multivariate HR =2.07, 
P=0.015, E-MTAB-1980, Figure 5D). Then, a nomogram 
was built based on the multivariate Cox regression 
coefficients of NKMS score and clinical parameters 
(age, AJCC stage, and Fuhrman grade) in TCGA cohort  
(Figure 5E) and was validated in E-MTAB-1980 cohort. 
The C-index of the nomogram was 0.757 (95% CI: 0.722–
0.791) in TCGA cohort and 0.831 (95% CI: 0.761–0.904) 
in E-MTAB-1980. The calibration curves demonstrated 
favorable consistency of predictive 1-, 3-, and 5-year OS 
probabilities with the ideal predictions both in training 
and validation cohorts (Figure 5F, TCGA, the training 
cohort; Figure 5G, E-MTAB-1980, the validation cohort). 
Taken together, NKMS exhibited preferable capacity 
as an independent prognostic factor and the nomogram 
model could be a reliable tool for OS prediction of ccRCC 
patients.

Functional enrichment analysis of the NKMS related genes

After determining NKMS-related DEGs between high- 
and low-risk groups in TCGA, 181 DEGs were enriched in 
high-NKMS group, and 254 were identified in low-NKMS 
group. The DEGs were visualized by volcano plot in  
Figure 6A. Analyzed by Metascape, the probable GOs 
of DEGs in high-NKMS group were immunoglobulin 
complex, antigen binding, external side of plasma membrane 
and activation of immune response, while the KEGGs were 
in terms of cytokine-cytokine receptor interaction, primary 
immunodeficiency and complement and coagulation 
cascades (Figure 6B). Meanwhile, the GOs enriched in low-
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Figure 4 Validations of NKMS in two external independent cohorts. (A,B) Heatmap visualized the distribution of genes in NKMS stratified 
by risk scores in (A) E-MTAB-1980 and (B) RECA-EU cohorts. (C,D) Kaplan-Meier curves displayed that high-risk group had worse OS 
than low-risk group in (C) E-MTAB-1980 and (D) RECA-EU cohorts. (E,F) Time-dependent ROC analysis of NKMS for predicting the 
risk of death at 1, 3, 5 years in (E) E-MTAB-1980 and (F) RECA-EU cohorts. HR, hazard ratio; CI, confidence interval; AUC, area under 
the curve; NKMS, nature killer cell marker gene signature; OS, overall survival; ROC, receiver operating characteristic.
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Figure 6 Identification of DEGs and gene enrichment analysis. (A) Volcano plot of DEGs of low- and high-NKMS risk groups. (B,C) GO 
and KEGG analysis of DEGs in high-NKMS risk (B) and low-NKMS risk (C) groups by Metascape. NS, not significant; NKMS, nature 
killer cell marker gene signature; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoko Encyclopedia of Genes and 
Genomes.

Figure 5 Correlation between NKMS risk score and clinical characteristics in ccRCC. (A,B) Higher NKMS risk scores were correlated 
with advanced clinical features of ccRCC in training set (A) TCGA-KIRC and validation set (B) E-MTAB-1980. (C,D) Univariate and 
multivariate Cox regression analysis confirmed NKMS risk score as an independent risk factor of ccRCC in (C) TCGA-KIRC and (D) 
MTAB-1980 cohorts. (E) Nomogram built based on TCGA-KIRC. (F,G) Calibration curves of (F) TCGA-KIRC and (G) E-MTAB-1980 
cohorts. *, P<0.05; **, P<0.01; ***, P<0.001; NS, not significant. NKMS, nature killer cell marker gene signature; OS, overall survival; 
TCGA, The Cancer Genome Atlas; ccRCC, clear cell renal cell carcinoma; KIRC, kidney renal clear cell carcinoma.
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NKMS DEGs were mainly regarding apical part of cell, 
renal system process, organic hydroxy compound metabolic 
process and monocarboxylic acid metabolic process  
(Figure 6C). These findings implied the involvement of 
DEGs of NKMS in immune regulation and metabolic 
process.

Analysis of somatic variants

The mutation landscapes of high- and low-risk groups in 
TCGA are visualized by waterfall plot in Figure 7A,7B. 
VHL, PBRM1 and TTN were most mutated genes with 
mutation rate >10% both in two groups. Mutation types 
of the most differentially mutated between two groups are 
illustrated in Figure 7C, including BAP1, THSD7B, SETD2, 
KIAA1549L, and SYNE1. Meanwhile, TMB in high-NKMS 
group was significantly higher than that in low-NKMS 
group (P<0.01, Figure 7D).

The profiles of immune cell infiltration in NKMS 
subgroups

To explore the underlying mechanisms between NKMS 
score and TME infiltration in ccRCC, four independent 
methods (ESTIMATE, CIBERSORT, ImmuneCell_AI, and 
ssGSEA) were applied to estimate the relative abundance 
of immune cells in high- and low-risk groups in TCGA-
KIRC cohort (https://cdn.amegroups.cn/static/public/tcr-
22-2782-4.xlsx, Figure 8A, Figure S4A-S4D). The immune 
score and differentially infiltrated immune cell types in 
TCGA were visualized in Figure 8B. The immune score 
was markedly elevated in high-risk group, which implied 
the presence of higher immune infiltration (Figure S4A). 
CIBERSORT indicated significantly higher estimates of 
plasma cells, CD8+ T cells, CD4+ memory T cells activated, 
follicular helper T (Tfh) cells, regulatory T (Treg) cells, 
NK cells activated and macrophages M0 infiltrated in TME 
of high-risk tumors. With verification of ImmuneCell_
AI and ssGSEA algorithms, higher infiltration of CD8+ T 
cells, Treg cells and Tfh cells were observed in high-risk 
group (Figure 8C,8D). Of special note, higher estimates 
of immunosuppressive subtypes, including inducible 
Treg (iTreg) cells, natural Treg (nTreg) cells, helper T 
(Th)1, Th2, and exhausted T cells were also enriched in 
high-risk group, implying the exhaustion state in high-
risk tumors. To prove this assumption, we compared the 
transcriptional expression of several inhibitory receptors 
and cytokines between two groups, where overexpression 

of PD1, CTLA4, TIGIT, LAG3, BTLA, IL-4, and IL-6 was 
present in high-risk group (Figure 8E). We also verified the 
higher estimates of Treg and Tfh cells in high-risk group 
with CIBERSORT in E-MTAB-1980 (Figure 8F). Survival 
analysis highlighted the impact of infiltrated immune 
cells, which showed that patients with high infiltration of 
Treg cells and Tfh cells suffered significantly shorter OS  
(Figure S4E-S4G). Taken together, evidence indicated 
the existence of immunosuppressed phenotype in high-
NKMS ccRCC tumors, and the differences in immune cell 
infiltration could have a great impact on patient survival.

The performance of therapeutic prediction of NKMS in 
ccRCC

To assess the immunotherapy efficacy between low- 
and high-NKMS risk groups, we compared the TCR 
repertoire of two groups and found that both TCR diversity  
(Figure 9A) and richness (Figure 9B) of ccRCC patients in 
high-risk group were markedly higher than that in low-
risk group in TCGA-KIRC. As mentioned above, several 
inhibitory molecules were upregulated in high-risk group 
(Figure 8F) and TMB in high-risk group was significantly 
higher than that in low-risk group (Figure 7D). Taken 
together, these results indicated better immunotherapy 
response in high-risk group. To validate our assumption, in 
PMID32472114 which comprised 181 metastatic ccRCC 
patients treated by nivolumab, favorable outcome with 
prolonged PFS was observed in high-risk group (Figure 9C, 
HR =0.68, P=0.028). Patients in high-risk group tended to 
receive more clinical benefits than in low-risk group (chi-
square test P=0.076, Figure 9D).

As shown in Figure 9E, we found significant higher 
expression of angiogenesis-related genes in low-risk group, 
several of which were targeted by tyrosine kinase inhibitors 
(TKIs), including VEGFA, VEGFR1, VEGFR2, VEGFR3, 
and KIT. This result implied patients in low-risk patients 
might be more sensitive to anti-angiogenic therapies. In 
E-MTAB-3267 cohort with 53 metastatic ccRCC patients 
treated with sunitinib, patients in low-risk group had 
significantly prolonged PFS (Figure 9F, HR =2.19, P=0.01), 
which supported our hypothesis. However, though higher 
proportion of patients in low-risk group responded to 
sunitinib treatment, no statistical significance was achieved 
(chi-square test P=0.209, Figure 9G). These findings 
demonstrated that ccRCC patients in high-risk group were 
more sensitive to ICIs, while patients in low-risk group 
were more likely to benefit from anti-angiogenic therapies.
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Figure 7 Somatic variants analysis of TCGA-KIRC. (A,B) The mutation landscape of high- (A) and low-risk (B) groups. (C) Mutation types 
of most differentially mutated genes. (D) Difference of TMB between high- and low-risk groups. **, P<0.01. TMB, tumor mutation burden; 
TCGA, The Cancer Genome Atlas; KIRC, kidney renal clear cell carcinoma; MB, megabase.

Discussion

The advent of scRNA-seq technology has made it possible 
to explore heterogeneous gene expression profiles at the 
single-cell level. This technology provides new insights into 
the molecular characteristics of tumor-infiltrating immune 
cells in TME which impacts the tumor progression and 
immunotherapy efficacy (39). Recent studies have revealed 
the mighty capability of signatures based on NK cell marker 
genes to predict the prognosis and therapeutic response 
in lung adenocarcinoma and cutaneous melanoma (21,40). 

Given the complexity and heterogeneity of ccRCC TME, 
we were inspired to explore the tumor-infiltrating NK cells 
in ccRCC. In the present study, we analyzed the ccRCC 
scRNA-seq dataset from GEO, demonstrated the NK cell 
subset and identified NK cell marker genes which could not 
be discriminated from the bulk RNA-seq analysis. Herein, a 
novel prognostic signature based on NK cell marker genes 
(NKMS) was constructed, and the prognostic value was 
validated in two independent external cohorts and clinical 
subgroups. Higher NKMS scores were markedly correlated 
with advanced clinical manifestations. Univariate and 
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Figure 8 The immune infiltration landscape of NKMS risk groups. (A) Boxplot of 22 tumor-infiltrating cells estimated by CIBERSORT in 
TCGA cohort. (B) Heatmap of immune infiltration scores estimated by ESTIMATE algorithm and differentially infiltrated immune cells 
evaluated by CIBERSORT, ImmuneCell_AI, and ssGSEA in TCGA cohort. (C,D) Boxplot of main differentially infiltrated immune cells 
estimated by (C) ImmuneCell_AI and (D) ssGSEA algorithms in TCGA cohort. (E) Expression of immune molecules between high- and 
low-risk groups. (F) Boxplot of 22 tumor-infiltrating cells estimated by CIBERSORT in E-MTAB-1980 cohort. *, P<0.05; **, P<0.01; ***, 
P<0.001. NKMS, nature killer cell marker gene signature; ssGSEA, single sample gene set enrichment analysis; NK, nature killer; nTreg, 
natural regulatory T; iTreg, inducible regulatory T; Th, helper T; TCGA, The Cancer Genome Atlas; TPM, transcripts per million.
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multivariate Cox regression analysis proved the NKMS was 
an independent risk indicator for the OS of ccRCC patients. 
Overall, NKMS was proved to be an exceptional predictive 
tool for the prognosis of ccRCC patients.

In our study, the NKMS was composed of 7 NK cell 
marker (CLEC2B, PLAC8, CD7, SH3BGRL3, CALM1, 
KLRF1, and JAK1), which were all reported to be involved 
in the oncogenesis. CLEC2B, also known as activation-
induced C-type lectin (AICL), is an identified ligand for 
NK-activating receptor KLRF1 (previously called NKp80) 
and is of importance in NK cell activation and regulation 
(41,42). PLAC8 is a small 12.5 kDa protein and has been 
reported to function in death of human lymphocytes, 

adipocyte differentiation and human diseases, including 
cancer (43). Overexpression of PLAC8 has been demonstrated 
to be correlated with advanced tumor progression and 
impaired prognosis of ccRCC (44). CD7 is a 40-kDa 
glycoprotein, widely expressed on cell surface of mature 
T cells and NK cells and involved in signal transduction 
and regulation of T-cell proliferation (45). SH3BGRL3 
contains 93 amino acids and can inhibit tumor necrosis 
factor-α (TNF-α)-induced apoptosis while promoting cell  
survival (46). Previous studies have addressed SH3BGRL3 as 
a potential oncogene in the tumorigenesis of glioblastoma 
and urothelial carcinoma (46,47). CALM1 is a ubiquitous 
calcium ion (Ca2+) receptor protein and plays pivotal 

Figure 9 Predictive performance of NKMS in therapeutic response. (A,B) High-risk group harbored higher (A) TCR Shannon diversity 
and (B) TCR clone numbers. (C) PFS of high- and low-risk patients with metastatic ccRCC treated with nivolumab. (D) Proportion 
of patients with different clinical benefits in PMID32472114. (E) Expression of angiogenesis-related genes between high- and low-risk 
groups in TCGA. (F) PFS of high- and low-risk patients with metastatic ccRCC treated with sunitinib. (G) Proportion of patients with 
different clinical benefits in high-risk versus low-risk group in E-MTAB-3267. ***, P<0.001. TCR, T-cell receptor; HR, hazard ratio; CI, 
confidence interval; CB, clinical benefit; ICB, intermediate clinical benefit; NCB, no clinical benefit; TPM, transcripts per million; CR, 
complete response; PR, partial response; SD, stable disease; PD, progressive disease; NKMS, nature killer cell gene marker signature; PFS, 
progression-free survival; ccRCC, clear cell renal cell carcinoma.
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role in signaling pathways that modulates proliferation, 
migration and differentiation (48). Han et al. reported that 
downregulated expression of CALM1 was significantly 
correlated with increasing tumor size in hepatocarcinoma 
patients, which was consistent as a protective factor in 
our study (49). The presence of NK-like innate lymphoid 
cells with high KLRF1 expression in peripheral blood 
mononuclear cells (PBMCs) is reported to be associated 
with better PFS in large hepatocellular cohorts (50). 
JAK1 is involved in IL-6 class cytokine signaling and the 
activation of JAK1 has been reported to be related to the 
overexpression of immune checkpoint molecules, thus 
influencing the efficacy of immunotherapies (51). Chen  
et al. found JAK1 as a protective biomarker in breast cancer, 
which was consistent with our result (52). These genes 
identified in NKMS might be potential targets for further 
understanding of molecular mechanisms in ccRCC.

As the immune-related GOs enriched in high-risk group, 
we focused on immune cell infiltration in TME of ccRCC. 
Our study depicted large differences in the composition of 
tumor-infiltrating immune cells between NKMS subgroups. 
First, the immune score of the high-risk group deduced 
by ESTIMATE algorithm was significantly higher than 
that of low-risk group, indicating more complex TME in 
high-risk tumors. Most notably, higher infiltration of Tregs 
was enriched in high-risk group, which was affirmed by 
CIBERSORT, ImuuneCell_AI, and ssGSEA algorithms, 
and validated in E-MTAB-1980 cohort. Tregs are described 
as a subset of CD4+ T cells that exert a strong inhibitory 
effect on either innate or adaptive immune system (53,54), 
leading to dysfunctional effector T cells with reduced 
secretion of cytokines and increased expression of inhibitory  
receptors (55). We also found that higher infiltration 
of Tregs was markedly associated with an unfavorable 
prognosis of ccRCC patients,  which is concurred 
with previous findings (56). The higher infiltration 
of Tregs in high-risk group might be correlated with 
the immunosuppressive status, which was reflected by 
overexpression of various inhibitory molecules, including 
PD1, CTLA4, TIGIT, LAG3, BTLA, IL-4, and IL-6. As a 
result, the suppressive TME could lead to the dysfunction of 
immune effective cells and impaired anti-tumor responses, 
like CD8+ T cells and NK cells, which has been identified 
in previous study (57). CD8+ T cells have been described 
as cytotoxic T cells and the positive prognostic value has 
been discovered in various malignancies (56). However, 
recent study has revealed the exhausted functional state of 
CD8+ T cells in the ccRCC TME, where high expression of 

LAG3 and TIM3 was observed in tumor infiltrating CD8+ 
T cells (58). Meanwhile, the high infiltration of exhausted 
CD8+ T cells was correlated with a poor prognosis  
(58-60). In our study, higher infiltration of CD8+ T cells was 
present in high-risk group without prognostic significance, 
which also implied the hypofunctional status of CD8+ T 
cells. Therefore, patients with high NKMS scores might 
be more sensitive to immunotherapy. Intriguingly, higher 
infiltration of Tfh cells was also observed and validated 
in high-risk group as a risk factor for ccRCC patients. 
Tfh cells are crucial in geminal center formation and 
modulation, however, the Tfh-associated tumor biology 
in ccRCC remains poorly understood and deserves further 
investigation (61).

Nowadays, the emergence of ICIs has largely improved 
the prognosis of advanced ccRCC patients (62,63). 
However, only 25–42% ccRCC patients could respond 
to ICI therapies, which was relatively lower compared to 
other solid tumors (64). As a result, it is urgent to invent 
a reliable biomarker which could predict ICI response. 
As previous studies suggested that high baseline TCR 
diversity was correlated with better ICI response in variety 
of cancer types (65), we compared richness and diversity 
of the TCR repertoire in TCGA and found that high-risk 
ccRCC patients possessed elevated richness and diversity 
of TCR. In addition, patients in high-risk group harbored 
higher TMB, which indicated better response to ICIs. 
As expected, significantly prolonged PFS of metastatic 
ccRCC patients treated with nivolumab was observed in 
high-risk group by investigating PMID32472114 cohort, 
reflecting the predictive value of NKMS in ICI efficacy. 
Meanwhile, low-NKMS group exhibited overexpression 
of various proangiogenic factors (VEGFA, VEGFR1–3, 
PECAM1, VWF, CDH5, SELE, and KIT), which implied 
that patients with low-NKMS score might respond better 
to anti-angiogenic agents. Sunitinib is a multi-target TKI 
which is one of the first-line anti-angiogenic targeted agents 
to inhibit vascular endothelial growth factor (VEGF)-
associated signaling in metastatic ccRCC patients (64), and 
low-risk patients in E-MATB-3267 underwent a prolonged 
PFS and had higher response rate to sunitinib, which 
validate our assumption to some extent. Collectively, our 
signature could provide evidence to decide which kind 
of ccRCC patients may better respond to ICI or anti-
angiogenesis therapy, thereby selecting the individualized 
treatment plan.

There are several limitations in our study. First, the 
expression and prognostic role of genes in NKMS at protein 
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level needs further investigation. Second, we made the 
analysis with published data, and the predictive value needs 
to be testified in a large local cohort. Third, the number 
of ccRCC patients with advanced AJCC stages is relatively 
small. Lastly, all the mechanistic analyses in our study are 
descriptive and need further experimental validations.

Conclusions

Overall, with integrated analysis of scRNA and bulk RNA 
sequencing data, we constructed a seven-gene signature 
(NKMS) based on NK cell marker genes which exhibited 
preferable capacity to predict prognosis and therapeutic 
response in ccRCC patients. This signature significantly 
correlates with clinical features as an independent 
risk indicator and reveals close relationship with 
immunosuppression in ccRCC. Taken together, the NKMS 
is a promising biomarker to guide clinical practice and 
provide individualized therapies for ccRCC patients.
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Supplementary

Figure S1 Characteristics of included ccRCC samples and marker genes of identified cell clusters. (A) Violin plot visualized characteristics 
of 9 ccRCC sample. (B) Heatmap visualized top 5 marker genes among all 25 cell clusters with resolution 0.3. ccRCC, clear cell renal cell 
carcinoma.
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Figure S2 Enrichment analysis of NK cell marker genes and identification of prognostic genes. (A) GO and (B) KEGG analysis of 52 NK 
cell marker genes. (C) Univariate Cox regression analysis of 52 NK cell marker genes identified 22 prognostic genes. NK, nature killer; GO, 
Vgene ontology; KEGG, Kyoko Encyclopedia of Genes and Genomes.
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Figure S3 Kaplan-Meier analysis showed that patients in high-risk group suffered shorter OS and PFS stratified by young (A,B) or elder 
(C,D), male (E,F) or female (G,H), low (I,J) or high (K,L) Fuhrman grade, early (M,N) or advanced (O,P) AJCC stage. HR, hazard ratio; 
CI, confidence interval; OS, overall survival; PFS, progression-free survival; AJCC, American Joint Committee on Cancer.
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Figure S4 The immune infiltration landscape evaluated by ESTIMATE (A), ImmuneCell_AI (B,C) and ssGSEA (D) algorithms in TCGA. 
(E-G) Kaplan-Meier analysis showed correlation betweem tumor-infiltrating CD8+ T cells (E), Tfhs (F), Tregs (G) and OS of ccRCC 
patients. *, P<0.05; ***, P<0.001. TCGA, The Cancer Genome Atlas; DC, dendritic cell; NK, nature killer; NKT, natural killer T; nTreg, 
natural regulatory T; iTreg, inducible regulatory T; Th, helper T; Tfh, follicular helper T; MAIT, mucosal-associated invariant T; aDCs, 
activated dendritic cells; APC, antigen-presenting cell; CCR, cytokine-cytokine receptor; HLA, human leukocyte antigen; MHC, major 
histocompatibility complex; iDCs, interdigitating dendritic cells; pDCs, plasmacytoid dendritic cells; TIL, tumor-infiltrating lymphocytes; 
Treg, regulatory T; IFN, interferon; ssGSEA, single sample gene set enrichment analysis; HR, hazard ratio; CI, confidence interval; OS, 
overall survival; ccRCC, clear cell renal cell carcinoma.


