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Abstract 
The relationship between topological indices and antitubercular activity of 5'-O-
[(N-Acyl)sulfamoyl]adenosines has been investigated. A data set consisting of 
31 analogues of 5'-O-[(N-Acyl)sulfamoyl]adenosines was selected for the 
present study. The values of numerous topostructural and topochemical indices 
for each of 31 differently substituted analogues of the data set were computed 
using an in-house computer program. Resulting data was analyzed and suitable 
models were developed through decision tree, random forest and moving 
average analysis (MAA). The goodness of the models was assessed by 
calculating overall accuracy of prediction, sensitivity, specificity and Mathews 
correlation coefficient. Pendentic eccentricity index – a novel highly discrim-
inating, non-correlating pendenticity based topochemical descriptor – was also 
conceptualized and successfully utilized for the development of a model for 
antitubercular activity of 5'-O-[(N-Acyl)sulfamoyl]adenosines. The proposed 
index exhibited not only high sensitivity towards both the presence as well as 
relative position(s) of pendent/heteroatom(s) but also led to significant reduction 
in degeneracy. Random forest correctly classified the analogues into active and 
inactive with an accuracy of 67.74%. A decision tree was also employed for 
determining the importance of molecular descriptors. The decision tree learned 
the information from the input data with an accuracy of 100% and correctly 
predicted the cross-validated (10 fold) data with accuracy up to 77.4%. 
Statistical significance of proposed models was also investigated using 
intercorrelation analysis. Accuracy of prediction of proposed MAA models 
ranged from 90.4 to 91.6%.  
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Introduction 
In the pharmaceutical industry, much effort is being devoted to develop new drugs [1]. The 
seven steps involved in the drug discovery process are: disease selection, target 
hypothesis, lead identification, lead optimization, pre-clinical trial, clinical trial and 
pharmacogenomic optimization. Traditionally, these steps are carried out sequentially, and 
if one of these steps is slow, it naturally slows down the entire process [2]. Considering 
both, the potential benefits to human health and the enormous cost in time and money of 
drug discovery, any tool or technique that enhances the efficiency of any stage of drug 
discovery enterprise will be highly prized [3]. A viable solution to this quagmire lies in the 
estimation of necessary properties of molecules directly from their structure without the 
input of any other experimental data through quantitative structure-activity relationship 
(QSAR) models [4]. The main hypothesis in the QSAR/QSPR (quantitative structure-
activity/property relationship) approach is that all properties (physico-chemical and 
biological) of a chemical substance are statistically related to its molecular structure [5]. 
Quantitative relations generated from such studies help in hypothesizing important 
contributions of specific structural aspects or chemical interactions in modifying physico-
chemical properties and biological activities and also in predicting properties and activities 
of untested and not yet synthesized compounds [6]. Mathematical descriptors of molecular 
structure, such as various topological indices (TIs), have been widely used in structure-
property-activity relationship studies [7]. Topological descriptors are mathematical entities 
encoding molecular graphs composed of vertices (corresponding to the atoms) and edges 
(representing the bonds among atoms). These are two-dimensional descriptors which take 
into account the internal atomic arrangement of compounds, and encode in numerical form 
information about molecular size, shape, branching, presence of heteroatoms and multiple 
bonds [8]. One of the most interesting advantages of molecular topology is the 
straightforward calculation of topological descriptors [9] without requirement of any 
experimentally derived measurement. The usefulness of TIs in QSPR and QSAR studies 
has been widely demonstrated, and they have also been used as a measure of structural 
similarity or diversity by their application to databases virtually generated by computer [10]. 
Though a large number of topostructural and topochemical indices of diverse nature have 
been reported in literature but only a small proportion of them has been successfully 
employed in structure- activity- relationships (SARs). Some of the topostructural and 
topochemical indices, which have been successfully employed in SAR studies include 
Wiener’s index [11], Hosoya’s index [12], Randic’s molecular connectivity index [13], 
Zagreb group parameters [14, 15], Balaban’s index [16], Schultz’index [17], molecular 
connectivity topochemical index [18, 19], eccentric connectivity index [20], revised Wiener 
index [21], E-state index [22], eccentric connectivity topochemical index [23], Zagreb 
topochemical indices [24], and superaugmented eccentric connectivity indices [25].  

Tuberculosis (TB), one of the oldest recorded human afflictions, is still one of the biggest 
killers among the infectious diseases, despite the worldwide use of a live attenuated 
vaccine and combination of several antibiotics [26]. The disease spreads more easily in 
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over crowded places and in the conditions of malnutrition and poverty; characteristics 
typical of developing countries. Tuberculosis is the commonest opportunistic disease in 
persons infected with human immunodeficiency virus [27]. Mycobacterium tuberculosis, 
the causative agent of TB, is the leading bacterial cause of infectious disease mortality. 
Mycobacterium tuberculosis and Yersinia pestis, the causative agent of plague, have been 
reported to be pathogens with serious ongoing impact on global public health and potential 
use as agents of bioterrorism [28]. The development of M. tuberculosis strains which are 
resistant to all of the current front-line antitubercular drugs has prompted worldwide efforts 
to develop new antibiotics to treat this notorious pathogen [29]. It is well known fact that 
iron is a required element for growth and survival of M. tuberculosis in its host, and iron 
overload can be an exacerbating cofactor to tuberculosis [30]. Although, iron’s abundance 
in the earth’s crust, spin state, and redox tuneability makes it the most versatile among 
transition elements, the insolubility of ferric hydroxide at pH 7.4 limits the concentration of 
[Fe3+] (the free aqueous ion) to ~10−18 M. However, even below this concentration, free 
ferric ion is toxic. To avoid toxicity and regulate iron transport, the human serum iron 
transport protein, transferrin, maintains the free ferric iron concentration at about 10−24 M 
[31]. In a mammalian host, the concentration of free iron in serum and body fluids is too 
low to support growth of bacteria [32]. The ability of pathogens to obtain iron from 
transferrins, ferritin, hemoglobin, and other iron-containing proteins of their host is central 
to whether they can live or die [33]. Both pathogenic and saprophytic microorganisms have 
evolved sophisticated iron-acquisition systems to overcome iron deficiency imposed by 
host defensive mechanism and their environment. At the core of such systems is the 
production of small molecules known as siderophores, which are secreted into the 
extracellular space, tightly bind available iron, and then are reinternalized with their bound 
iron through specific cell surface receptors [34]. M. tuberculosis is reported to produce two 
series of structurally related siderophores, collectively known as the mycobactins, which 
are critical for virulence and growth. Mycobactin biosynthesis is initiated by MbtA, an 
adenylate-forming enzyme that catalyzes a two-step reaction and is responsible for 
incorporating salicylic acid into the mycobactins [35]. The reaction mechanism catalyzed 
by MbtA provides several opportunities to develop inhibitors against MbtA [32]. MbtA is an 
ideal target since it has no mammalian homologues [36]. Inhibition of siderophore 
biosynthesis has emerged as an attractive strategy to develop new antibiotics against 
pathogens which require siderophores for virulence [32]. 

In the present study, a pendenticity based topochemical descriptor termed as pendentic 
eccentricity index (in both topostructural and topochemical forms) has been 
conceptualized and successfully utilized along with existing TIs for development of models 
for prediction of antitubercular activity of 5'-O-[(N-Acyl)sulfamoyl]adenosines. 
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Fig. 1.  Basic structures of 5'-O-[(N-Acyl)sulfamoyl]adenosines [35]. 
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Methodology 
Dataset 
A dataset comprising of 31 analogues of 5'-O-[(N-Acyl)sulfamoyl]adenosines was selected 
for the present investigation [35]. The basic structures of 5'-O-[(N-Acyl)sulfamoyl]-
adenosines are shown in Fig. 1 and the various substituents have been enlisted in Tab. 1. 
Somu et al. reported that, in order to enhance stability, all compounds were converted to 
triethylammonium salts after purification while conversion to alkali salts was readily 
achieved through ion-exchange [36]. In present study, only basic structures were taken 
into consideration while determining index values.  

Tab. 1.  Relationship between topological indices and antitubercular activity. 

Antitubercular activity 

Predicted Using 
MAA models 

Repor-
ted 

Cpd. 
No. 

Basic 
Ring R cw  χA ∫

P
c

 P
cξ  

cw  χA ∫
P
c

 P
cξ  

1 A 
OH

 
3896.417 13.461 7405.109 189780.156 ± + – ± + 

2 A  3583.748 13.117 2651.541 23721.924 – – – – – 

3 A 
NH2

 
3893.845 13.493 7325.882 185842.313 ± + – ± – 

4 A 
F

 
3900.292 13.416 7522.852 195710.641 ± + – ± + 

5 A 
Cl

 
3738.752 13.471 2810.773 26456.617 – – – – – 

6 A 
NO2

 
4596.538 14.191 29026.4 2752262.75 – – – – – 

7 A 
OH

Cl

 
4263.42 13.586 7768.045 2337094.5 + ± – + – 

8 A 
OH

Cl  
4289.42 13.545 8214.616 2233735 + + + + + 

9 A 

OH

Cl  
4265.42 13.545 7977.906 2335093 + + + + + 

10 A 
OH

F  
4267.42 13.736 28115.13 2313057.25 + ± + + + 

11 A 
OH

Br  
4248.865 13.45 8214.616 1821982.125 + + + + + 

12 A 
OH

H3C  
4258.092 13.854 27540.72 2353780.75 + ± + + + 

13 A 
OH

F3C  
5478.722 14.769 554283.4 780373248 – – – – – 

14 A 
OH

H2N  
4260.764 13.817 27706.48 2341639 + ± + + + 

 



 Models for Antitubercular Activity of 5'-O-[(N-Acyl)sulfamoyl]adenosines 795 

Sci Pharm. 2010; 78: 791–820. 

Tab. 1.  (Cont.) 

Antitubercular activity 

Predicted Using 
MAA models 

Repor-
ted 

Cpd. 
No. 

Basic 
Ring R cw  χA ∫

P
c

 P
cξ  

cw  χA ∫
P
c

 P
cξ  

15 A 
OH

F 
4217.42 13.759 26691.56 2453185.25 ± ± – + + 

16 A 
OH

HO

 
4237.42 13.808 27131.01 2452283.75 ± ± – + – 

17 A 
HO

HO  
4287.42 13.788 28608.06 2462222.5 + ± – – – 

18 A HN

O

 
3899.34 13.391 7423.716 190558.016 ± – – ± – 

19 A N

F

 
3903.215 13.35 7541.169 196488.5 ± – – ± – 

20 A N

Cl

 
3924.528 13.179 2810.773 212818.438 ± – – ± – 

21 A 
O

N

 
3612.958 12.875 2743.981 24494.674 – – – – – 

22 A 
 

3254.241 12.617 2319.146 20258.762 – – – – – 

23 A 
 

3583.748 13.117 2651.541 23721.924 – – – – – 

24 A H3C  2119.209 10.527 5860.135 171240.594 – – – – – 

25 A H3C O  2400.371 10.93 6196.673 168013.875 – – – – – 

26 A 
 

3986.914 13.588 3339.374 33262.125 
± ± – – – 

27 A 
F

F

N3

F

F

 
6181.416 15.608 2121377 10269211648 – – – – – 

28 A 
NH2  4731.027 14.477 10746.7 305689.281 

– – – ± – 

29 B 
O

N
S

N
H

O O

OH  
3855.002 13.503 7238.409 184644.953 ± ± – ± + 

30 B 
O

OH

N
H

N
H

O

 
3210.494 13.974 1767.596 13858.688 – – – – – 

31 B 
O

O

N
H

O

 
3331.263 14.574 676.29 2056.221 – – – – – 

+…Active analogue; –…Inactive Analogue; ±…Transistional analogue where activity could not be specifically 
assigned; Note: The cation of anionic structures is Et3NH+ or Na+ 
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Enzyme Assay and Biological Activity against Whole-cell M. tuberculosis 
Enzyme assays were performed by Qiao et al. [35] at 37 °C with recombinant MbtA 
expressed in E. coli in a buffer of 75 mM Tris-HCl, PH 7.5, 10mM MgCl2, 2 mM DTT, 
250 μM salicylic acid, 10 mM ATP, and 1 mM PPi. The apparent inhibition constants (Kiapp) 
were determined by fitting the concentration-responce plots either to the Hill equation or to 
the Morrison equation. All of the Kiapp values reported therein are uncorrected for substrate 
concentrations and represent an upper limit of the true dissociation constant. Although, the 
Kiapp reorted are not a measure of the true inhibitor potency, the differences are reflective 
of free energy differences associated with inhibitor binding to Mbta, presuming equivalent 
modalities of inhibition [35]. All inhibitors were also evaluated against whole-cell M. 
tuberculosis H37Rv under iron-limiting and iron-rich conditions by Qiao et al. [35]. 

For the purpose of present study, the analogues possessing Kiapp values of ≤0.05 μM were 
considered to be active and analogues possessing Kiapp values of >0.05 μM were 
considered to be inactive. Further, the analogues possessing MIC99 (Minimum inhibitory 
concentration that inhibited >99% of cell growth) values of ≤12.5 μM in iron-deficient 
conditions and ≤50 μM in iron-rich conditions were considered to be active, and analogues 
possessing MIC99 values of >12.5 μM in iron-deficient conditions and >50 μM in iron-rich 
conditions were considered to be inactive.  

Tab. 2.  Topological indices. 

Code Index Reference 
A1 Molecular connectivity topochemical index 18, 19 
A2 Eccentric adjacency topochemical index 37 
A3 Augmented eccentric connectivity topochemical index 38 
A4 Superadjacency topochemical index 39 
A5 Eccentric connectivity topochemical index 23 
A6 Connective eccentricity topochemical index 40 
A7 Zagreb topochemical index, M1

c 24 
A8 Zagreb topochemical index, M2

c 24 
A9 Wiener’s topochemical index 41 
A10 Superaugmented eccentric topochemical connectivity index1 42 
A11 Superpendentic topochemical index – 
A12 Superaugmented eccentric topochemical connectivity index 3 42 
A13 Pendentic eccentricity topochemical index – 
A14 Molecular connectivity index 13,43 
A15 Eccentric adjacency index 44 
A16 Augmented eccentric connectivity index 45 
A17 Superadjacency index 39 
A18 Eccentric connectivity index 20 
A19 Connective eccentricity index 46 
A20 Zagreb group parameter, M1 14, 15 
A21 Zagreb group parameter, M2 14, 15 
A22 Wiener’s index 47, 48 
A23 Superaugmented eccentric connectivity index1 25 
A24 Superpendentic index 49 
A25 Eccentric distance sum index 50 
A26 Pendentic eccentricity index – 
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Topological indices 
Values of twenty-six topological indices [13–15, 18–20, 23–25, 37–50] of diverse nature 
used in the present study (Tab. 2) were calculated for all the analogues involved in the 
data set using an in-house computer program.  

Decision tree 
The decision tree (DT) methodology determines activity of a chemical through a series of 
rules based on selection of descriptors [51]. The simplified mechanism of a decision tree is 
to find some rules for each class based on the descriptors of the training set. These rules 
are subsequently utilized for building a decision tree having several branches leading to a 
leaf with a given class assignment [52]. The name decision tree is due to the reason that 
the classification is done using a set of tests (or decisions) that are arranged in the form of 
a tree [53]. The prediction for a molecule reaching a given terminal node is obtained by 
majority vote of the molecules reaching the same terminal node in the training set. The 
tree with lowest value of error in cross-validation is selected as optimal tree [54]. In this 
study, R program (version 2.1.0) along with RPART library was used to grow decision tree. 

Random Forest 
A random forest (RF) is an ensemble of unpruned classification trees created by using 
bootstrap samples of the training data to construct multiple trees (forests) and random 
subsets of variables to define the best split at each node, hence the name “random” 
forests [55, 56]. Random forest operates by generating a user-defined number of decision 
trees, 100 in this application. Mathematically a RF may be expressed as [57] 

R = {T1(X), T2(X) ------- TB(X)} 

Where T1(X) is a single decision tree and X represents a single molecular descriptor 
vector. In present study, the RFs were grown with the R program (version 2.1.0) using the 
random forest library. 

Moving average analysis 
In order to develop single topological index based models for classifying data set into 
active and inactive analogues, moving average analysis (MAA) was applied. Index values 
of all the 26 chosen descriptors were analyzed and suitable models were developed after 
identification of the active ranges by maximization of moving average with respect to active 
compounds (<35% = inactive, 35–65% = transitional, >65% = active) [44, 54]. 
Subsequently, each analogue of data set was assigned a biological activity using these 
models, which was then compared with the reported activity [35]. The apparent inhibition 
constant was reported quantitatively as Kiapp (μM) at different concentrations. The 
analogues possessing Kiapp values of ≤0.05 μM were considered to be active [labelled as 
“A” (N=10)] and analogues possessing Kiapp values of >0.05 μM were considered to be 
inactive [labelled as “B” (N=21)] for the purpose of present study. The analogues 
possessing MIC99 (Minimum inhibitory concentration that inhibited >99% of cell growth) 
values of ≤12.5 μM in iron-deficient conditions and ≤50 μM in iron-rich conditions were 
considered to be active, and analogues possessing MIC99 values of >12.5 μM in iron-
deficient conditions and >50 μM in iron-rich conditions were considered to be inactive for 
the purpose of present study. 
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Calculation of topological indices 
Though a total of 26 indices were employed for the present study (Tab. 2) but 11 indices 
were ultimately shortlisted by either DT or MAA. Classification ability and non-correlation 
nature of TIs were the main criteria adopted for short listing of TIs for MAA.  

Wiener’s topochemical index )( cw  

Wiener's topochemical index [41] is defined as the sum of the chemical distances between 
all pairs of vertices in hydrogen-suppressed molecular graph. It is a refined form of oldest 
and widely used distance-based topological index – Wiener's index [11] and this modified 
index takes into consideration the presence as well as relative position of heteroatom(s) in 
a molecular structure. It can be expressed as:  

Eq. 1.   ∑∑
= =

=
n

i

n

j
ji ccc Pw

1 12
1  

where ccjiP  is the chemical length of the path that contains the least number of edges 
between vertex i and j in the graph G, n is the number of vertices in the hydrogen depleted 
graph [41]. 

Molecular connectivity topochemical index (χA)  
The molecular connectivity topochemical index [18, 19] is defined as the summation of the 
modified bond values of adjacent vertices for all edges in the hydrogen-suppressed 
molecular graph. It is a modified form of the widely used adjacency-based topological 
index – molecular connectivity index [13, 43] and it takes into consideration the presence 
as well as relative position of heteroatom(s) in a molecular structure, as per the following 
equation: 

Eq. 2.   χA ∑
=

−=
n

i

c

j

c

i VV
1

2
1

)(  

where n is the number of vertices, V c

i
 and V c

j  are the chemical degrees of adjacent 
vertices i and j forming the edge {i, j} in a graph G. The modified degree of a vertex can be 
obtained from the adjacency matrix by substituting row element corresponding to 
heteroatom, with relative atomic weight with respect to carbon atom [18, 19]. 

Superpendentic index ∫P )(  

A pendenticity based graph invariant termed as superpendentic index and denoted by 
∫
P is calculated as the square root of the sum of products of the non-zero row elements in 

the pendent matrix [49]. It is expressed as:  

Eq. 3.  
5.0

1 1
)( ⎥
⎦

⎤
⎢
⎣

⎡
= ∑∏∫

= =

n

i

m

j

ij
P

P  
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Similarly, its topochemical version termed as superpendentic topochemical index ∫
P
c

)(  can 
be calculated from chemical pendent matrix as:  

Eq. 4.  
5.0

1 1
)( ⎥
⎦

⎤
⎢
⎣

⎡
= ∑∏∫

= =

n

i

m

j

ijc

P

c
P  

where m and n are maximum possible numbers of i and j respectively. 

Pendentic eccentricity index ( Pξ ) 

Pendentic eccentricity index ( Pξ ), proposed in the present study, can be defined as the 
summation of the quotients of the product of non-zero row elements in the pendent matrix 
and squared eccentricity of the concerned vertex, for all vertices in the hydrogen 
suppressed molecular graph. Pendent matrix, Dp, of a graph G is a submatrix of distance 
matrix obtained by retaining the columns corresponding to pendent vertices i.e. terminal 
vertices or an end vertex with a degree of one [58]. The eccentricity Ei of a vertex i in a 
graph G is the path length from vertex i to the vertex j that is farthest from i (Ei = max d(ij);  
j G) It is expressed as: 

Eq. 5.  
⎭
⎬
⎫

⎩
⎨
⎧

= ∏∑
==

2

1
)(

1
i

m

j
ij

n

i

P EPξ  

where )(ijP is the length of the path that contains the least number of edges between vertex 
i and vertex j in graph G; n is the number of vertices in the hydrogen depleted graph. 

Similarly topochemical version of Pξ - pendentic eccentricity topochemical index ( P
cξ ) can 

be expressed as: 

Eq. 6.  
⎭
⎬
⎫

⎩
⎨
⎧

= ∏∑
==

2

1
)(

1
ccc i

m

j
ji

n

i

P
c EPξ  

where )( cc jiP is the chemical length of the path that contains the least number of edges 
between vertex ic and vertex jc in graph G; n is the number of vertices in the hydrogen 
depleted graph. 

Pendentic eccentricity topochemical index can be easily calculated from chemical pendent 
matrix, a submatrix of chemical distance matrix. Calculation of proposed index for three 
isomers of five membered molecule containing one heteroatom and at least one pendant 
vertex is exemplified in Fig. 2. The sensitivity of the proposed topochemical descriptor 
towards presence and relative position of heteroatom(s) for all three, four and five 
membered isomers containing only one heteroatom and at least one pendent vertex has 
been illustrated in Tab. 3. Discriminating power and degeneracy of the pendentic 
eccentricity topochemical index were investigated using all possible structures with three, 
four and five vertices containing one heteroatom and at least one pendent vertex and were 
compared with that of the other three indices (Tab. 4). 
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Arbitrary vertex numbering C
1

N
2

C
3

C
4

C
5  

Chemical Distance Matrix  1 2 3 4 5 Ei 
1 0 1.167 2.167 3.167 4.167 4.167 
2 1 0 1 2 3 3 
3 2.167 1.167 0 1 2 2.167 
4 3.167 2.167 1 0 1 3.167 
5 4.167 3.167 2 1 0 4.167  

Chemical Pendant Matrix  1 5 P ij 
1 0 4.167 4.167 
2 1 3 3 
3 2.167 2 4.334 
4 3.167 1 3.167 
5 4.167 0 4.167  

⎭
⎬
⎫

⎩
⎨
⎧

= ∏∑
==

2

1
)(

1
ccc i

m

j
ji

n

i

P
c EPξ  

=4.167/(4.167)2+3/(3)2+4.334/(2.167)2+3.167/(3.167)2+4.167/(4.167)2 
=0.24+0.333+0.923+0.316+0.24=2.052 

Arbitrary vertex numbering 

C
1

C
3

N
2 C

4
C
5

 
Chemical Distance Matrix  1 2 3 4 5 Ei 

 0 2.167 1 2 3 3 
2 2 0 1 2 3 3 
3 1 1.167 0 1 2 2 
4 2 2.167 1 0 1 2.167 
5 3 3.167 2 1 0 3.167  

Chemical Pendant Matrix  1 2 5 P ij 
1 0 2.167 3 6.501 
2 2 0 3 6 
3 1 1.167 2 2.334 
4 2 2.167 1 4.334 
5 3 3.167 0 9.501  

⎭
⎬
⎫

⎩
⎨
⎧

= ∏∑
==

2

1
)(

1
ccc i

m

j
ji

n

i

P
c EPξ  

=6.501/(3)2+6/(3)2+2.334/(2)2 +4.334/(2.167)2+9.501/(3.167)2 
= 0.72+0.67+0.583+0.923+0.947=3.843 

Arbitrary vertex numbering 
C
4

C
3

C
5

N
2

C
1

 
Chemical Distance Matrix  1 2 3 4 5 Ei 

1 0 2.167 2 1 2 2.167 
2 2 0 2 1 2 2 
3 2 2.167 0 1 2 2.167 
4 1 1.167 1 0 1 1.167 
5 2 2.167 2 1 0 2.167  

Chemical Pendant Matrix  1 2 3 5 P ij 
1 0 2.167 2 2 8.668 
2 2 0 2 2 8 
3 2 2.167 0 2 8.668 
4 1 1.167 1 1 1.167 
5 2 2.167 2 0 8.668  

⎭
⎬
⎫

⎩
⎨
⎧

= ∏∑
==

2

1
)(

1
ccc i

m

j
ji

n

i

P
c EPξ  

=8.668/(2.167)2+8/(2)2+8.668/(2.167)2+1.167/(1.167)2+8.668/(2.167)2 
= 1.846+2+1.846+0.857+1.846 = 8.395 

Fig. 2. Calculation of pendentic eccentricity topochemical index values for three 
isomers of a five membered molecule containing one heteroatom and at least 
one pendent vertex. 
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Tab. 3.  Index values for all possible structures with three, four and five vertices 
containing one heteroatom and at least one pendent vertex. 

S.No. Structure cw  χA ∫
P
c

 
P
cξ  

1 C N C  4.334 1.309 2.31 1.923 
2 N C C  4.167 1.359 2.31 1.818 
3 N C C C 10.25 1.867 3.266 1.694 
4 C N C C 10.585 1.814 3.241 1.593 
5 N C

C
C  9.25 1.686 3.72 3.703 

6 C N
C
C 9.752 1.603 3.884 4 

7 
C

C
NC

 
8.585 1.780 2.31 1.923 

8 
C

N
CC

 
8.25 1.821 2.236 1.734 

9 
C

C
CN

 
8.25 1.857 2.345 1.780 

10 C C C
N

C  
18.334 2.228 5.354 3.843 

11 N C C
C

C 
18.334 2.226 5.339 3.89 

12 C N C
C

C 
18.835 2.176 5.373 3.725 

13 C C N
C

C 
19.169 2.140 5.518 3.869 

14 C C C CN  20.334 2.367 4.378 2.116 
15 N C C CC  20.835 2.322 4.34 2.052 
16 C N C CC  21.002 2.319 4.321 2.111 

17 C C C

N

C  
16.334 1.960 5.931 8.395 

18 C C

C N

C

 
14.334 2.253 2.646 2.160 

19 C C

N C

C

 
14.334 2.223 2.646 2.234 

20 C C

C C

N

 
14.334 2.282 2.769 2.241 

21 C C

N C

C

 
16.334 2.317 2.828 1.509 
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Tab. 3.  (Cont.) 

S.No. Structure cw  χA ∫
P
c

 
P
cξ  

22 C C

C N

C

 
16.334 2.322 2.828 1.546 

23 C C

C C

N

 
16.334 2.357 2.944 1.530 

24 N C

C C

C

 
16.835 2.280 2.916 1.489 

25 C C

C

C

N

 
13.334 2.338 2.769 2.241 

26 C N

C

C

C

 
13.334 2.288 2.646 2.234 

27 C N

C

C

C

 
15.835 2.294 2.916 1.489 

28 CC

C

N C 
16.334 2.269 3.873 2.617 

29 CC

N

C C 
16.334 2.234 3.742 2.667 

30 CN

C

C C 
16.835 2.195 3.852 2.516 

31 
CC

C

N C 17.835 2.347 3.082 1.343 

32 
CC

C

C N 17.334 2.388 3.109 1.385 

33 
NC

C

C C 
18.002 2.317 3.055 1.344 

34 
NC

C

CC  17.334 2.364 3 1.380 

35 C N

C

C

C

 
15.334 2.337 2.828 1.546 

36 C C

C

C

N

 
15.334 2.361 2.944 1.530 

37 C C

C

N

C

 
15.334 2.300 2.828 1.583 

38 
CC

C C

N 15.334 2.173 3.742 3.664 

39 
CN

C C

C 15.334 2.139 3.606 3.586 
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Tab. 4.  Comparison of discriminating power and degeneracy of cw , χA, ∫
P
c

, and P
cξ  

using all possible structures having three, four and five vertices containing one 
heteroatom and one pendent vertex. 

 
cw  χA ∫

P
c

 P
cξ  

For three vertices 
Minimum value  
Maximum value 
Ratio 
Degeneracy 

 
4.167 
4.334 
1:1.04 

0/2 

 
1.309 
1.359 
1.1.04 

0/2 

 
2.31 
2.31 
1:1 
2/2 

 
1.818 
1.923 
1:1.05 

0/2 
For four vertices 
Minimum value  
Maximum value 
Ratio 
Degeneracy 

 
8.25 

10.585 
1:1.28 

1/7 

 
1.603 
1.867 
1.16 
0/7 

 
2.236 
3.884 
1:1.73 

0/7 

 
1.593 

4 
1:2.51 

0/7 
For five vertices 
Minimum value  
Maximum value 
Ratio 
Degeneracy 

 
13.334 
21.002 
1:1.57 
13/30 

 
1.96 

2.388 
1:1.22 
2/30 

 
2.646 
5.931 
1:2.24 
9/30 

 
1.343 
8.395 
1:6.25 
5/30 

Degeneracy = Number of compounds having same values / total number of compounds with 
same number of vertices. 

 
Zagreb indices (M1and M2)  
This pair of indices [14, 15] was introduced in 1972 and have been given different names 
in the literature, such as the Zagreb Group indices, the Zagreb group parameters and most 
often, the Zagreb indices. These indices are denoted by M1 and M2 and are defined as per 
the Eqs. 7 and 8: 

Eq. 7.  ∑=
vertices

ididM )()(1  

Eq. 8.  ∑=
edges

jdidM )()(2  

where d(i) is the degrees of vertex i, which can be defined as number of edges incident on 
a vertex i [58] and d(i)d(j) is the weight of edge {i,j}. 

Similarly Zagreb topochemical indices [24] M1
c and M2

c are defined as per the Eqs. 9 and 
10: 

Eq. 9.  ∑
=

=
n

i

cc idGM
1

2
1 ))(()(  

where dc(i) is chemical degree vertex i and n is the number of vertices. 
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Eq. 10.  ))()(()(2 ∑=
n

ij

ccc jdidGM  

where dc(i)dc(j) is the chemical weight of the edge {i,j} in the hydrogen suppressed 
molecular graph and n is the number of edges [24]. 

Augmented eccentric connectivity index )( cAξ  

This is an adjacency-cum-distance based index [44] and is defined as the summation of 
the quotients of the product of adjacent vertex degrees and eccentricity of the concerned 
vertex, for all vertices in the hydrogen suppressed molecular graph. It is expressed as: 

Eq. 11.  ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

i i

icA

E
Mξ

1
 

where, Mi is the product of degrees of all vertices (vj), adjacent to vertex i, Ei is the 
eccentricity, and n is the number of vertices in graph G [44].  

Performance evaluation 
The goodness of the models was assessed by calculating sensitivity, specificity [59, 60], 
overall accuracy of prediction [44], and Matthews correlation coefficient (MCC) [61]. The 
sensitivity and specificity are defined as per the following: 

Sensitivity = TP/(TP+FN),  Specificity = TN/(TN+FP) 

Where the true positive (TP) is the number of compounds correctly predicted as active, 
false negative (FN) is the number of compounds incorrectly predicted as inactive, true 
negative (TN) is the number of compounds correctly predicted as inactive, false positive 
(FP) is the number of compounds incorrectly predicted as active. Thus, the overall 
accuracy is defined as:  

100*accuracy    Overall
FPTNFNTP

TNTP
+++

+
=  

MCC quantifies the strength of the linear relation between the molecular descriptors and 
the classifications, and it may often provide a much more balanced evaluation of the 
prediction than, for instance, the percentages (accuracy). Matthews correlation coefficient 
of 1 corresponds to a perfect prediction, whereas 0 corresponds to a completely random 
prediction and takes both sensitivity and specificity into account. It is calculated as [59]: 

)(*)(*)(*)(
**

FPTNFNTNFPTPFNTP
FPFNTNTPMCC

++++
−

=  

The percent degree of prediction for each range as well as overall degree of prediction 
were calculated. The percent classification was obtained from the ratio of number of 
compounds present in active and inactive ranges to the total number of compounds in the 
data set. The percent degree of prediction for each range as well as overall accuracy of 
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prediction of the proposed model for antitubercular activity in iron-deficient and iron-rich 
state were also measured.  

The validation of the DT based model and self- consistency test were performed by 10-fold 
cross validation (CV) method, in which the compound dataset was randomly split into 10 
folds. The model was developed using 9 randomly selected folds, and prediction was done 
on the remaining fold. The goodness of DT based model was also assessed by calculating 
sensitivity, specificity, overall accuracy of prediction and MCC. The 10-fold CV results are 
given in Tab. 5. From a practical application point of view, topological descriptors used 
should be least correlated [62]. Absence of direct correlation indicates that the two indices 
are distinctive and consider different structural components. Statistical significance of TIs 
used in building predictive models was also assessed by intercorrelation analysis by using 
index values of analogues of 5'-O-[(N-Acyl)sulfamoyl]adenosines. 

Results and Discussion 
Computational approaches applied in drug discovery and toxicity prediction often require 
molecular descriptors that reflect structural information and physicochemical properties of 
molecules [63]. The description of the molecular structure through the so-called molecular 
descriptors is a more difficult but necessary task. Difficulties arise in the generation of such 
indices, due to non-mathematical nature of the molecular structure [64]. Topological 
indices are one of the widely used molecular descriptors, which are easily available and 
can be quickly computed for existing and virtual structures [65, 66]. The successful 
implementation of QSPR and QSAR certainly decreases the number of compounds 
synthesized, by making it possible to select the most promising compounds. However, it 
does not completely eliminate the trial and error factor involved in the development of new 
drugs [67]. 

Researchers are striving hard to develop new TIs with not only high discriminating power 
but also devoid of both degeneracy and correlation with existing TIs. As observed from 
Fig. 2, value of pendentic eccentricity index changes by >4 times (from 2.052 to 8.395) 
with a small change in the branching of a five membered molecule containing one 
heteroatom and at least one pendant vertex. Thus, novel descriptor has high 
discriminating power, defined as the ratio of highest to lowest value for all possible 
structures of same number of vertices. This is evident from the fact that the ratio of the 
highest to lowest value for all possible structures containing five vertices is 6.25 for P

cξ , in 

contrast to 1.5, 1.22 and 2.24 for cw , χA and ∫
P
c

 respectively. Thus, pendentic 
eccentricity topochemical index revealed ~4 times higher discriminating power with respect 
to Wiener’s topochemical index, >5 times higher discriminating power with respect to 
molecular connectivity topochemical index and ~2.8 times higher discriminating power with 
respect to superpendentic topochemical index for all the possible structures of five vertices 
containing a heteroatom and at least one pendent vertex (Tab. 4). High discriminating 
power and extremely low degeneracy are desirable properties of an ideal topological 
index. High discriminating power of the proposed new descriptor makes it more sensitive 
towards any change in molecular structure. 
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Degeneracy is the measure of ability of an index to differentiate between the relative 
positions of atom in a molecule. It is well known fact that topological indices show 
degeneracy, that is, two or more non-isomorphic graphs may have identical numerical 
values for an index [68]. The novel pendentic eccentricity topochemical index had 
significantly reduced degeneracy as compared to Wiener’s topochemical index and 
superpendentic topochemical index. This is evident from the fact that pendentic 
eccentricity topochemical index had only 5 identical values out of 30 structures with only 
five vertices containing one heteroatom and at least one pendent vertex whereas Wiener’s 
topochemical index and superpendentic topochemical index had 13 and 9 identical values, 
respectively, for the same compounds (Tab. 4). It is pertinent to mention here that 
pendentic eccentricity topochemical index had also reduced degeneracy as compared to 
molecular connectivity topochemical index, as is evident from the fact that novel index had 
a single identical index value out of 31 values of dataset under study, whereas molecular 
connectivity topochemical index had two identical values for the same (see tab. 1). Lower 
the degeneracy, better is the index [39]. Significant reduction in degeneracy indicates the 
enhanced capability of novel topochemical index to differentiate and demonstrate slight 
variations in the molecular structure. This means that the likeliness of different structures 
to have same value is very less. As observed from Tab. 6, pendentic eccentricity 
topochemical index is not correlated with most of the commonly used TIs. Pairs of indices 
with r≥0.97 are considerably highly intercorrelated, those with 0.90≥r<0.97 are appreciably 
correlated, those with 0.50≤r≤0.89 are weakly correlated and finally the pairs of indices 
with low r values (<0.50) are not intercorrelated [69]. Intercorrelation analysis (Tab. 6) 

revealed that the pair of indices ∫
AP
c

- P
cξ  are highly intercorrelated, pair of indices cw - 

M1
c, M1

c- M2
c are appreciably intercorrelated, pair of indices cw -χA, cw - ∫

AP
c

, cw - P
cξ , 

cw - M2
c, χA – M1

c, χA – M2
c, ∫

AP
c

- M1
c, M1

c - cAξ , M2
c - cAξ , P

cξ - M1
c are weakly correlated 

and pair of indices cw - cAξ , χA - ∫
AP
c

, χA - P
cξ , χA - cAξ , ∫

AP
c

- M2
c, ∫

AP
c

- cAξ , P
cξ - M2

c, 

and P
cξ - cAξ  are not intercorrelated.  

Tab. 5.  Confusion Matrix for antitubercular activity and recognition rate of models based 
on decision tree and Random forest. 

 
 

Number of 
compounds  
Predicted 

Model Description Ranges 

Active Inactive

Sensi-
tivity 
(%) 

Speci-
ficity 
(%)  

Overall 
Accuracy 
of Pre-
diction 

MCC 

Training set Active 
Inactive 

10 
0 

0 
21 

100 100 100 1 
Decision 
Tree Cross 

validated set 
Active 
Inactive 

07 
04 

03 
17 

70 80.9 77.4 0.497 

Random 
Forest 

Active 
Inactive 

5 
16 

5 
5 

50 76.19 67.74 0.26 
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In the present study, DT, RF and MAA based models were developed for the prediction of 
antitubercular activity of 5'-O-[(N-Acyl)sulfamoyl]adenosines. The decision tree was built 
by utilizing 26 TIs of diverse nature. This recursive partitioning scheme generates rules 
based on the numerical data of the available descriptors for each molecule. In this case, a 
classification of data set [35] into active and inactive compounds was desired. Decision 
tree assigns a probability value (0–1) that a compound is active or inactive; compounds 
with the probability equal to or greater than 0.5 are designated as active, while others are 
designated as inactive [70]. Decision tree identified five important topological indices: 
superpendentic topochemical index (A11), Zagreb group parameter, M2 (A21), Molecular 
connectivity topochemical index (A1), Zagreb topochemical index, M2

c (A8) and 
augmented eccentric connectivity topochemical index (A3). The obtained topology of the 
decision tree is shown in Fig. 3, where the respective descriptor is denoted with an 
alphanumerical abbreviation that refers to Tab. 2. The index at the root node is most 
important and significance of index decreases as the tree increases. The DT classified 
analogues of 5'-O-[(N-Acyl)sulfamoyl]adenosines in the training set with an accuracy of 
100% and the cross validated set with an accuracy of 77.4% with regard to antitubercular 
activity. The sensitivity and specificity of DT based model in the training set was found to 
be 100%. The sensitivity and specificity of decision tree based model in the cross-
validated set was of the order of 70% and 80.9% respectively. The values of MCC for DT 
based model in the training set and cross validated set are 1 and 0.497 respectively 
suggesting satisfactory performance as well as robustness of the model. The values of 
sensitivity, specificity and MCC are shown in Tab. 5.  

Tab. 6.  Intercorrelation matrix. 

 cw  χA ∫
P
c

 P
cξ  M1

c M2
c cAξ  

cw  1 0.851 0.63 0.57 0.914 0.847 0.336 
χA  1 0.476 0.435 0.617 0.544 −0.074 

∫
P
c

   1 0.984 0.594 0.417 0.282 
P
cξ     1 0.522 0.363 0.271 

M1
c     1 0.923 0.632 

M2
c      1 0.653 

cAξ  
      1 
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Fig. 3.  Topology of a decision tree distinguishing active compounds {A} from inactive 

compounds {B}. 

The random forests were also grown utilizing 26 TIs enlisted in Tab. 2. The RF classified 
5'-O-[(N-Acyl)sulfamoyl]adenosines with regard to antitubercular activity with an accuracy 
of 67.74% and out-of-bag (OOB) estimate of error was 32.26%. The sensitivity, specificity 
and MCC value of RF based model was found to be 50%, 76.19% and 0.26 respectively. 
The values of sensitivity, specificity and MCC are shown in Tab. 5.  

Using a single index at a time, MAA provided four independent models based on cw , χA, 

∫
P
c

and P
cξ  with an accuracy of prediction ranging from 90.4% to 91.6%. The index values 

of various analogues along with their substituents are presented in Table 1. The reason 
behind choosing these four indices for development of models was that these indices 
provide structural information on different concepts. Wiener’s topochemical index is based 
upon inter-atomic distances and any increase in linearity and molecular size results in 
increase in the value of Wiener’s topochemical index. Molecular connectivity topochemical 
index, on the other hand, is based upon adjacency or connectivity of atoms within a 
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molecule. Superpendentic topochemical index and novel pendentic eccentricity 
topochemical index are pendenticity based topological indices and thus take into 
consideration pendent vertices in the molecule 

The methodology used in the present study aims at the development of suitable models for 
providing lead molecules through exploitation of the active ranges in the proposed models 
based on topological indices. Proposed models are unique and differ widely from 
conventional QSAR models. Both systems of modeling have their own advantages and 
limitations. In the instant case, the modeling system adopted has distinct advantage of 
identification of narrow active range(s), which may be erroneously skipped during routine 
regression analysis in conventional QSAR modeling. Since the ultimate goal of modeling is 
to provide lead structures, therefore, these active ranges can play vital role in lead 
identification [71]. 

Tab. 7.  MAA derived topological models for antitubercular activity. 
Number of 
analogues 

falling in the 
range 

Model  
Index 

Nature of range 
in proposed 

model 
Index value 

Total Correct 

Percent 
accuracy 

Average MIC99 
(µM) 

(Correctly 
predicted 

analogues) 

Overall 
accuracy of 
prediction 

(%) 

Lower Inactive <3855.002 9 9 >99.9 43.22 

Transitional 3855.002-
<4248.865 10 N.A. N.A. 15.61 

Active 4248.865-
4289.42 8 6 75 0.019 

cw  

Upper Inactive >4289.42 4 4 >99.9 37.05 

90.4 

Lower Inactive <13.416 9 9 >99.9 30.71 
Active 13.416-13.545 8 6 75 0.016 

Transitional >13.545-≤13.854 8 N.A. N.A. 20.1 χA 

Upper Inactive >13.854 6 6 >99.9 41.5 

91.3 

Lower Inactive < 7238.409 11 11 >99.9 44.47 

Transitional 7238.409 - 
<7977.906 7 N.A. N.A. 1.07 

Active 7977.906 - 
28115.13 9 7 77.7 0.018 

∫
P
c

 

Upper Inactive > 28115.13 4 4 >99.9 52.93 

91.6 

Lower Inactive <184644.953 10 10 >99.9 48.9 

Transitional 184644.953-
<1821982.125 8 N.A. N.A. 5.51 

Active 1821982.125-
2453185.25 9 7 >77.7 0.018 

P
cξ  

Upper Inactive >2453185.25 4 4 >99.9 52.92 

91.3 

 
Retrofit analysis of the data with regard to Wiener’s topochemical index (Tab. 7-–9) 
revealed that 90.4% analogues were predicted correctly with respect to antitubercular 
activity. Extremely low average Ki value of 0.019 μM of correctly predicted compounds 
indicates high potency of the active range in the proposed model. Activity of all the 
analogues in both inactive ranges was predicted correctly. The average Kiapp values for 
lower inactive and upper inactive ranges were found to be 43.22 μM and 37.05 μM 
respectively. Existence of a transitional range indicates gradual change in biological 
activity. The ratio of average Kiapp values of active range with lower inactive range and 
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upper inactive range was found to be 1:2274.73 and 1:1950 respectively for correctly 
predicted analogues. Overall accuracy of this model, for prediction of antitubercular activity 
in iron-deficient and iron-rich state was found to be 80.9%. Sensitivity, specificity, and 
MCC for this model was found to be 100%, 86.66%, and 0.8 respectively. 

Tab. 8.  MAA derived topological models for antitubercular activity in Iron-deficient state. 
Number of 
analogues 

falling in the 
range 

Model  
Index 

Nature of range 
in proposed 

model 
Index value 

Total Correct 

Percent 
accuracy

Average MIC99 
(µM) 

(Correctly 
predicted 

analogues) 

Overall 
accuracy of 
prediction 

(%) 

Lower Inactive <3855.002 9 7 >77.7 200 

Transitional 3855.002-
<4248.865 10 N.A. N.A. 103.19 

Active 4248.865-
4289.42 8 6 75 5.74 

cw  

Upper Inactive >4289.42 4 4 >99.9 200 

80.9 

Lower Inactive <13.416 9 7 >77.7 200 
Active 13.416-13.545 8 6 75 7.38 

Transitional >13.545-≤13.854 8 N.A. N.A. 86.02 χA 

Upper Inactive >13.854 6 5 83 200 

78.0 

Lower Inactive < 7238.409 11 8 72.72 200 

Transitional 7238.409 - 
<7977.906 7 N.A. N.A. 94.73 

Active 7977.906 - 
28115.13 9 7 77.7 5.03 

∫
P
c

 

Upper Inactive > 28115.13 4 4 >99.9 200 

79.16 

Lower Inactive <184644.953 
 

10 8 80 200 

Transitional 184644.953-
<1821982.125 8 N.A. N.A. 103.19 

Active 1821982.125-
2453185.25 9 7 77.7 5.03 

P
cξ  

Upper Inactive >2453185.25 4 4 >99.9 200 

82.6 

 

Retrofit analysis of the data with regard to molecular connectivity topochemical index (Tab. 
7–9) revealed that 91.3% analogues were predicted correctly with respect to antitubercular 
activity. Extremely low average Kiapp value of 0.016 μM of correctly predicted compounds 
indicates high potency of the active range in the proposed model. Biological activity of all 
the analogues in both inactive ranges was predicted correctly. The average Kiapp values of 
lower inactive range and upper inactive range were found to be 30.71 μM and 41.5 μM 
respectively. Existence of a transitional range indicates gradual change in biological 
activity. The ratio of average Kiapp values of active range with lower inactive range and 
upper inactive range was found to be 1:1919.37 and 1: 2593.75 respectively for correctly 
predicted analogues. Overall accuracy of this model, for prediction of antitubercular activity 
in iron-deficient and iron-rich state was found to be 78%. Sensitivity, specificity, and MCC 
for this model was found to be 100%, 88.23%, and 0.8 respectively. 
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Tab. 9.  MAA derived topological models for antitubercular activity in Iron-rich state. 
Number of 
analogues 

falling in the 
range 

Model  
Index 

Nature of 
range in 

proposed 
model 

Index value 

Total Correct 

Percent 
accuracy 

Average MIC99 
(µM) 

(Correctly 
predicted 

analogues) 

Overall 
accuracy of 
prediction 

(%) 

Lower 
Inactive <3855.002 9 7 >77.7 200 

Transitional 3855.002-
<4248.865 10 N.A. N.A. 112.74 

Active 4248.865-
4289.42 8 6 75 33.39 

cw  

Upper 
Inactive >4289.42 4 4 >99.9 200 

80.9 

Lower 
Inactive <13.416 9 7 77.7 200 

Active 13.416-13.545 8 6 75 33.65 

Transitional >13.545-
≤13.854 8 N.A. N.A. 110.35 χA 

Upper 
Inactive >13.854 6 5 83 200 

78 

Lower 
Inactive < 7238.409 11 8 72.72 200 

Transitional 7238.409 - 
<7977.906 7 N.A. N.A. 121.7 

Active 7977.906 - 
28115.13 9 7 77.7 29.07 

∫
P
c

 

Upper 
Inactive > 28115.13 4 4 >99.99 200 

79.16 

Lower 
Inactive <184644.953 10 8 80 200 

Transitional 184644.953-
<1821982.125 8 N.A. N.A. 112.74 

Active 1821982.125-
2453185.25 9 7 77.7 29.07 

P
cξ  

Upper 
Inactive >2453185.25 4 4 >99.9 200 

82.6 

 

Retrofit analysis of the data with regard to superpendentic topochemical index (Tab. 7–9) 
revealed that 91.6% analogues were predicted correctly with respect to antitubercular 
activity. Extremely low average Kiapp value of 0.018 μM of correctly predicted compounds 
indicates high potency of the active range in the proposed model. Activity of all the 
analogues in both inactive ranges were predicted correctly. The average Kiapp values of 
lower inactive and upper inactive ranges were found to be 44.47 μM and 52.93 μM 
respectively. Existence of a transitional range indicates gradual change in biological 
activity. The ratio of average Kiapp values of active range with lower inactive range and 
upper inactive range was found to be 1:2470.55 and 1:2940.55 respectively for correctly 
predicted analogues. Overall accuracy of this model, for prediction of antitubercular activity 
in iron-deficient and iron-rich state was found to be 91.6%. Sensitivity, specificity, and 
MCC for this model was found to be 100%, 88.23%, and 0.82 respectively. 
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Retrofit analysis of the data with regard to pendentic eccentricity topochemical index (Tab. 
7–9) revealed that 91.3% analogues were predicted correctly with respect to antitubercular 
activity. Extremely low average Kiapp value of 0.018 μM for the correctly predicted 
compounds indicates high potency of the active range in the proposed model. Activity of all 
the analogues in both inactive ranges was predicted correctly. The average Kiapp value of 
lower inactive range and of upper inactive range was found to be 48.9 μM and 52.92 μM 
respectively. Existence of a transitional range indicates gradual change in biological 
activity. The ratio of average Kiapp values of active range with lower inactive range and 
upper inactive range was found to be 1:2716.66 and 1:2940 respectively. Overall accuracy 
of this model, for prediction of antitubercular activity in iron-deficient and iron-rich state 
was found to be 82.6%. Sensitivity, Specificity, and MCC for this model has been found to 
be 100%, 87.5%, and 0.82 respectively. 

Pendentic eccentricity topochemical index ( P
cξ ) depends upon number of pendent atoms 

and eccentricity. It also takes care of both the nature as well as relative position(s) of 
pendent atom(s)/heteroatom(s). For a compound to be biologically active, two pendent 
vertices on the cyclic substituent R (at appropriate places) are essential as observed from 
relative Kiapp (μM) values [35]. Any deviation from such substitution leads to either loss or 
reduction in biological activity. All of the compounds which have been characterized as 
active by the proposed model contained two pendent atoms in the cyclic substituent R. 
Accordingly, all the compounds [excepting 7 and 16] predicted as active by the proposed 
model were also experimentally reported to be active. Compounds 7 and 16 were 
categorised as active according to our proposed model with a cut off value of ≤0.05 μM. 
Though these two compounds were experimentally reported to be inactive as per the 
proposed model with a cut off value of ≤0.05 μM but both these compounds exhibited 
significant biological activity with Kiapp values of 0.061 and 0.137 respectively when 
compared to average Kiapp values of ~50 μM for the inactive range. Consequently, all the 
compounds which were categorised as active as per the proposed model were either 
experimentally reported to be active or exhibited significant biological activity. All the 
compounds which have been characterized as inactive as per model possessed either 
less than two pendent atoms or more than two pendent atoms in the cyclic substituent R 
with an exception of compound 17. Inactivity of compound 17 may be due to lack of 
pendent vertex at ortho-position. This fact has already been reported earlier [35]. Since 
study signifies the influence of both the number as well as relative position(s) of pendent 
atom(s) in the cyclic substituent R on the biological activity, therefore, pendenticity based 
topological descriptors will naturally be of utmost importance in drug design.  

The results of average Kiapp (µM) values of correctly predicted analogues in various ranges 
of the proposed MAA based topological models are shown in Figures 4–6.  
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Fig. 4.  Average Kiapp (µM) values of correctly predicted analogues in various ranges of 

the proposed MAA topological models. 

 

 

 
Fig. 5.  Average Kiapp (µM) values of correctly predicted analogues in various ranges of 

the proposed MAA topological models in iron-deficient state. 
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Fig. 6.  Average Kiapp (µM) values of correctly predicted analogues in various ranges of 

the proposed MAA topological models in iron-rich state 

Conclusion 
Pendentic eccentricity topochemical index - a novel molecular descriptor exhibited high 
discriminating power, sensitivity towards both the presence as well as relative position(s) 
of pendent/heteroatom(s) apart from reduced degeneracy. Moreover, Pendentic 
eccentricity topochemical index was found not to be correlated with important topological 
descriptors rendering it highly beneficial tool for isomer discrimination, similarity/dis-
similarity, drug design, quantitative structure-activity/structure-property relationships, lead 
optimization and combinatorial library design.  

Significant correlation of topological descriptors with antitubercular activity of 5'-O-[(N-
Acyl)sulfamoyl]adenosines led to development of numerous models through decision tree, 
random forest and MAA. All the proposed models exhibited high degree of prediction with 
regard to anti-tubercular activity. These models offer vast potential for providing lead 
structures for the development of potent therapeutic agents for treatment of tuberculosis. 
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