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Abstract
Background: Vav proteins are guanine nucleotide exchange factors (GEF) for Rho family GTPases
and are activated following engagement of membrane receptors. Overexpression of Vav proteins
enhances lamellipodium and ruffle formation, migration, and cell spreading, and augments activation
of many downstream signaling proteins like Rac, ERK and Akt. Vav proteins are composed of
multiple structural domains that mediate their GEF function and binding interactions with many
cellular proteins. In this report we examine the mechanisms responsible for stimulation of cell
migration by an activated variant of Vav1 and identify the domains of Vav1 required for this activity.

Results: We found that expression of an active form of Vav1, Vav1Y3F, in MCF-10A mammary
epithelial cells increases cell migration in the absence or presence of EGF. Vav1Y3F was also able
to drive Rac1 activation and PAK and ERK phosphorylation in MCF-10A cells in the absence of EGF
stimulation. Mutations in the Dbl homology, pleckstrin homology, or cysteine-rich domains of
Vav1Y3F abolished Rac1 or ERK activation in the absence of EGF and blocked the migration-
promoting activity of Vav1Y3F. In contrast, mutations in the SH2 and C-SH3 domains did not affect
Rac activation by Vav1Y3F, but reduced the ability of Vav1Y3F to induce EGF-independent
migration and constitutive ERK phosphorylation. EGF-independent migration of MCF-10A cells
expressing Vav1Y3F was abolished by treatment of cells with an antibody that prevents ligand
binding to the EGF receptor. In addition, conditioned media collected from Vav1Y3F expressing
cells stimulated migration of parental MCF-10A cells. Lastly, treatment of cells with the EGF
receptor inhibitory antibody blocked the Vav1Y3F-induced, EGF-independent stimulation of ERK
phosphorylation, but had no effect on Rac1 activation or PAK phosphorylation.

Conclusion: Our results indicate that increased migration of active Vav1 expressing cells is
dependent on Vav1 GEF activity and secretion of an EGF receptor ligand. In addition, activation of
ERK downstream of Vav1 is dependent on autocrine EGF receptor stimulation while active Vav1
can stimulate Rac1 and PAK activation independent of ligand binding to the EGF receptor. Thus,
stimulation of migration by activated Vav1 involves both EGF receptor-dependent and independent
activities induced through the Rho GEF domain of Vav1.
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Background
The Rho family guanine nucleotide exchange factor
(GEF), Vav1, plays a central role in transducing signals
from cell surface receptors, such as integrin, growth factor
and immune response receptors, to stimulate multiple
cellular activities. These activities include many that
involve changes in the actin cytoskeleton, such as lamel-
lipodium and ruffle formation and cell spreading [1,2].
Vav1 expression is normally restricted to hematopoietic
cells while its isoforms, Vav2 and Vav3, are more widely
expressed [3-6]. All three Vav isoforms have been shown
to be abnormally expressed in several types of cancer.
Vav1 is ectopically expressed and is believed to have a role
in increased cell proliferation and metastasis of pancreatic
cancer cells [7,8], and it is also expressed in a subset of
neuroblastomas [9]. In addition, based on SAGE data,
Vav2 expression levels are increased in several types of
brain cancers and Vav3 is overexpressed in breast carcino-
mas [10]. Vav1 overexpression enhances the activation of
multiple intracellular signaling pathways including extra-
cellular signal-regulated kinase (ERK), Jun N-terminal
kinase (JNK), and phosphoinositide-3-
kinase(PI3K)[1,11]. Vav proteins are composed of multi-
ple domains that mediate protein interactions as well as
catalytic activity [1,12-14]. By interacting with structural
and signaling proteins, Vav1 may serve to integrate signals
required to properly execute activation of downstream
pathways. Thus, it is important to understand the mecha-
nisms whereby Vav1 serves as a scaffold to coordinate
with Rho family GTPases and other signaling and struc-
tural proteins to regulate changes in the actin cytoskeleton
and activate intracellular signaling pathways.

Vav1, Vav2, and Vav3 are composed of multiple domains
in addition to the Dbl homology (DH) domain that medi-
ates Rho family GTP exchange. These domains include a
calponin homology (CH) domain, a domain rich in
acidic amino acids, a pleckstrin homology (PH) domain,
a cysteine-rich (CR) domain, two Src homology (SH) 3
domains, and an SH2 domain [1,2,12-14]. The activities
of several Vav domain mutants have been tested in vitro
or in lymphoid cells or fibroblasts [6,15-23]. Deletion of
the CH domain produces an active form of Vav, thus it has
been proposed that this domain acts as a negative regula-
tor of Vav, possibly through intramolecular binding to the
cysteine rich domain [17,20,24,25]. However, the CH
domain also has a role in activation of NFAT downstream
of Vav1 in T cells, because deletion or mutation of this
domain in Vav1 suppresses its activation of NFAT
[14,18,19,26]. Within the acidic domain are three tyro-
sine residues that participate in an autoinhibitory interac-
tion with the DH domain, thus blocking access of Rho
GTPases [27]. The PH domain was hypothesized to regu-
late DH domain function by binding to PIP3 [1,28-30],
but recent data suggest that phospholipids do not regulate

activation of Vav [20,25,31]. However, the PH domain
does seem to be required for Vav activity in cells by an
unknown mechanism [20-22]. Mutation of the cysteine
rich region of Vav1 blocks its ability to catalyze exchange
of nucleotides on Rac or activate JNK in fibroblasts and
Jurkat T cells, suggesting that this domain is required for
catalytic activity [6,20,21,32]. The SH3-SH2-SH3
domains, collectively known as the adaptor region, have
been shown to interact with several signaling proteins
[1,12,14,33-40]. The requirement of each domain for sig-
naling downstream from Vav in response to growth factor
receptor or integrin activation in vivo has not been
defined.

The adaptor region of Vav1 binds to many different pro-
teins. The C-terminal SH3 (C-SH3) domain binds to sev-
eral polyproline-containing proteins, including
cytoskeletal proteins and RNA-binding proteins
[14,33,35,40]. The Vav1 SH2 domain mediates binding of
Vav to phosphotyrosine residues of growth factor recep-
tors, kinases, phosphatases, and the SLP-76 adaptor pro-
tein [14,34,36-38]. All three Vav isoforms are
phosphorylated on tyrosines following treatment of cells
with several distinct growth factors and the tyrosine phos-
phorylation sites themselves serve as binding sites for
other SH2 domain containing proteins [14,41-44].
Although the sequence of the N-SH3 ligand-binding
region diverges significantly from the SH3 consensus and,
to date, no polyproline ligands have been identified for
this domain [1], it does bind to SH3 domains of the adap-
tor proteins Grb2 and Crk [45-47]. Thus, the Vav N-SH3
domain possesses the unique ability to interact with other
SH3 domains. Vav is the only DH containing protein that
contains an SH2 domain [1,48]. The presence of the SH2
and SH3 domains may allow Vav to couple with receptors
as well as serve as a scaffold protein to recruit proteins
required for its downstream signaling.

We have characterized the phenotypic effects of overex-
pression of an active form of Vav1, Vav1Y3F, in the
human mammary epithelial cell line, MCF-10A. We show
that Vav1Y3F causes morphological changes and
increased migration of MCF-10A cells. Cells expressing
Vav1Y3F also exhibit increases in Rac1, Pak, and ERK acti-
vation in the absence of growth factor stimulation. All
these activities are dependent on the GTPase exchange
activity of Vav1. However, the Vav1-induced increase in
migration and ERK activation, but not activation of Rac1
and Pak, are dependent on the secretion of an epidermal
growth factor (EGF) receptor ligand stimulated by
Vav1Y3F. Thus, in MCF-10A cells, Vav1 activates migra-
tion and the ERK pathway indirectly through secretion of
an EGF receptor ligand.
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Results and discussion
Expression of active Vav1 in MCF-10A cells causes 
morphological changes and stimulates migration
To examine the effects of activated Vav in MCF-10A mam-
mary epithelial cells, we constructed a retroviral vector
encoding an activated form of Vav1, referred to as
Vav1Y3F, that contains phenylalanine substitutions for
three acidic domain tyrosine residues (Y142, Y160 and
Y174) (Fig. 1A). These tyrosine residues are able to partic-
ipate in autoinhibitory interactions with the DH domain
of Vav1. Phosphorylation prevents the interaction and
leads to activation of Vav1 GEF activity [25,27]. In addi-
tion, mutation of these residues to phenylalanine has

been shown to result in a Vav1 protein with constitutive
activity [19,20].

The activated Vav1Y3F variant was expressed in MCF-10A
cells, a line of immortalized, non-transformed human
mammary epithelial cells, because they display a non-
motile phenotype in the absence of growth factors. MCF-
10A cells were infected with retroviral vectors encoding
either GFP or Vav1Y3F-GFP, and the morphology of
infected cells was compared. Expression of the GFP-tagged
form of Vav1Y3F caused a change in the morphology of
MCF-10A cells that was not observed in cells expressing
GFP alone. The GFP-expressing cells displayed a cobble-
stone appearance indistinguishable from non-infected

Vav1Y3F stimulates morphological changes and increases migration of MCF-10A cellsFigure 1
Vav1Y3F stimulates morphological changes and increases migration of MCF-10A cells. (A) Schematic illustration 
of mutations made in different domains of Vav1. The domain structure of Vav1 is illustrated at the top and the positions of res-
idues mutated are indicated by asterisks. (B) The morphology of MCF-10A cells expressing GFP is shown in the left panels and 
of cells expressing Vav1Y3F is shown in the right panels. Note that cells expressing Vav1Y3F are flatter and more spread and 
have more ruffles and lamellipodia than the cells expressing GFP. Data are representative of more than 10 independent exper-
iments. (C) MCF-10A cells expressing GFP and Vav1Y3F were seeded in transwell chambers and allowed to migrate overnight 
towards assay media without or with 20 ng/ml EGF. The average number of cells migrated in five 20x fields per transwell was 
determined. Migration is expressed as the percentage of migration of Vav1Y3F cells in media without EGF (set to 100%) for 
each individual experiment. Data are the average plus standard deviation of 8 independent experiments.
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MCF-10A cells. In contrast, cells expressing Vav1Y3F were
flatter and more spread and displayed more ruffles and
lamellipodia (Fig. 1B).

Because Vav is a GEF for Rac, Rho, and Cdc42, and these
GTPases play important roles in migration [49], we exam-
ined the effect of Vav1Y3F expression on migration. MCF-
10A cells require EGF stimulation to migrate; however,
the expression of certain proteins such as H-Ras causes the
cells to migrate in the absence of EGF [50]. The ability of
cells expressing GFP and GFP-tagged Vav1Y3F to migrate
was examined using a transwell assay. In the absence of
EGF, GFP-expressing cells do not migrate. However, upon
EGF stimulation, the migration of these cells increases 80-
to 100-fold. Expression of Vav1Y3F caused an 80- to 100-
fold stimulation of MCF-10A cell migration relative to
expression of GFP alone. In addition, Vav1Y3F-GFP
enhanced migration in the presence of EGF (Fig. 1C).

Function-blocking mutations in the DH, PH, or CR 
domains suppress Vav1Y3F activities
To determine which domains of Vav1 are required for the
morphological changes and increased migration of MCF-
10A cells, variant forms of Vav1Y3F containing inactivat-
ing point mutations in various domains were expressed in
MCF-10A cells (Fig. 1A). It has previously been shown
that in addition to the catalytic DH domain, the CR
domain is required for the GEF activity of Vav1, Vav2, and
Vav3 in vitro [6,20,21]. In contrast, inactivation of the PH
domain of Vav isoforms has no effect on exchange activity
in vitro but inhibits Vav activity in cells by an unknown
mechanism [20-22]. We examined the effects of similar
inactivating mutations in these domains on the ability of
Vav1Y3F to stimulate morphological changes and
increase migration in MCF-10A cells. The Vav1Y3F/DH*
protein contains a L213Q mutation which had previously
been found to inactivate the GEF function of this domain
[20,32,51]. The Vav1Y3F/PH* protein contains a leucine
substitution for tryptophan residue 495 that is conserved
in nearly all PH domains. This tryptophan contributes a
side chain to the hydrophobic core of PH domains and is
thought to have a role in domain stability [52]. The
Vav1Y3F/CR* mutant contains a serine substitution for
cysteine 529 which contributes to formation of one of the
zinc finger motifs in the CR domain. The latter two muta-
tions have been shown to inactivate the transforming abil-
ity of oncogenic or active forms of Vav1 in NIH3T3 cells
[20,22,53]. In addition, the C529S mutation blocks the
guanine nucleotide exchange activity of Vav3 in vitro [6]
and of Vav1 in nucleotide loading of Rac1 in vitro and in
cells [20,32]. All three of these mutated proteins were also
GFP tagged at their C-termini.

The appearance of MCF-10A cells expressing the Vav1Y3F/
DH*, Vav1Y3F/PH*, and Vav1Y3F/CR* proteins were

indistinguishable from the GFP expressing cells, indicat-
ing that mutation of these domains prevents Vav1Y3F
induced morphological alterations (Fig. 2A, top panels).
In addition, cells expressing these proteins did not
migrate in the absence of EGF (Fig. 2B) and did not stim-
ulate increased migration over that of GFP-expressing cells
in the presence of EGF (data not shown). These data sug-
gest that the DH, PH, and CR domains of Vav1 are
required for its ability to cause cell spreading, ruffle for-
mation, and increased migration.

Mutations in the adaptor region of Vav1Y3F have variable 
effects on cell morphology and migration
Vav1 is known to interact with many different proteins
through its C-terminal adaptor region [14]. To investigate
whether these interactions are required for the migratory
phenotype caused by Vav1Y3F expression, we generated
mutants that disrupted known interactions of the adaptor
region. The interaction between the N-SH3 domain of
Vav1Y3F and the C-terminal SH3 domain of Grb2 was
inhibited by substitutions of tyrosine for tryptophan resi-
due 637 (W637Y) and alanine for proline at residue 657
(P657A). These two residues are in the interface between
Vav1 and Grb2, and substitutions at these sites were
found to decrease the binding affinity between the two
proteins 40- and 9- fold, respectively [47]. These proteins
were termed Vav1Y3F/Grb2binda* and Vav1Y3F/
Grb2bindb*. To disrupt the ability of the SH2 domain of
Vav1Y3F to bind phosphotyrosine, Vav1Y3F/SH2* was
generated by mutating arginine at residue 696 in the
active site to lysine (Fig. 1A). This arginine is in the FLVR
motif required for binding to phosphotyrosines [54,55].
The N-SH3 and C-SH3 domains were inactivated by
mutating P651 and P833 to leucines to make Vav1Y3F/
NSH3* and Vav1Y3F/CSH3*. Mutation of P833 to leu-
cine in Vav1 blocks interaction with polyproline
sequences [40,56,57], and the equivalent SH3 domain
mutation in Sem5 blocks its function in C. elegans
[58,59]. The locations of these mutations in Vav1 are illus-
trated in figure 1A.

None of the mutations in the adaptor region of Vav1Y3F
affected its ability to induce a flattened, well-spread mor-
phology (Fig. 2A, bottom panels, and data not shown). In
addition, none of the mutations in the N-SH3 domain
had an effect on the migratory activity of Vav1Y3F (Fig.
2B, data not shown). However, mutation of the SH2 or
the C-SH3 domains suppressed the strong migratory phe-
notype of Vav1Y3F. Vav1Y3F/SH2* and Vav1Y3F/CSH3*
expressing cells showed 2-fold lower migration vs.
Vav1Y3F in the absence of EGF (Fig. 2B). Therefore, the
SH2 and C-SH3 domains appear to be required for maxi-
mal Vav1Y3F stimulated migration.
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Inactivation of different Vav1Y3F domains reveals roles for GEF and scaffolding activities in Vav1Y3F-induced phenotypesFigure 2
Inactivation of different Vav1Y3F domains reveals roles for GEF and scaffolding activities in Vav1Y3F-induced 
phenotypes. (A) Morphology of MCF-10A cells expressing forms of Vav1Y3F with inactivating mutations in different structural 
domains. Data are representative of 3 or more independent experiments. (B) Cumulative data from experiments showing migra-
tion of GFP and different forms of Vav1Y3F through transwells in the absence of EGF. GFP and Vav1Y3F were included in each 
experiment and migration is expressed as the percentage of migration of Vav1Y3F (set to 100%) for each individual experiment. 
Data are the average plus standard deviation of two (PH* and CR*) to five (SH2* and SH3*) independent experiments.
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MCF-10A cells expressing Vav1Y3F have increased basal 
activation of Rac1, Pak, and ERK1/2, and inactivation of 
different domains has varying effects on the activity state 
of these signaling molecules
Because Vav1 is known to activate Rho GTPases and aber-
rant activation of Rho GTPases can result in increased
migratory and invasive phenotypes, the levels of Rac1-
GTP and Cdc42-GTP in MCF-10A cells expressing GFP,
Vav1Y3F, or Vav1Y3F/DH* proteins were measured using
a p21 binding domain (PBD) pulldown assay. Expression
of Vav1Y3F in MCF-10A cells resulted in high levels of
Rac1-GTP in unstimulated cells, and the Rac1-GTP levels
did not increase after EGF stimulation of the cells (Fig.

3A). Lysates from GFP and Vav1Y3F/DH* expressing cells
contained little Rac1-GTP in the absence or presence of
EGF stimulation (Fig. 3A and 3B). Although Vav1Y3F
expression caused robust activation of Rac1 in MCF-10A
cells, it did not increase levels of Cdc42-GTP (data not
shown).

Vav1Y3F expressing MCF-10A cells also contained
increased basal phosphorylated Pak and phosphorylated
ERK1/2 as well as higher levels of phosphorylated Pak fol-
lowing EGF stimulation (Fig. 3B and 3C). However, cells
expressing Vav1Y3F did not exhibit enhanced phosphor-
ylation of Akt either in the absence or presence of EGF

Different Vav1Y3F domains are required to increase levels of Rac1-GTP and phosphorylated Pak and ERK1/2Figure 3
Different Vav1Y3F domains are required to increase levels of Rac1-GTP and phosphorylated Pak and ERK1/2. 
(A) After overnight starvation, MCF-10A cells expressing GFP or Vav1Y3F were left unstimulated or stimulated with EGF. PBD 
pulldown assays were performed as described in the Materials and Methods. Levels of Rac1-GTP and total Rac1 are shown as 
indicated. Data are representative of 4 independent experiments. (B) MCF-10A cells expressing GFP, Vav1Y3F, and Vav1Y3F/
DH* were treated as in panel A and PBD assays were performed. In addition, whole cell lysate (WCL) samples were blotted 
for Vav1Y3FGFP, phosphorylated Pak, total Pak, phosphorylated ERK1/2, and actin as indicated. Data are representative of 2 
independent experiments. (C) Levels of Rac1-GTP, total Rac1, Vav1Y3FGFP, and phosphorylated and total Pak, ERK1/2, and 
Akt in lysates from MCF-10A cells expressing GFP, Vav1Y3F, Vav1Y3F/SH2*, or Vav1Y3F/C-SH3* were determined as in panel 
B. Data are representative of 3 independent experiments.
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stimulation (Fig. 3C). Vav1Y3F proteins containing muta-
tions that inactivated the DH, PH, and CR domains did
not increase levels of Rac1-GTP, phosphorylated Pak or
phosphorylated ERK1/2 (Fig. 3B and data not shown). In
contrast, mutation of the SH2 and C-SH3 domains of
Vav1Y3F did not reduce the induction of Rac1-GTP or
phosphorylated Pak, but did reduce the level of ERK phos-
phorylation two-fold (Fig. 3C). These results suggest that
the ability of Vav1Y3F to activate Rac1 through its DH,
PH, and CR domains contributes to its phenotypic effects
in MCF-10A cells. In addition, the induction of phospho-
rylated ERK1/2 in the absence of EGF stimulation corre-
lates with the migratory activity of Vav1Y3F as evidenced
by the effects of the SH2 and C-SH3 mutations on migra-
tion and phosphorylated ERK1/2.

Expression of Vav1Y3F in MCF-10A cells causes secretion 
of an EGF receptor ligand that stimulates migration
It has been shown previously that activation of Raf in
MCF-10A cells causes secretion of EGF receptor ligands
[60]. In addition, co-activation of ErbB2 and the TGF-β
receptor in MCF-10As causes secretion of EGF receptor
dependent factors that stimulate migration [61]. To deter-
mine whether the migration of Vav1Y3F-expressing MCF-
10A cells is dependent on the secretion of an EGF receptor
ligand, the migration assay was performed in the presence
of the EGF receptor inhibitory antibody, mAb225. This
antibody binds to the extracellular domain of the EGF
receptor and blocks ligand binding, resulting in the inhi-
bition of EGF receptor signaling [62]. Both the migration
of GFP expressing cells in the presence of EGF and migra-
tion of Vav1Y3F expressing cells in the absence of EGF
were blocked by mAb225 (Fig. 4A).

The migration assay was also performed in the presence of
AG1478, a small molecule inhibitor of the EGF receptor
kinase domain, to investigate whether EGF receptor
kinase activity is required for the increased migratory abil-
ity of Vav1Y3F expressing MCF-10A cells. AG1478 inhib-
ited migration of GFP control cells stimulated with EGF as
well as EGF-independent migration of Vav1Y3F cells (Fig.
4B). These results indicate that Vav1Y3F-induced MCF-
10A migration requires ligand binding and kinase activity
of the EGF receptor.

If Vav1Y3F stimulates the secretion of an EGF receptor lig-
and, conditioned medium collected from MCF-10A cells
expressing Vav1Y3F may cause migration of uninfected
MCF-10A cells. To examine this possibility, we examined
the ability of conditioned medium from these cells to
induce migration of uninfected MCF-10A cells. GFP or
Vav1Y3F expressing cells were cultured for 48 hours in
medium lacking EGF. The resulting conditioned medium
from GFP expressing cells did not enhance migration of
the naïve MCF-10A cells (Fig. 4C). In contrast, condi-

tioned medium from Vav1Y3F expressing cells induced a
4-fold increase in migration of the MCF-10A cells (Fig.
4C). These data strongly suggest that expression of
Vav1Y3F in MCF-10A cells results in secretion of an EGF
receptor ligand that stimulates migration by activating the
EGF receptor. However, we cannot rule out that the pres-
ence of EGF receptor-independent factors in the Vav1Y3F
conditioned media are responsible for migration of the
naïve MCF-10A cells.

Vav1Y3F increases basal ERK1/2 phosphorylation in a 
manner dependent on EGF receptor activation
Rac1 is activated and Pak and ERK1/2 are phosphorylated
following both Vav1 and EGF receptor activation
[1,11,14,63-65]. To investigate whether Vav1 stimulation
of these pathways is dependent on ligand binding to the
EGF receptor, we starved cells expressing GFP or Vav1Y3F
in the presence of mAb225, stimulated half the samples,
and then examined the levels of Rac1-GTP and Pak and
ERK1/2 phosphorylation in the cell lysates. Treatment of
Vav1Y3F cells with mAb225 did not diminish the stimu-
lation of Rac1-GTP levels or Pak phosphorylation induced
by Vav1Y3F, however mAb225 eliminated Vav1Y3F-
induced constitutive phosphorylation of ERK1/2 (Fig. 5).
In addition, inhibition of MEK, the upstream activator of
ERK, with U0126 blocked both the EGF-dependent migra-
tion of GFP control cells and the EGF-independent migra-
tion of Vav1Y3F cells (see additional file 1). These results
indicate that Vav1Y3F activates the ERK pathway indi-
rectly through autocrine stimulation of the EGF receptor
and that ERK activation downstream of EGF receptor stim-
ulation is required for the increased MCF10A migration
resulting from Vav1Y3F expression.

Based on the results in this report, we propose the follow-
ing mechanism for Vav1Y3F stimulation of MCF-10A cell
migration. Expression of Vav1Y3F causes activation of one
or more Rho GTPases leading to production of a secreted
factor that stimulates migration through binding to the
EGFR. The GEF activity of Vav is required for secretion of
the autocrine factor and migration because Y3F/DH*,
Y3F/PH*, and Y3F/CR* do not stimulate migration.
While the Rho family GTPase responsible for secretion of
the EGF receptor ligand was not identified, Rac1 repre-
sents one candidate family member since GTP loading of
Rac was strongly stimulated by Vav1Y3F and this stimula-
tion as well as phosphorylation of a downstream target of
Rac, Pak, was independent of EGF receptor ligand bind-
ing. Rac and/or other Vav1-activated Rho family GTPases
may collaborate with EGFR signaling to stimulate cell
migration since the level of MCF-10A cell migration stim-
ulated by Vav1Y3F-conditioned medium is not as strong
as that observed in Vav1Y3F expressing cells. This collab-
oration could involve Vav1Y3F enhancement of EGF stim-
ulated pathways since Vav1 binds to activated EGFR.
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The results from this study also implicate the Vav SH2 and
C-SH3 domains in Vav1Y3F-stimulated migration
because Y3F/SH2* and Y3F/SH3* were only half as effec-
tive as Vav1Y3F in inducing migratory activity. These
mutants stimulate Rac1 and Pak activation to the same
level as Vav1Y3F but activate ERK half as well, indicating
that the activation of ERK correlates with the migration
stimulating activity of the Vav SH3 and SH2 domain
mutants. One possibility is that the SH2 and C-SH3
domains recruit a factor that cooperates with Rac1 to stim-
ulate production of the autocrine factor. The Vav1 SH2

domain was also found by del Pozo et al. to be required
for cooperation with V12Rac in the induction of T cell
spreading. Although the DH domain was required for
spreading of T cells overexpressing Vav1 alone, Vav1DH*
could still synergize with V12Rac in inducing cell spread-
ing while Vav1 containing an SH2 mutation could not
[23]. Thus, Vav has functions that are both dependent and
independent of its ability to activate Rho GTPases.

Previous studies provided evidence that Vav is critically
involved in receptor pathways that couple to ERK [66-69].

Vav1Y3F increases migration of MCF-10A cells by causing secretion of an EGF receptor-dependent factorFigure 4
Vav1Y3F increases migration of MCF-10A cells by causing secretion of an EGF receptor-dependent factor. (A) 
MCF-10A cells expressing GFP or Vav1Y3F were lifted and pretreated with hybridoma medium (control) or with mAb225 for 
30 minutes at 37°C. Cells were then seeded in transwells in wells containing assay media minus and plus 5 ng/ml EGF for GFP 
or assay media minus EGF for Vav1Y3F and allowed to migrate overnight. The data are graphed as the percentage of migration 
of control Vav1Y3F cells in media without EGF (set to 100%) for each individual experiment. Data are the average plus stand-
ard deviation for 3 transwells. (B) MCF-10A cells expressing GFP or Vav1Y3F were lifted and pretreated with DMSO (control) 
or 300 nM AG1478 for 30 minutes at 37°C. Cells were then seeded in transwells in wells containing assay media plus DMSO -
/+ EGF or assay media plus AG1478 -/+ EGF as indicated and allowed to migrate overnight. Data are expressed as in panel A 
and are the average plus standard deviation for 3 transwells. (C) Conditioned media was collected from MCF-10A cells 
expressing GFP or Vav1Y3F as described in the Materials and Methods. Transwells were placed in wells containing the different 
conditioned medias and naïve MCF-10A cells were seeded in the top of the transwell. Cells were allowed to migrate overnight 
and migration was analyzed as in panel A. Data are expressed as the fold migration of cells with migration of cells in GFP cell 
conditioned media set to 1. Data are the average plus standard deviation of 5 independent experiments.
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For example, Tybulewicz and colleagues found that ERK
activation is impaired downstream of T cell receptor
(TCR) activation in Vav1-/- CD4+ T cells [66]. In subse-
quent studies, they showed that Vav1 appears to activate
ERK downstream of TCR activation through a pathway
involving LAT phosphorylation and Sos activation as well
as phospholipase C activation and membrane recruitment
of RasGRP1 [67]. In addition, knock down of endogenous
Vav protein in the cultured Drosophila S2 cells overexpress-
ing DER, the Drosophila homolog of the EGF receptor,
blocked ERK phosphorylation following stimulation of

DER, suggesting that Vav is required for phosphorylation
of ERK downstream of DER [68]. Data presented here sug-
gest that Vav1 can also activate ERK in MCF-10A cells
through an indirect pathway involving secretion of an
EGF receptor ligand. Differences in the signaling pathways
that couple activated Vav to ERK in different cell types and
through different ligands are likely due to cell type specific
expression of different signaling proteins. For example,
breast and other epithelial cells lack LAT and other pro-
teins involved in ERK activation following TCR stimula-
tion.

Increased basal phosphorylated ERK1/2 stimulated by Vav1Y3F is blocked by mAb225 pretreatment of the cellsFigure 5
Increased basal phosphorylated ERK1/2 stimulated by Vav1Y3F is blocked by mAb225 pretreatment of the 
cells. MCF-10A cells expressing GFP or Vav1Y3F were starved in assay media containing hybridoma media as a control (C) or 
mAb225 overnight. The cells were then left unstimulated or stimulated with 5 ng/ml EGF for 5 minutes. Cells were lysed and 
PBD pulldown assays were performed. WCL samples were also blotted for levels of total Rac1, Vav1Y3FGFP, phosphorylated 
Pak, total Pak, phosphorylated ERK1/2, total ERK2, phosphorylated Akt, and total Akt as indicated. Data are representative of 
3 independent experiments.
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While Vav1 expression is normally restricted to hemat-
opoietic cells, it has been shown to be expressed in neu-
roblastoma and gastric epithelial tumor cells and Vav2
and Vav3 are overexpressed in a variety of tumor cells [7-
10]. We have preliminary data showing that expression of
active forms of Vav2 also exhibit increased migration of
MCF-10A cells in the absence of EGF (Moores and Brugge,
unpublished results). Therefore, it is possible that Vav
proteins could contribute to the activation of Rac and ERK
pathways during tumor progression, possible leading to
changes in the migratory behavior of tumor cells.

Conclusion
Expression of Vav1Y3F in MCF-10A mammary epithelial
cells causes an increase in migration of the cells in the
absence and presence of exogenous EGF. The increased
migration of Vav1Y3F expressing cells is dependent on
secretion of an autocrine EGF receptor ligand, and maxi-
mal migration requires functional DH, PH, CR, SH2 and
C-SH3 domains. Activation of ERK downstream of Vav1 is
dependent on autocrine EGF receptor stimulation while
Vav1Y3F stimulates Rac1 and PAK activation independent
of the EGF receptor. Secretion of an autocrine ligand is a
novel mechanism by which Vav isoforms may activate the
MAP kinase pathway in non-hematopoietic cells.

Methods
Reagents and cell culture
Culture of MCF-10A cells was described in [70]. MCF-10A
cells expressing the ecotropic receptor were made by retro-
viral transfection of low passage MCF-10A cells with a
mEcoRneo retrovirus, followed by selection with neomy-
cin. Antibodies used included mouse anti-phosphotyro-
sine 4G10 (T. Roberts, Dana Farber Cancer Institute,
Boston, MA), mouse anti-Rac1 and mouse anti-Cdc42
(BD-Transduction Labs, San Diego, CA), rabbit anti-
pS198/S203 PAKα (M. Greenberg, Children's Hospital,
Boston, MA), rabbit anti-phosphoERK1/2 (Biosource,
Camarillo, CA) mouse anti-GFP, rabbit anti-Pak, and rab-
bit anti-ERK2 (Santa Cruz Biotechnology, Inc., Santa
Cruz, CA), rabbit anti-phosphoAkt S473 (Cell Signaling
Technology, Inc., Beverly, MA), and rabbit ant-Akt 1199
described in [71]. AG1478 and U0126 were purchased
from Calbiochem (San Diego, CA). Monoclonal antibody
225 was obtained from the lab of D. Lauffenburger (Mas-
sachusetts Institute of Technology, Boston, MA) or pro-
duced from the HB-8508 hybridoma obtained from
American Type Culture Collection (Manassas, VA). The
pEQPAM3(-E) and pEQEnvE plasmids were kindly pro-
vided by M. Roussel (St. Jude Children's Research Hospi-
tal, Memphis, TN).

Generation of Vav1Y3F expression plasmids
Mutations of the tyrosines to phenylalanine in the acidic
domain of Vav1 in the pCF1.HA plasmid were generated

using the QuikChange kit (Stratagene, La Jolla, CA). The
Gateway cloning system (Invitrogen, Carlsbad, CA) was
used to subclone Vav1Y3F into pMXuGFP (kindly pro-
vided by E. Koh, Whitehead Institute, Cambridge, MA),
resulting in a retroviral vector encoding Vav1Y3F with a C-
terminal GFP tag. Mutations in the different domains of
Vav1Y3F in pMXuGFP were made using the QuikChange
kit (Stratagene, La Jolla, CA).

Production of retrovirus encoding GFP and Vav1Y3F 
proteins and infection of MCF-10A cells
293T cells were co-transfected with vectors encoding gag/
pol, ecotropic envelope, and Vav1Y3F proteins
(pEQPAM3(-E), pEQEnvE, and pMXVav1Y3FuGFP,
respectively) using the calcium phosphate method. Virus
was collected at 48 hours after transfection, 0.45 µm fil-
tered, aliquoted, and frozen at -80°C. MCF-10A cells
expressing the ecotropic receptor were infected with GFP
or wild-type or mutated Vav1Y3F viruses and used 48
hours later for migration or biochemistry experiments.

Transwell migration assays
Transwell assays and conditioned media production were
performed as described in Seton-Rogers et al. [61], except
cells were not starved before lifting them and seeding
them in the transwells, and conditioned media was col-
lected after 48 hours.

Preparation of monoclonal antibody 225
Media containing monoclonal antibody 225 was har-
vested from hybridoma cells and filtered through a 0.2
µm filter. The media was concentrated and an ammonium
sulfate precipitation was performed to isolate the mono-
clonal antibody. The pellet was dissolved in phosphate
buffered saline and the antibody solution was dialyzed
into phosphate buffered saline to remove ammonium sul-
fate. The activity of the resulting antibody solution was
determined by measuring its effect on EGF stimulated
migration and EGF receptor phosphorylation in MCF-10A
cells. The amount of the antibody solution used in migra-
tion and PBD assays had activity equivalent to that seen
with 10 µg/ml of purified mAb225 obtained from the lab
of D. Lauffenburger (Massachusetts Institute of Technol-
ogy, Boston, MA).

PBD pulldown assays and immunoblotting
MCF-10A cells infected in 6 well plates with Vav1Y3F ret-
roviruses were starved in assay media (DMEM/F12, 2%
horse serum, 0.5 µg/ml hydrocortisone, 100 ng/ml chol-
era toxin, 10 µg/ml insulin, and 1x penicillin/streptomy-
cin) overnight starting at 36 hours after infection. The next
morning, the cells were left unstimulated or stimulated
with 20 ng/ml EGF for 5 minutes, washed with PBS, and
lysed in PBD lysis buffer (50 mM Tris, pH 7.6, 150 mM
NaCl, 1% Triton X-100, 0.5 mM MgCl2, 1 mM NaF, 1 mM
Page 10 of 13
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β-glycerophosphate, 1 mM Na3VO4, 100 µg/ml PMSF, 10
µg/ml leupeptin, and 2 µg/ml aprotinin) containing 10 µg
of GST-PBD per sample. Lysates were clarified at 13,000
rpm for 5 minutes at 4°C. Small aliquots of lysates were
combined with 2x SDS sample buffer for whole cell lysate
samples and the rest was incubated with 30 µl/sample of
a 1:1 slurry of glutathione agarose beads in PBD lysis
buffer on a rotator at 4°C for 45 minutes. Beads were
washed and 2x SDS sample buffer was added to each sam-
ple. Immunoblotting was performed as described in
Seton-Rogers et al [61].
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