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A B S T R A C T

Purpose: The aim of the study was to test flexor tendon repair with a novel hollow mesh suture augmentation
served as a centre core cable [Triple-C (Tri-C)] in an in vitro study using a turkey model.
Methods: Forty long digits from white turkey feet were divided into the following four groups based on repair
techniques: Group 0, intact tendon without repair; Group 1, modified Kessler (MK) repair only (MKo); Group 2,
MK repair plus Tri-C (MK þ Tri-C); and Group 3, MK repair plus an additional outside knot plus Tri-C (MK-2knots
þ Tri-C). Mechanical evaluations were performed for all groups.
Results: The frictions of the two groups with Tri-C were not significantly different than those of the MKo group.
The ultimate tensile strength of the MK þ Tri-C group was not significantly different from that of the MKo group
or the MK-2knots þ Tri-C group. In contrast, the MK-2knots þ Tri-C group had a significantly greater ultimate
tensile strength compared with that of the MKo group. Forces at 2-mm gap formation in the groups with Tri-C
were significantly stronger than that of MK alone.
Conclusion: Our data have demonstrated that MK repair augmented with the centre hollow mesh suture increased
failure strength without inducing increased friction.
The translational potential of this article: Our study elucidates that a Tri-C augmentation designed in this study can
achieve mechanical enhancements without increasing the repaired tendon friction. Hence, this novel technique
has potential biological validity and clinical application.
Introduction

Flexor tendon injury is a common hand trauma and often leads to
poor hand function after surgical repair owing to insufficient repair
strength and a low intrinsic healing capacity [1–6]. Increasing repair
strength and tendon healing ability are the primary targets for improving
clinical outcomes in flexor tendon research. With the progress of tissue
engineering and regenerative medicine, cell-based therapy has been
studied to enhance tendon healing and has yielded encouraging results
[7–14]. However, sufficient cell delivery for flexor tendon injury is
challenging owing to complex surgical repair techniques that are
required, as well as the small tendon end-to-end contact area [14].

To overcome these barriers, we developed a unique flexor tendon
repair technique with a novel hollow mesh suture, as a centre cable,
which not only increases repair strength but also acts as a cell delivery
system. This novel mesh suture was originally designed to improve
suture tissue holding strength [15,16]. It is with an outer open mesh
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architecture that permits tissue ingrowth around the filaments and,
thereby, increases the ultimate tensile strength (UTS) of wound closure.
The hollow structure provides a stable spatial shape and forms a space
longitudinally to contain and deliver the cells into the centre of the
tendon, which has less healing ability compared with that of the pe-
ripheral surface region. It has been identified that the cell population
and proliferative ability of central area tenocytes in flexor tendons are
significantly less than those of an area close to the epitenon in vitro. The
intrinsic healing of a tendon mainly relies on the epitenon cell from the
tendon surface area migrating into the centre portion [17,18]. There-
fore, direct delivery of the cells into the tendon centre area may have
an impact on tendon healing. In the present study, we designed a novel
tendon repair technique using the mesh suture as a centre core cable
[Triple-C (Tri-C)] to deliver cells combined with clinically used modi-
fied Kessler (MK) repair to enhance the healing ability of the repaired
tendon. The experiment design of the present study consisted of
mechanically evaluating this repair technique as the first step for future
and Soft Tissue Laboratory, 200 1st Street SW, Rochester, MN, USA.
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Figure 1. Comparison of the human index finger with the long digits of turkeys.
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biological evaluations of this novel mesh suture as a cell delivery
material.

Materials and methods

Study design

A total of 40 long digits from 40 fresh frozen white turkey feet were
used in the present study. They were obtained from a commercial
supplier (Jennie-O Turkey Store Sales LLC, MN, USA) who raises
Figure 2. Three groups with different repair techniques. (A) Group 1: modified Kes
Group 3: MK repair with two knots, one inside and one outside, plus Triple-C (MK-
overhand locking.
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turkeys for meat production. The digits were kept frozen at �80 �C
until they were thawed at 4 �C one day before the dissection. The
turkey's long digit was chosen because it is similar to a human's finger
in terms of size, structure, and biomechanical properties (Figure 1)
[19]. The turkey flexor tendons were divided into the following four
groups based on repair configurations: Group 0, intact tendon without
repair as a control group only for frictional testing; Group 1, MK repair
alone as a repaired control group (MKo) (Figure 2A); Group 2, MK
repair plus Tri-C (MK þ Tri-C) (Figure 2B); and Group 3, MK repair
with an additional outside knot plus Tri-C (MK-2knots þ Tri-C)
(Figure 2C). All the techniques were used with the two-strand overhand
locking (TSOL) loops (TSOL knot) to prevent knot unravelling [20]. For
frictional testing, the intact flexor digitorum profundus (FDP) tendons
without repair were used to serve as a normal baseline in terms of
frictional force and to compare with all repaired tendon groups. A hand
surgeon performed all repairs.

Specimen preparation and repair procedure

The skin, subcutaneous tissues, and two flexor digitorum superficialis
tendons were removed, leaving the flexor apparatus (entire A2 pulley)
intact. FDP tendons were sharply transected and repaired in the Zone II
area for all groups, except for the control group. The three repair tech-
niques are shown in Figure 2A–C. A custom-made Tri-C guiding device
was modified from a 16-G needle (Figure 3A). The device was inserted
into the centre of the tendon, from the tendon end, to guide the suture
needle out of the tendon end (Figure 3B). The suture was tied to the end
of the Tri-C, and then, the suture needle was taken back to the tendon
through the guiding device (Figure 3C), thus pulling and placing the
sler (MK) repair (MKo); (B) Group 2: MK repair plus Triple-C (MK þ Tri-C); (C)
2TSOL þ Tri-C). MKo ¼ MK repair alone; Tri-C ¼ Triple-C; TSOL ¼ two-strand



Figure 3. (A) Repair-guiding device that is custom-made with a needle. (B and C) This device guided the suture needle out/in and in/out to connect the mesh suture.
(D) This device also placed the mesh suture with the precreated tunnel in the centre of the tendon.
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Tri-C (2 mm in diameter) into the centre of the tendon (Figure 3D). In
each group, FDP tendons were repaired using the same technique. The
core suture was completed using a 3-0 braided polyester suture (Ethi-
bond; Ethicon, Inc., Somerville, USA). The transverse strand of the core
suture configuration was placed at a distance of 5 mm from the margin in
both tendon ends. The Tri-C mesh suture was about 1 cm in length with
one knot at the each end, and the ends were smoothed with an electronic
iron.

In Group 1 and Group 2, the MK technique was performed with a
single suture and the TSOL knot buried between the ends of the repaired
tendon (Figure 4A). In Group 3, one knot was between the tendon ends,
and the other was outside the surface (Figure 4B). After core suture, a
running epitendinous repair was performed using 6-0 Prolene (Prolene;
Ethicon, Inc., Somerville, USA) for each group.
Figure 4. The procedures and knot location of the Triple-C augmentation repair tech
tendon and one outside the tendon surface) with Triple-C. MK ¼ modified Kessler.
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Measurement of tendon gliding resistance

Gliding resistance between the tendons and the proximal pulley was
measured in a custom-made mechanical test system [21–23] (Figure 5).
The metacarpal was dissected away, and all proximal vinculums were
released so that the FDP tendon moved freely within its sheath. The A2
pulley was preserved, and friction was measured at this level. The prox-
imal and middle phalanx was fixed together with a thin K-wire. The pre-
pared specimen was fixed in a tank full of saline, with the volar side of the
pulley facing upward at room temperature. Two custom-made tensile load
transducers (F1 and F2) were attached on each end of the tendon. The F1
transducer was connected to the distal tendon end with a 4.9-N weight.
The F2 transducer was attached to the proximal tendon end with an
actuator. The transducers were oriented to create a 20� arc, and the
niques. (A) MK with Triple-C; (B) MK with two knots (one within the ends of the



Figure 5. Lateral view of the testing apparatus used for measurement of gliding
resistance between the FDP tendon and the pulley. F1 is the distal force trans-
ducer, and F2 is the proximal force transducer. FDP ¼ flexor dig-
itorum profundus.

Table 1
Type of failure.

Pullout Rupture Unravelling Mesh rupture

G1 6 4 0 —

G2 7 3 0 4
G3 8 2 0 3

G1: Group 1; G2: Group 2; G3: Group 3.
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actuator was oriented to create a 30� arc. The tendon was pulled proxi-
mally (flexion) at a velocity of 2 mm/s over the excursion range previously
established and then with reversed direction (extension), repeating for a
total of three cycles. Gliding resistance between the FDP and proximal
pulley was calculated, with the difference in force measured between F1
and F2 transducers in both flexion and extension over the excursion and
then averaged as the tendon gliding resistance against the pulley [23].

Measurement of repair strength

After frictional testing, the repaired tendons were evaluated for
mechanical strength. To measure breaking strength, the repaired
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tendons were fixed to a servohydraulic testing machine (MTS Systems,
Eden Prairie, Minnesota, USA) and distracted to failure at a rate of 20
mm/min. A differential variable reluctance transducer (MicroStrain,
Williston, Vermont, USA) was used to measure gap formation during
testing; it was attached to the tendon through two barbed pins inserted
perpendicularly into the tendon. The repair site was centred between
the two pins. A video of each tendon with a scale was recorded in the
process. Tensile force, grip-to-grip displacement, and gap displacement
measured using the transducer were collected at a rate of 20 Hz. UTS
was recorded. In addition, the repair stiffness was calculated from the
slope of the linear region of the force versus gap-formation curve
(as measured using the transducer) to measure the resistance to gap
formation.

Statistical analysis

Statistical analyses were performed using one-way analysis of vari-
ance, with significance set at a level of p < 0.05. The results were
expressed as mean (�standard deviation). The Tukey honestly significant
difference (HSD) test was used to compare the means of variables among
groups. Statistical significance was set at a level of p < 0.05.

Results

During tensile testing of the repaired tendons, failure modes of the
repaired tendons included (1) suture pullout (suture cutting through the
tendon without suture break), (2) MK suture break with the Tri-C core
suture intact, and (3) MK suture break combined with Tri-C core suture
break (Table 1). There was no significant difference in failure modes
among three groups with a Fisher exact test. No suture knot unravelling
occurred as a strong knot configuration (TSOL) was used for all repaired
tendons [20].

In general, the friction force, UTS, and force to form a 2-mm gap
showed a trend of gradual increase from Group 1 to Group 3
(Figure 6A–C). The friction of the intact tendon group (without repair)
was significantly lower than that of all three repaired groups (Figure 6A).
However, there was no significant difference in friction between the
three repaired groups with or without Tri-C augmentation.
Figure 6. (A) The friction forces in all
repaired tendon groups were signifi-
cantly higher than those of normal
tendon friction. The friction forces of
the two groups with Triple-C augmen-
tation were not significantly different
from those of the MKo group. (B) The
repaired tendon ultimate tensile
strength of the MK þ Tri-C group was
not significantly different from that of
the MKo group or the MK-2knots þ Tri-
C group, whereas the repaired tendon
ultimate tensile strength of the MK-
2knots þ Tri-C group was significantly
stronger than that of the MKo group. (C)
The force to form a 2-mm gap of the
groups with Tri-C was significantly
higher than that of the MK group alone.
(D) The repaired tendon stiffness was
not significantly different among the
three groups with different repair tech-
niques. A different letter indicates a
significant difference (a < b), whereas
the same letter indicates no significant
difference (a ¼ ab, ab ¼ b). MK ¼
modified Kessler; MKo ¼ MK repair
alone; Tri-C ¼ Triple-C.



Figure 7. The concept of needle/suture material with Triple-C augmentation
can be manufactured to form one unit of the device for the tendon repair. A: a
schematic diagram of the special suture. B: the diagram of the principle of
applying the suture to repair tendon.
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The UTS of the MK þ Tri-C group was not significantly different from
that of the MKo group or the MK-2knots þ Tri-C group, whereas the MK-
2knotsþ Tri-C group had significantly stronger UTS than that of the MKo
group (p < 0.05; Figure 6B).

The forces to form a 2-mm gap at the repair site of the repaired ten-
dons using Tri-C augmentation in Groups 2 and 3 were significantly
higher than those of MK alone (p < 0.05). There was no significant dif-
ference in the force for the 2-mm gap between the two groups (2 and 3)
with Tri-C augmentation (Figure 6C). The stiffness was not significantly
different among the three groups with different repair techniques
(Figure 6D).

Discussion

Although progress in surgical techniques, suture materials, and
rehabilitation have improved functional outcomes after flexor tendon
repair, slow intrinsic healing and dominant extrinsic healing still cause
repaired tendon rupture and severe adhesions, respectively [3,24–26].
Cell-based therapy has recently been implemented for enhancing tendon
intrinsic healing, thus reducing adhesion formation [7,10–12,27].
However, the effectiveness of cell-based therapy on flexor tendon healing
has been limited. This inefficient improvement on tendon healing, which
differs from the observations of cell therapy in other tissues such as bone
[28–30], may be due to a small contact area between healing interfaces
or insufficient repair strength causing a gap between healing interfaces.
Therefore, developing a more effective cell delivery method that also
strengthens repair would be the most ideal innovation for improving
flexor tendon healing.

The Tri-C augmentation designed in the present study was intended to
achieve biological and mechanical enhancements. The rationale for
choosing the MK technique was based on this repair technique being
commonly used in the clinic [31–33]. Using this technique could, indeed,
increase the repair strength. A 4-needle suture with Tri-C could be
designed for cell delivery and mechanical augmentation that would be
easily performed in a clinical setting (Figure 7). For the Kessler repair,
two knots were placed outside of the tendon surface to eliminate the
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potential that knots occupied the healing area, but this strategy also
induced higher friction in our preliminary experiment. We chose the
method of leaving one knot between the ends of the tendon and the other
outside the surface in the design of our Group 3 to balance the tendon
friction with the tendon end contact area. We used the TSOL knot in this
experiment because it has been recently reported that it increases repair
strength compared with that of a square knot [20]. Furthermore, we
created a special needle to complete the surgical procedure for delivering
Tri-C augmentation combined with MK repair.

Our findings suggested that the repair strength was equivalent be-
tween theMKþTri-C andMK-2TSOLþTri-C groups,whichwere stronger
than that of the repaired control group (MKo). Although it was not
significantlydifferent between theMKþTri-CandMKogroups in theUTS,
the force to form a 2-mm gap was significantly stronger in the MKþ Tri-C
group than in the MKo group. These data demonstrated that the centre
hollowmesh suture (Tri-C) strengthened the core suture (MK techniques).
We also noticed that none of the TSOL knots unravelled. The TSOL knot
has been reported as an alternative knotting system for tendon repair,
especially during use of strong suturematerials or with surgical technique
in which the suture knot holding strength becomes critical. Our present
study further verified that TSOL knots prevent knot unravelling that often
occurredwith surgical knots for tendon repair [20]. Themesh suturewas 2
mm in diameter, so it is too thick to be used as a suture material to repair
flexor tendon directly. However, as a centre cable system for core suture
augmentation and potential cell delivery, the Tri-C concept is feasible and
applicable. It is speculated that the Tri-C augmentation in the present
study shared the loading that applied to the repaired tendon during me-
chanical failure testing as themesh suture rupture occurred in all repaired
groups with Tri-C augmentation. However, the Tri-C rupture in Group 2
(MK þ Tri-C) was more than in Group 3, which might relate to the repair
stiffness that was higher in Group 2 than in Group 3.

Tendon repair with Tri-C augmentation in the centre of the tendon
did not increase the repaired tendon friction. Previous reports have
shown that a suture knot outside the tendon surface causes the friction to
increase [34]. Balancing of repair strength, healing area, and tendon
gliding ability has to be considered accordingly based on clinical sce-
narios and rehabilitation regimes [35]. Group 3 (MK-2TSLO þ Tri-C), in
our present study, demonstrates an alternative way to increase repair
strength without increasing friction.

Recently, we have studied flexor tendons in a turkey model and found
that the turkey's digits and flexor tendon are similar to those of human
fingers in terms of function, size, anatomy, and structure. Our present
study using the turkey model may be useful for the translation from in
vitro findings to an in vivo validation of Tri-C augmentation.

There are some limitations to our present study. First, only biome-
chanical performance of the Tri-C augmentation was studied. Biological
augmentation with cell-based delivery was not investigated in either the
ex vivo or in vivo models. Second, there was variability regarding Tri-C
augmentation among the experimental groups. Based on the observa-
tion during testing, we believe that these variations were caused by
manually connecting the repair suture with a knotted mesh suture, which
could slip from the mesh suture. If the Tri-C is separated from the core
suture, the Tri-C augmentation will fail. However, this weakness could be
overcome by designing a needle suture with Tri-C in a single system
(Figure 7). Finally, we only tested theMK core suture techniques for Tri-C
augmentation. Other flexor tendon repair techniques were not studied.

Based on the mechanical data, we conclude that MK tendon repair
with Tri-C augmentation—made of a hollow mesh suture combined with
the TSOL knot (either one knot buried between ends of the tendon or an
extra knot outside tendon repair)—increased flexor tendon repair
strength without increasing the repaired tendon friction. These repair
techniques have a potential to improve tendon healing by delivering cells
through a centre cable to the repair site. Although mechanical augmen-
tation was confirmed in the present study, the biological effects of cell-
based therapy to enhance tendon healing need to be investigated in
future studies.
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